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ABSTRACT The diverse Fusobacterium genus contains species implicated in multiple clinical pathologies, including periodontal
disease, preterm birth, and colorectal cancer. The lack of genetic tools for manipulating these organisms leaves us with little un-
derstanding of the genes responsible for adherence to and invasion of host cells. Actively invading Fusobacterium species can
enter host cells independently, whereas passively invading species need additional factors, such as compromise of mucosal integ-
rity or coinfection with other microbes. We applied whole-genome sequencing and comparative analysis to study the evolution
of active and passive invasion strategies and to infer factors associated with active forms of host cell invasion. The evolution of
active invasion appears to have followed an adaptive radiation in which two of the three fusobacterial lineages acquired new
genes and underwent expansions of ancestral genes that enable active forms of host cell invasion. Compared to passive invaders,
active invaders have much larger genomes, encode FadA-related adhesins, and possess twice as many genes encoding membrane-
related proteins, including a large expansion of surface-associated proteins containing the MORN2 domain of unknown func-
tion. We predict a role for proteins containing MORN2 domains in adhesion and active invasion. In the largest and most com-
prehensive comparison of sequenced Fusobacterium species to date, we have generated a testable model for the molecular
pathogenesis of Fusobacterium infection and illuminate new therapeutic or diagnostic strategies.

IMPORTANCE Fusobacterium species have recently been implicated in a broad spectrum of human pathologies, including Crohn’s
disease, ulcerative colitis, preterm birth, and colorectal cancer. Largely due to the genetic intractability of member species, the
mechanisms by which Fusobacterium causes these pathologies are not well understood, although adherence to and active inva-
sion of host cells appear important. We examined whole-genome sequence data from a diverse set of Fusobacterium species to
identify genetic determinants of active forms of host cell invasion. Our analyses revealed that actively invading Fusobacterium
species have larger genomes than passively invading species and possess a specific complement of genes—including a class of
genes of unknown function that we predict evolved to enable host cell adherence and invasion. This study provides an important
framework for future studies on the role of Fusobacterium in pathologies such as colorectal cancer.
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The bacterial genus Fusobacterium is comprised of at least 13
species that are primarily anaerobic, nonmotile, non-spore-

forming, Gram-negative rods and members of the normal human
microbiota (1). 16S rRNA gene-based sequencing projects have
resolved the Fusobacterium genus into groups of species that can
be loosely characterized by their interactions with the human host
and potential to cause disease (1–3). Some Fusobacterium species
are capable of “actively” invading host cells without the aid of
other factors, whereas other species require compromise of mu-
cosal integrity or coinfection with a virus for host cell invasion (4).
The active invader species F. nucleatum and F. periodonticum are
able to independently invade host cells (5, 6), in part using extra-
cellular adhesin and invasion molecules such as FadA (7, 8). This
invasion subverts host cell function in ways that are not well un-
derstood (9, 10). F. nucleatum and F. periodonticum are known to
be highly adhesive species, displaying selective aggregative ten-

dencies both between strains of the same species as well as with
certain unrelated microbial species (11–13). That these species—
F. nucleatum, in particular—are rapidly gaining notoriety as
pathogens contributing to a wide range of human pathologies,
including adverse pregnancy outcomes, appendicitis, inflamma-
tory bowel disease, and, most recently, colorectal cancer, makes
understanding key steps in the pathogenesis of infection, such as
cellular invasion, of great importance (5, 14–17).

In contrast, other Fusobacterium species are “passive” invaders,
including the well-known veterinary pathogen F. necrophorum,
which is also the causative agent of human disorders, including
Lemierre’s syndrome (18). F. necrophorum causes damage to host
tissues by promoting necrosis (19). The gut resident F. gonidiafor-
mans (20), which is primarily nonpathogenic but occasionally
causes disease, is closely related to F. necrophorum.

A third, less-studied group of fusobacteria consists of F. mor-
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tiferum and F. varium, which are frequent residents of the human
gut (1, 21), and F. ulcerans, which is thought to contribute to the
development of tropical skin ulcers (22). While there are some
experimental data to suggest that F. varium is able to invade host
epithelial cells in an active manner, the mechanism for this inva-
sion is unknown (21).

