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Abstract: Natural systems often show complex dynamics. The quantification of such complex
dynamics is an important step in, e.g., characterization and classification of different systems or to
investigate the effect of an external perturbation on the dynamics. Promising routes were followed in
the past using concepts based on (Shannon’s) entropy. Here, we propose a new, conceptually sound
measure that can be pragmatically computed, in contrast to pure theoretical concepts based on, e.g.,
Kolmogorov complexity. We illustrate the applicability using a toy example with a control parameter
and go on to the molecular evolution of the HIV1 protease for which drug treatment can be regarded
as an external perturbation that changes the complexity of its molecular evolutionary dynamics. In
fact, our method identifies exactly those residues which are known to bind the drug molecules by
their noticeable signal. We furthermore apply our method in a completely different domain, namely
foreign exchange rates, and find convincing results as well.

Keywords: complexity; co-evolution; Jensen–Shannon; entropy

1. Introduction

The dynamics of complex systems (complexity here refers to the notion used in physics
and statistics, e.g., [1,2], not to other notions used, e.g., in design and manufacturing
engineering [3]) is of great interest in all natural sciences. The most influential contribution
of statistical physics to this field is the quantification beyond mere observation of the
underlying mechanisms.

In particular, the effect of an external control parameter or an environmental factor
on the internal dynamics reveals almost all technological exploitable insight for such a
complex system. Examples range from the phenomenon of stochastic resonance and its
applications [4–6] to ecological systems described by the well-known Lotka–Volterra-type
models [7,8].

Thus, we are left with the question of how to consistently, transferably quantify the
change in the dynamical complexity upon an external perturbation in a conceptually sound
manner. To this end, we herein propose an information-theoretic measure and show its
applicability with three distinct examples: (a) a toy problem based on the logistic equation
as a complex, but for our purposes controllable, model; (b) the evolutionary response of the
HIV1 protease to drug treatment; and (c) the dynamics of foreign exchange rates.

2. Methods

The overall behavior of an observable can be well characterized by the (discretized)
state variable. The different states can enumerated by i ∈ [1, . . . , N], then the probability to
observe the i-th value of the observable is pi. The overall distribution of all pi can then be
written in vector-form ~p.
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Wootters, Crutchfield, and Young [9,10] argued that a system which is (a) completely
random (pi close to uniform) or (b) absolutely fixed (all but one pi vanish) should not be
regarded as “complex”. Thus, complexity occurs between those edge cases.

For discrete probabilities stored in ~p = (p1, . . . , pi, . . . , pN), both edge cases are re-

flected in Shannon’s entropy H(~p) := −
N
∑

i=1
pi · log2 pi: for (a) we have a (close to) maximal

entropy log2 N for data discretized into N bins or states, while for (b) we find a vanishing
one. Both cases reflect non-complex behavior: either (a) non-correlated randomness or
(b) absolute predictability. Thus, complex behavior is to be expected only at intermediate
entropy values.

Often, H is normalized by its maximum log2 N, so that H(~p) = −∑
i

pilogN pi, where

N is the number of distinct states. (Note that the usage of Shannon’s entropy is related to the
concept of “information content” in, e.g., [3], Equations (5.5) and (5.5a)). In a subsequent
study [11], researchers developed the notation of Suh’s “information content” into an
information-theory-based problem-solving methodology. The empirical counts ni are
used to obtain maximum-likelihood estimators of the respective p̂i = ni/L, where L = ∑i ni
is the number of all observations. Note that for “small” L, we would need to include
corrections to the Shannon entropy formula to account for small coverage [12–14] for which
efficient computational methods exist [15]. In this study, we deal with a synthetic dataset
and two real-life ones that are sufficiently large so that we can avoid this complication here.