Characterization of Fusobacterium biology has been slowed by
the fact that members of this genus are largely genetically intrac-
table. They have no known transducing phage or mechanisms for
conjugation or natural transformation. Sonoporation has been
used to genetically manipulate one species (7, 23), but methods for
chemical and electrical competence induction have yet to be de-
veloped. As such, it is difficult to engineer mutations and geneti-
cally characterize important traits (e.g., active invasion). How-
ever, comparative genomics provides a tool to make quantitative
associations between traits inferred from gene sequences and
known phenotypes of Fusobacterium species.

Here, we report whole-genome comparisons of 26 strains rep-
resenting 7 species belonging to the genus Fusobacterium. Our
analyses indicate that Fusobacterium experienced an adaptive ra-
diation, where three lineages diverged from a common ancestor
around the same time. Of these three lineages, two have the ability
to actively invade host cells. Features enriched in actively invading
strains included a massive expansion of genes encoding
membrane-associated proteins, including the known virulence
adhesins FadA and RadD, and a set of short, repeated, membrane-
associated protein domains designated MORN2 (for membrane
occupation and recognition nexus). MORN2 domain-containing
proteins were encoded within sets of genes with no known func-
tion and clustered in the same genomic neighborhoods as other
adhesins associated with invasion, including FadA and RadD.
MORN2 domains were rarer in passively invading species as well
as in most other sequenced bacterial species, except for Helicobac-
ter bilis, another bacterial species implicated in promoting cancer
and preterm birth in animals (24–26). We propose a model in
which proteins containing MORN2 domains function to enhance
adhesive, aggregative, and invasive traits within select Fusobacte-
rium species and may serve an important role in specific disease
manifestations like colorectal cancer.

RESULTS
Phylogeny and genome content for a highly diverse set of Fuso-
bacterium strains. We generated high-quality draft genome se-
quences for 21 Fusobacterium strains, representing 7 species.
Strains were isolated from a variety of human habitats that were
either healthy or inflamed at the time of sample collection (see
Table S1 in the supplemental material) (5, 22, 27–29). Addition-
ally, we generated finished genomes for five F. nucleatum strains
(see Table S1) that, together with the two previously finished ge-
nomes (30, 31), resulted in the inclusion in our study of seven
finished F. nucleatum genomes, representing four subspecies.

At the time of sequencing, only partial 16S sequence informa-
tion was available for 14 isolates, so definitive taxonomic classifi-
cation was not possible. Using our newly sequenced genomes and
5 previously sequenced Fusobacterium genomes (30 –32; http://
www.hgsc.bcm.tmc.edu/; http://genome.wustl.edu) (see Ta-
ble S1 in the supplemental material), we constructed a phyloge-
netic tree from alignment of 498 orthologous genes, or
orthogroups, conserved across all strains (Fig. 1; see Materials and
Methods and Table S2 in the supplemental material) and taxo-

nomically classified previously unnamed clinical isolates (see
Fig. S1 in the supplemental material). The resolved taxonomy,
showing that species fall into three main lineages (Fig. 1), was in
general agreement with the taxonomy based on 16S sequences
from the Living Tree Project (2). However, our results allowed for
a more highly resolved view of evolution within this genus and
revealed that there was an adaptive radiation, where the last com-
mon ancestor of all Fusobacterium species diversified into three
major lineages (see Text S1 in the supplemental material) at an
early point in its evolution from Leptotrichia.

We observed substantial variation in genome sizes and gene
content among the sequenced species (see Table S1 and Fig. S2 in
the supplemental material). Genome sizes differed by as much as
2 Mb (1.7 to 3.7 Mb). Only 556 orthogroups (24%) were shared
among all strains. Members of the same species and subspecies
exhibited remarkable gene content plasticity: F. nucleatum strains
shared only 59% of their orthogroups, while members of the
closely related F. nucleatum subsp. animalis subspecies shared
only 70%, despite having �99% nucleotide identity among shared
genes. In addition, few orthogroups uniquely defined each species
and subspecies. (For example, 1%, or 36 orthogroups, were found
exclusively in all 14 F. nucleatum genomes, and 1%, or 32 ortho-
groups, were found exclusively in all 6 F. nucleatum subsp. anima-
lis genomes.) Average nucleotide identity (ANI) plots based on
whole-genome data (33, 34) (see Fig. S1 in the supplemental ma-
terial) suggested that each F. nucleatum subspecies could be con-
sidered a separate species (89 to 93% ANI), and F. periodonticum
could also be subdivided into separate species, with some strain
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FIG 1 Phylogenetic tree based on nucleotide sequences of 498 core ortho-
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comparisons having only 92 to 94% ANI (see Text S1 in the sup-
plemental material), likely contributing to the low numbers of
species-defining genes. Species with fewer genomes had more de-
fining orthogroups (e.g., 6%, or 220, were found exclusively in
F. ulcerans), likely due to their being underrepresented in our data
set (see Table S3 in the supplemental material) and their higher
ANI (�95%) (see Text S1). Species-specific orthogroups included
genes encoding extracellular features, such as adhesins,
membrane-associated transporters, receptors, and extracellular
solute-binding proteins (see Text S1). That some adhesins and
membrane-associated proteins were species specific has been pre-
viously documented in Fusobacterium (35) and points to surface
attachment as a driver of the evolution of this genus.

Since the majority of species- and subspecies-defining ortho-
groups encoded “hypothetical proteins” of unknown function, we
compared the sequences of genes against those in functional da-
tabases, including the KEGG (36), Pfam (37), and Gene Ontology
(GO) (38) databases, to increase our power to assign function to
hypothetical proteins. We then searched for broader functional
categories expanded in individual species and subspecies that were
not obvious by gene annotation and ortholog clustering (see Ta-
ble S4 and Text S1 in the supplemental material) but that might
help to explain what drove speciation and adaptation of Fusobac-
terium species to different environments. Again, the results indi-
cated that the majority of species-specific orthogroups encoded
extracellular or membrane-related proteins, including 46 of the 72
species-specific orthogroups present in either F. nucleatum or
F. periodonticum (64%). Expansions were also observed among
genes related to amino acid metabolism and cofactor biosynthesis
(F. nucleatum subsp. polymorphum and F. periodonticum), gene
regulation and signaling (F. ulcerans), YadA-related autotrans-
porter adhesins (F. necrophorum), and species-specific
hemagglutinin-related genes (F. nucleatum).

Identification of new determinants associated with active in-
vasion. Only some Fusobacterium species can invade host cells
independently (active invaders), while others require either helper
organisms, coinfection with viruses, or compromised mucosal in-
tegrity (passive invaders) (4–6). The FadA adhesin was previously
identified as an important factor in active invasion (7, 8) and has
been identified in several actively invading Fusobacterium species
(39). To identify other genetic factors associated with active inva-
sion, we first stratified species into active and passive invader
clades using a Bayesian approach (see Materials and Methods) and
then correlated this structure with information from the literature
regarding each species’ invasion potential (4–6, 21). Five distinct
clades were identified among Fusobacterium species (Fig. 1). Three
clades— clades A (F. nucleatum) and B (F. periodonticum) belong-
ing to lineage 1 and clade C (F. ulcerans/F. varium) belonging to
lineage 2— consisted entirely of species known to actively invade
host cells (active invaders). Clade D, which included the remain-
ing species in lineage 2, F. mortiferum, was of unknown invasion
potential. Clade E constitutes lineage 3 and contained the known
passive invader species F. necrophorum and F. gonidiaformans.

Active invaders had genomes that were, on average, 560 kb
larger than those of passive invaders and contained 257 more
genes (see Table S1 in the supplemental material). A large fraction
of the additional genes encoded membrane-related proteins (as
defined by GO criteria), doubling the membrane-related protein
coding capacity in active invaders. Active invaders also had 1.6-
fold more genes with predicted signal peptides (365 versus 233 per

genome), suggesting an extracellular role for expanded gene fam-
ilies in active invasion.

When we compared orthogroups between active and passive
invaders, 44 were present in all active invaders and absent in all
passive invaders (see Table S2b and Table S5 in the supplemental
material). Of the genes exclusive to active invaders, 32 were anno-
tated as “hypothetical proteins.” However, we were able to gain
clues to the function of many by examining Pfam or GO func-
tional annotations. This highlighted several genes with known
links to virulence and pathogenesis, including those encoding
branched-chain amino acid transport (40, 41), components of
type IV pili (42) and the related bacterial type II secretion system
(43–46), a patatin-like phospholipase (47), and META domain-
containing (48) and chorismate mutase domain-containing (49,
50) proteins. In addition, 43% (19 of 44) of the active invader-
specific genes were predicted to contain either a signal peptide or
transmembrane domain, highlighting the importance of evolved
surface features on the invasive strains.