Earlier ideas on how to improve upon Shannon’s entropy to assess complexity (and thus
work in the “intermediate” regime between vanishing and maximal entropy) by Wootters [9]
were extended by several authors [16–20] into measures of the general form M(~p) := H(~p) ·
D(~p,~q), where D(~p,~q) is a distance between the realized dynamics giving rise to ~p in relation
to a reference distribution~q. The distribution~q captures the dynamics of a system without the
complex mechanism we are interested in. In all previous work [9,16,18–20],~q was set to the
uniform distribution ∀i : ui := 1/N . Then, the measure M vanishes for completely random
dynamics (~p uniform, and thus D(~p,~u)→ 0), as well as for constant values (H(~p)→ 0).

Below we will show that non-uniform distributions resulting from (reduced) complex
dynamics are more informative to assess the response of a system to a perturbation or any
change in its environment. Furthermore, the choice of D must not be ad hoc as in some of
the previous work.

Note that an alternative approach to quantify the (stochastic) complexity of a system is
based on using its Kolmogorov complexity [21]. While conceptually sound, this approach
suffers from the fact that the Kolmogorov complexity is not analytically computable in
general [22].

2.1. Complexity Change upon Perturbation

The well-known Kullback–Leibler divergence [23] compares two distributions in an
information theoretic sense: DKL(~p,~q) := ∑i pi · log pi

qi
and was used in, e.g., [9] as the

distance with respect to the uniform distribution ~u.
The inherent asymmetry renders the DKL itself a non-metric. However, it can be

symmetrized and becomes the Jensen–Shannon divergence

DJS(~p,~q) =
1
2
(DKL(~p, ~m) + DKL(~q, ~m))

~m =
1
2
(~p +~q)

Now,
√

DJS(~p,~q) was shown to fulfill all requirements of a metric [24].
Then, with regard to the previously used uniform distribution, we would obtain

M(~p) := H(~p) ·
√

DJS(~p,~u). In fact, this definition of stochastic complexity was already
applied in quantitative finance [25,26] and general settings [27] within the Martín–Plastino–
Rosso (MPR) framework for stochastic complexity.
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Our extension revolves around the question of the change in complexity upon a pertur-
bation rather than its absolute value itself. To compare two distinct scenarios—one before
and one after an external perturbation—we compute the difference in those complexity
values, where ~p is the distribution of an observable X before and~q after a perturbation:

∆C(~p||~q) = M(~p||~q)−M(~q||~p)

= H(~p)
√

DJS(~p||~q)− H(~q)
√

DJS(~q||~p) (1)

= (H(~p)− H(~q))
√

DJS(~p||~q)

In the subsequent parts, we will use p(X) and~p as well as p(Y) and~q interchangeablely
as X is our “reference” and Y our perturbed system. Note that we have replaced the uniform
distribution put forward in previous work by the one of the unperturbed system. Therefore,
we measure the complexity change upon perturbation by ∆C(X||Y).

2.2. Datasets

In order to assess the performance of ∆C(X||Y), we chose two distinct scenarios. First,
we use a synthetic, controllable toy model which consists of coupled logistic maps in the
chaotic regime with

xn+1 = f (xn)

yn+1 = (1− ξ) f (yn) + ξ f (xn) (2)

f (x) = 4x(1− x)

where 1 ≤ n ≤ 100,000 with the coupling ξ varying between 0 and 0.7. This system allows
for the continuous modulation of the dynamics of yn by an external, independent dynamics,
namely xn. Note that X shows the same statistical properties as the unperturbed (ξ = 0)
y-system. We can thus use X in agreement with the nomenclature of the previous section.

Computation of ∆C (see below) was performed for the comparison of the distribution
p(Y) with both the uniform U and the actually realized distribution of p(X). Note that
in this case, the random variable serves two purposes at the same time: it is driving the
perturbation to Y by the strength ξ, while the distributions p(X) = pξ=0(Y) equal each
other and thus p(X) can be regarded as the histogram of the unperturbed (ξ = 0) dynamics
of {y1, . . . , yn}.

The second dataset consisted of protein sequences from the HIV protease (HIVP).
This enzyme consists of 99 amino acids and is essential for the formation of functional
HIV virions. It became one of the two major targets for drugs to treat AIDS. This dataset
can be subdivided into sequences from patients treated and untreated by HIVP inhibitors.
Then, we regard a treatment as a “perturbation” and we can gain insight into the reaction
of the viral evolution to this evolutionary environmental change. Note that each of the
99 positions will be analyzed independently and regarded as a separated X ↔ Y pair.

The high number of annotated sequences [28] renders the HIVP an ideal area of
application for ∆C(X||Y); furthermore, no multiple sequence alignment is necessary in
this case—effectively avoiding poor signal-to-noise ratios (SNR), frequently encountered
in biomolecular sequence studies [29]. To increase the SNR further, all sequences with
more than one position with multiple and non-canonic amino acids were removed due
to unknown combinatorics. The resulting 53,793 sequences were then subdivided into
a treated (11,521 sequences) and untreated dataset (42,272 sequences). We computed ∆C
between the distributions of treated and untreated sequences per position with the latter
being the reference distribution. Note that for such a large dataset, we do not need to take
into account finite-size corrections [30] as put forward by, e.g., Grassberger [13,14].

As a third example, we investigate the complex dynamics of foreign exchange markets
(under external perturbation). A prime example is the change of those rates for the British
Pound with respect to other currencies; here the external perturbation is the referendum
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(on 23 June 2016) to leave the European Union and thus (prospectively) reduce the strength
of economic coupling of the British economy with other European countries. As the Pound
was never part of the Euro system, the change in dynamics is ceteris paribus only affected
by the decision alone. To this end, we obtained the tick data for the whole year 2016 from
histdata.com for the currency pairs GBP-EUR, GBP-USD, GBP-CHF, and GBP-JYP. We
averaged bit and ask prices to obtain one time series.

3. Results

We applied our measure ∆C(X||Y) to the datasets described above in the dataset section.

3.1. Synthetic Data Set for Coupled Logistic Maps

Using the synthetic dataset of the toy model in Equation (2), we illustrate the insight
one might gain from ∆C(X||Y). Here, we discretized the continuous values simulated for
the coupled map into 20 bins.

In Figure 1, we show our results. First, we show how the complexity of the dynamics
changes upon varying ξ with respect to the uniform distribution (we set p(X) = U by hand,
while recording the distribution p(Y) based on the simulated time series of Equation (2), red
line in Figure 1A). We observe an undesirable effect: the ∆C vanishes neither for ξ = 0, nor
for large(r) ξ. However, in those cases, the complexity change induced by the perturbation
should be regarded as small: for ξ = 0 there is just no interaction, thus no change can occur.
For large ξ, we can immediately conclude from Equation (2) that the dynamics of yn is
actually equivalent to the one of xn, so it is again the dynamics of one logistic equation.
This is due to the fact that perfect synchronization between the two processes occurs only
at intermediate coupling strengths, as Sun et al. [31] already discussed. This argument is
further strengthened by the Pearson correlation coefficient between xn and yn that we also
show in Figure 1A: for ξ ≥ 0.5 the time series correlated perfectly; namely, they are the
same. This can also be seen in the two-dimensional histogram of (xn, yn) value pairs for
ξ = 0.6 recorded for Figure 1B.

In Figure 1A, we also show the ∆C values computed as above (blue line). First we note
that the sensible results for ξ = 0 and ξ > 0.5 eventually are produced. ∆C(X||Y) actually
vanishes at precisely ξ = 0.5, at which xn and yn are synchronized.

Furthermore, we observe that Shannon’s entropy of the observable HY alone does
not allow for any insight into the complexity (change) of the dynamics of yn as it remains
within an error margin for varying ξ. Furthermore, note that Shannon’s entropy HXY for
the two-dimensional histogram p(X, Y) continuously decreases for larger couplings ξ as
the distributions become more and more spiked.

In addition, our ∆C(X||Y) shows a “direction” in the sense that an increase in com-
plexity (or a reduction) can be detected. For ξ = 0.27, one can, e.g., clearly observe a
stronger connection between X and Y in the p(X, Y) of Figure 1A; thus, a reduction in the
complexity – H(X) = H(~q) dominates the first factor in Equation (1). At ξ ≈ 0.07 and
ξ = 0.42, we found the exact opposite: here, the entropy of H(Y) reaches a comparable low
value and thus influences the ∆C accordingly.