To ensure that the maximum number of genes were accounted
for in the comparative analysis of these high-quality draft ge-
nomes, we used the GO, Pfam, and KEGG functional annotations
to identify additional differences in actively versus passively in-
vading species. Using this approach, additional GO-determined
functional families were found that had significantly larger num-
bers of genes in the active invaders, with most being associated
with the membrane (Q � 5e�10) (Fig. 2A; see Table S5 in the
supplemental material), consistent with our initial analysis iden-
tifying a 2-fold enrichment in membrane proteins among this
group. Of the seven significantly enriched Pfam domains (Fig. 2B
and C), five were associated with adherence, including the FadA
adhesin domain (Q � 4.5e�21). By this analysis, FadA family-
encoding genes were found to be exclusive to active invader ge-
nomes, including both strains of F. ulcerans. It had been suggested
previously (39) that FadA was not present in F. ulcerans ATCC
49185; however, we found seven related FadA family genes in that
strain and eight in F. ulcerans 12-1B. These were not clustered
within the same orthogroup as canonical FadA (FN0264 in F. nu-
cleatum) because they shared only 30 to 38% amino acid identity.
The passive invaders, F. necrophorum and F. gonidiaformans, com-
pletely lacked FadA family genes, as did F. mortiferum.

Interestingly, active invaders also contained 6 times as many
genes encoding the adhesin-related autotransporter �-domain (Q
� 4.4e�7 [11.0 versus 1.6 genes]) (51), a component of the RadD
family of outer membrane protein adhesins known to be involved
in pathogenesis of F. nucleatum through cell death in human lym-
phocytes (51, 52). Bacterial microcompartment (BMC) domains
were also found exclusively in the active invaders (Q � 9.9e�5
[4.9 genes]). BMC-containing proteins are associated with poly-
hedral microcompartment organelles, such as carboxysomes,
which give bacteria the ability to adapt to new niches via metabolic
innovation and have been previously implicated in pathogenesis
(53) (Fig. 2B). While BMC domains have not been directly impli-
cated in adhesion, these genes in F. nucleatum subsp. nucleatum
ATCC 25586 were recently shown to be highly induced under
conditions that promote aggregation (11), suggesting that these
proteins are also involved in aggregation and adhesion.

Of perhaps greatest importance, MORN2 domains (Pfam
identifier PF07661) were found to be the most extensively en-
riched domain among active invaders (Fig. 2B) (Q � 2.5e�21
[32.4 versus 4.8 genes]). None of the 697 genes encoding MORN2
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domains (see Table S2c in the supplemental material) within our
data set had known function, although 87% were predicted by
SignalP (54) to have signal peptides targeting them for export into
the extracellular environment or membrane insertion, highlight-
ing a potential role for these domains at the host-pathogen inter-
face. To further validate these results, we verified that all the do-
mains enriched in the active invaders were also enriched in six
more recently sequenced F. nucleatum genomes isolated from
cancerous tumors (see Text S1 in the supplemental material). We
also verified that all 44 of the orthogroups exclusive to active in-
vader strains were also present (see Text S1).

Enriched features in passive invaders included two types of
YadA domain proteins (Q � 1.0e�5 [9.6 versus 3.4 copies] and Q
� 2.0e�6 [9.7 versus 3.1 copies]). These proteins are found in
trimeric autotransporter adhesins implicated in host cell adher-
ence (55). Passive invaders also exclusively encoded proteins with
the domain DUF2147 (domain of unknown function) (Q
�1.1e�4 [2 copies per species]). Genes with DUF2147 also had
predicted signal peptides and were located near other genes that
encoded predicted membrane proteins, suggesting roles at the
host-microbe interface.

Evolution of active invasion. With few exceptions (see Ta-
ble S5 in the supplemental material), orthogroups unique to active
invading strains were scattered around the genome, with little
evidence of having been acquired together. However, genes con-
taining predicted Pfam structural domains enriched among active
invaders tended to cluster together (Fig. 3; see Text S1 in the sup-
plemental material), suggesting that they evolved together for re-
lated function, such as novel surface feature assembly. This obser-
vation was supported by neighborhood analysis, which showed a
statistically significant association among orthogroups containing
the expanded Pfam families—MORN2, FadA, and RadD— oc-
curring near each other and also near genes encoding other
virulence-related proteins and membrane proteins (see Ta-
ble S6 and Text S1 in the supplemental material). While IS ele-
ments and proteins related to phage and transposition were found
near regions containing Pfam families expanded in active invaders
(see Table S6 and Text S1), there was little evidence of them being
part of recognizable prophages or recently acquired through lat-
eral transfer (see Materials and Methods), although one gene con-
taining MORN2 domains was present on a predicted plasmid in
F. nucleatum 3_1_27 (see Table S1 in the supplemental material).
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To gain evidence for whether the active invader-specific ortho-
groups were acquired in the adaptive radiation (Fig. 1), we exam-
ined the occurrence of the 44 active invader-specific orthogroups
in the closely related outgroup Leptotrichia buccalis, the presence
of which would suggest that the Fusobacterium ancestor possessed
them prior to the radiation and that they were lost by passive
invaders. A minority (17 of 44 [39%]) of active invader-specific
orthogroups were found in L. buccalis. Those predicted from this
analysis to have been lost in the radiation of passive invaders in-
cluded genes encoding a membrane-bound two-component sen-
sor/histidine kinase, a META domain-containing protein, a hypo-
thetical transporter, and a secreted peptidoglycan catabolism
protein. Genes not present in the outgroup and likely to have been
acquired by active invaders in the radiation included four of the
six orthogroups previously implicated in virulence in other spe-
cies, including those encoding branched-chain amino acid trans-
port and type IV pili (40, 41, 44–46), as well as 15 of the 19 genes
encoding predicted membrane-bound or secreted proteins, high-
lighting acquired changes in surface organization of the active
invaders.

Interestingly, the complement of MORN2 domains remained
relatively unchanged between Leptotrichia and the passive invad-
ers but was greatly expanded in the active invader clades (Fig. 2D).
In contrast, FadA and BMC domain-containing genes, both pres-
ent in Leptotrichia, appeared to have been lost in the passive in-
vaders, as well as in F. mortiferum. YadA was not observed in
Leptotrichia but may not be necessary for active invasion, since the
active invader clade C (F. ulcerans/F. varium) lacked genes con-

taining these domains. That F. mortiferum contained no YadA,
FadA, or BMC domains and only a modest expansion of MORN2
domains suggested that it might not be capable of active invasion.
Overall, our data predict an evolutionary model whereby (i) the
last common ancestor of Leptotrichia and Fusobacterium shared
active invasion-associated FadA, BMC, RadD, and MORN2
domain-containing genes, (ii) FadA and BMC were lost during
the evolution of F. mortiferum, F. necrophorum, and F. gonidiafor-
mans, and (iii) MORN2- and, to some degree, RadD domain-
containing genes underwent expansion in the active invaders. In
support of this model, we observed that at least three Leptotrichi-
aceae genomes in the Pfam database also shared FadA, RadD, and
BMC domains and a small set of ancestral MORN2 domains (data
not shown).

MORN2 evolution and function. Of the expanded Pfam do-
mains, MORN2 was among the most intriguing because it repre-
sented the most frequent domain in active invader genomes (115
to 250 MORN2 domain copies per genome), and nothing was
known about the function of proteins containing this domain.
The MORN2 domain itself is 22 to 23 amino acids long, often
found in multiple copies per gene, and was highly variable across
the strains in our study. MORN2-containing proteins are incred-
ibly diverse in the organization and grouping of domains, which is
comprehensively illustrated at http://pfam.xfam.org/family/
PF07661. The number of genes containing MORN2 domains
(MORN2 genes) was also variable, with members of the same
subspecies differing in their MORN2 gene content by as much as
25% (Fig. 4). The small number of MORN2 genes found in the
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passive invaders was also present in nearly all active invaders, sug-
gesting that MORN2 genes evolved and expanded in active in-
vader species from an ancestral set of MORN2 genes held by the
last common ancestor at the time of the adaptive radiation. Sup-
porting this, we observed (i) no evidence that MORN2 genes were

recently acquired on genomic islands (using Islandviewer [56]),
(ii) MORN2 genes clustered in active invader genomes (Fig. 3),
with evidence of recent local duplication in some species (Fig. 5),
and (iii) there was significantly greater sequence identity between
pairs of MORN2 domains that were spatially close but not in the
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same protein (38.3%), compared to those �10 kb away (31.3%)
(P � 2.2e�16). We also observed an unusually high level of over-
all chromosomal rearrangements in actively invading Fusobacte-
rium strains, which could be linked to the high rate of genome
rearrangements within MORN2 regions (see Fig. S3 and Text S1 in
the supplemental material).