Note that for other information theoretic measures such as the mutual information
MI(X, Y) := H(X) + H(Y)− H(X, Y), we obtain less sensible results. For this measure,
we have H(X) ≈ 4.14bit=const for all ξ. We then would obtain a monotonously increasing
MI running in analogy to Pearson’s correlation coefficient.
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Figure 1. Coupled map: (A) complexity and correlation progression; (B) (Logarithmic) heatmap
of the contingency tables/two-dimensional histograms p(X, Y) for varying ξ. For these ξ-values,
∆C(X||Y) reached its (local) maxima/minimum.

3.2. Complexity within HIVP

We proceeded to apply ∆C(X||Y) to each position in the HIVP sequences described
above. For each position, we can therefore quantitatively assess the evolutionary impact of
drug treatment. Here, we built histograms as counts for each of the 20 naturally occurring
amino acid types. X then are the (amino acid) outcomes for the untreated patient dataset,
while Y are the ones for the treated patients for which the viral evolution is under-perturbed
selective pressure.

By ∆C, we were able to identify previously reported compensatory mutation by setting
a threshold at |∆C| ≥ 0.1 ·max(∆C). Here, two different groups of ∆C can be observed
as ∆C can be either positive or negative in value (see Figure 2). Hence, ∆C allows us not
only to annotate position in HIVP where the amino acid distributions between treated
and untreated differ, but also allows us to annotate the direction in change of evolutionary
complexity.

For positive ∆C, we find positions 10, 20, 24, 30, 33, 46, 53, 54, 58, 62, 71, 73, 82, 84,
88, and 89. Earlier studies revealed a reduced susceptibility to protease inhibitors at these
positions [32,33] (see Table 1). Only position 61 has yet to be reported as compensatory
mutation upon protease inhibitor administration. For the aforementioned position, we
observe a positive ∆C, resulting in increased evolutionary complexity upon protease
inhibitor treatment. Here, HIVP increases the amino acid diversity to compensate the
drug-induced evolutionary pressure. Interestingly, we observe increased frequencies of
smaller, polar amino acids at position 61 upon drug treatment, indicating a potentially not
documented compensatory effect.

For the second group of ∆C, positions with a negative ∆C, we obtain positions 63, 69,
and 89, with all three reported earlier to be affected by drug treatment [33]. The negative
∆C at these sites points to a reduction in position-wise evolutionary complexity upon
treatment with protease inhibitors, indicating ideal targets for further combination therapy.
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Figure 2. ∆C values for the HIVP positions. In orange, peaks with ∆C ≥ 0.1 ·max(∆C) are
highlighted, whereas peaks with ∆C ≤ −0.1 ·max(∆C) are shown in blue. Almost all peak positions
have been reported to be influenced by protease inhibitors.

Table 1. Summary of positions mutated by the four most prominent protease inhibitors in the HIVP
dataset. Bold positions show a |∆C| ≥ 0.1 ·max ∆C. Underlined positions represent “major” HIVP
mutations which are detected to mutate first in presence of a drug.

Drug Number of Sequences Affected Positions

Indinavir 3753 10, 20, 24, 32, 36, 46, 54, 71, 73, 76, 82, 84, 89
Lopinavir 955 10, 20, 24, 32, 33, 46, 47, 50, 53, 54, 63, 71, 73, 76, 82, 84, 90
Nelfinavir 3178 10, 30, 36, 46, 71, 77, 82, 84, 88, 90
Saquinavir 2526 10, 24, 48, 54, 62, 71, 73, 77, 82, 84, 90

3.3. Foreign Exchange Rates under Perturbation

As described above, we used the foreign exchange rate of the pound sterling to other
major currencies and obtained the differences of our complexity measure before and after
the Brexit referendum. As mentioned above, we used the average of bid and ask prices. We
downloaded the tick data for the year 2016 from histdata.com and thus have market data
roughly from half a year before and half a year after the referendum (the Brexit referendum
was held on 23 June 2016). We binned the rates, following standard procedure, into basis
points (bps).

In Table 2, we summarize the findings. To assess the statistical relevance of the ∆C
values in Table 2, we additionally applied a resampling technique. We sampled 250 replicas
of the original data into random temporal order, extracting the same number of data points
as in the original dataset for the sets of exchange rates before and after the referendum. Then,
we computed the ∆C values for these as an in-sample estimator of the ∆C values regardless
of intervention or external perturbation. The resulting histograms are shown in Figure 3.
This allows us to judge the original values with respect to an ensemble that contains
no signature of the referendum in the spirit of similar approaches to resampling [34–36].
To this end, for each currency pair we computed the Z-value under resampling, where
Z := ∆C−µ

σ with µ and σ being the mean and the standard deviation over the 250 samples
for each currency pair.
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Table 2. Our complexity measure for various exchange rate distributions. Here, pa, pb, and pu

are the distributions of the exchange rates before and after the Brexit referendum and the uniform
distribution, respectively. Clearly, ∆C is always negative with respect to the uniform distribution pu,
as the entropy of pu is maximal; thus, ∆C can only decrease. Note, however, the amount of decrease
differs widely. To assess the significance, we performed a permutation test and calculated the Z-score
for ∆C(pa||pb) (see main text for details).

Currency Pair ∆C(pa||pb) ∆C(pb||pu) ∆C(pa||pu) Z

GBP-EUR 0.207 −0.455 −0.60 252 · 103

GBP-USD 0.449 −0.387 −0.821 468 · 103

GBP-CHF −0.0247 −0.493 −0.482 −23 · 103

GBP-JPY −0.115 −0.503 −0.398 −12 · 103

GBPJPY GBPUSD

EURGBP GBPCHF

−40.0 −30.0 −20.0 −10.0 0.0 10.0 −2.0 −1.0 0.0 1.0 2.0
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t
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Figure 3. Histograms of ∆C for the currency pairs under investigation obtained for resampled data.

Under a two-sided test—the question being whether the ∆C values for the raw data
are outliers to the resampled ones—all currency pairs show a significant signal. This can
already be seen from the standard deviation of the resampled data in Figure 3, which turns
out to be of the order 10−6 to 10−7.

Our results suggest a complex scenario that economically makes sense. In particular,
the foreseeable to-be-expected de-coupling of the United Kingdom’s economy from the
one of the EU strengthens the independence towards the Euro (positive entropy difference
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in Equation (1)) which can be seen in the positive ∆C of Table 2. The US Dollar and the
Euro (as the two major currencies) are tightly coupled, so that the positive ∆C for the
Pound–Dollar exchange rate might be an indirect effect due to overall Euro influence.
Furthermore, the negative ∆C values for GBP-CHF and GBP-JPY are the flip side of the
same coin: while the complexity of the GBP-EUR and GBP-USD dynamics was somewhat
related and became less tightly coupled after the referendum, it is a logical necessity that
the GBP-xyz (where xyz stand for any other economic entity) dynamics get closer (negative
∆C) to each other.

4. Discussion

In this study, we have derived an information theoretic measure ∆C(X||Y) to quan-
titatively assess the impact of an external perturbation on the complexity of a dynamical
system. Starting from previous work, such as the MPR framework [19,27], we derived this
measure based on a set of requirements.

For a controllable toy system, we showed that ∆C(X||Y) fulfills the requirements and
delivers reasonable results.

In a real application, we assessed the viral evolution of the HIV1 protease under the influ-
ence of drug treatment targeting this particular enzyme. Our measures identified—purely based
on the biomolecular sequences—those positions that were identified in expansive experiments
as the ones to which the particular drugs bind. Interestingly, we can also extract signals on the
type of drug used in any treatment.

Furthermore, our measure was able to show the impact on economic time series
(foreign exchange rates) upon stress (Brexit referendum).

We note in passing that the qualitative results of our analysis were the same for both√
DJS(~p,~q) and DJS(~p,~q), non-surprisingly due to the monotonicity of the square root.
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