Since nothing was previously known about the function of
MORN2 genes, we sought clues to their function by comparing
the ecologies and lifestyles of other bacteria that exhibited ex-
panded sets of MORN2 domains. Remarkably, although MORN2
domains were present in a diverse set of bacterial genomes (see
Text S1 in the supplemental material), the only other bacterium
that contained �100 MORN2 domains, like active invader Fuso-
bacterium, was Helicobacter bilis ATCC 43879, which colonizes the
bile, liver, and intestines (24). The closely related species Helico-
bacter hepaticus also possessed a relatively large number of
MORN2 domains, 28 copies, which was higher than the number
in the passively invading fusobacteria. H. bilis and the related
H. hepaticus are both involved in colitis, hepatitis, and, similar to
actively invading Fusobacterium spp. exhibit carcinogenic poten-
tial and association with preterm birth in animals (24–26). Al-
though it is unknown whether H. bilis or H. hepaticus actively
invades host cells, given (i) the striking similarity in pathology
associated with these two species and actively invading Fusobacte-
rium and (ii) the fact that MORN2 genes colocalize with the ex-
panded FadA family and RadD family genes known to be involved
in adhesion and virulence in Fusobacterium, we propose a testable
model that predicts a related role for MORN2-containing proteins
in adhesion and pathogenicity and possibly in promoting cancer
or cancer progression.

DISCUSSION

This study represents, by far, the largest comparative genome
analysis of Fusobacterium strains, and includes 26 strains of 7 spe-
cies, sourced from diverse human body sites and disease states. We
find that Fusobacterium species exhibit a high degree of heteroge-
neity. Even within subspecies, which our ANI analysis indicates
should actually be called separate “species,” there is substantial
variation in genome size, architecture, and content. Our analyses
highlighted features unique to individual species and subspecies,
providing clues to how this genetically intractable genus of oppor-
tunistic pathogens diverged and the selective forces that likely
drove divergence. Notably, we observed a large number of species-
specific genes encoding membrane proteins and adhesins consis-
tent with Fusobacterium having an unusual ability to adhere to
various ligands (57), including to host cells (58), and highlighting
the host-microbe interface as an important driver of diversity
within this genus (35).

Evolution of active invasion. The most prominent features of
an active invader genome are its large size and the fact that it
contains twice as many genes encoding membrane-associated
proteins as passive invader genomes. In addition, active invader
genomes are distinguished by encoding (i) a large and expanded
set of proteins containing MORN2 domains, and, to a lesser ex-
tent, RadD family adhesin domains, (ii) FadA family adhesin pro-
teins and proteins containing BMC domains, previously impli-
cated in host cell invasion and auto-aggregation, respectively (11),
(iii) additional adhesion-related proteins, including type IV pili,
which encode extracellular adhesive appendages, and (iv) proteins
containing domains previously implicated in virulence, such as

AzlC, AzlD, META, chorismate mutase, and patatin-like phos-
pholipases.

Our data set contained more active invaders than passive in-
vaders. However, our observations were consistent across the pas-
sive invaders, including representatives from two species. Passive
invader genomes consistently contained fewer membrane pro-
teins, a different complement of virulence adhesins, and strikingly
fewer MORN2 domains, despite their variation in size and gene
count. Additionally, all MORN2 domains found in each of the
four passive invaders had orthologs in the active invaders, provid-
ing a strong indication that the MORN2 genes found in the passive
invaders were present before the adaptive radiation event and evo-
lution of active invasion. We used strict Q value cutoffs for our
Pfam domain analysis, to eliminate noise due to the small number
of passive invaders in our data set. Additional genomes from these
species would help to validate our results.

Our analyses revealed that the Fusobacterium genus likely un-
derwent an adaptive radiation event, in which three lineages di-
verged from a common ancestor at a similar point in time (Fig. 1).
Lineage 1, containing active invader clades, split into F. nucleatum
and F. periodonticum. Lineage 3 split into F. ulcerans and F. varium
(both of which can actively invade host cells), and F. mortiferum
(the invasion phenotype of which is unknown). Lineage 2 (con-
taining F. necrophorum and F. gonidiaformans) contained primar-
ily species requiring additional factors to invade cells, such as
coinfection with other microbes (“passive invaders”). Our data
suggest that, in this adaptive radiation, clades within two of the
three lineages acquired (or retained) the ability for active invasion,
whereas lineage 2, containing F. necrophorum and F. gonidiafor-
mans, did not, due to losing virulence-associated factors (such as
FadA and BMC) or never acquiring these factors and/or undergo-
ing the required expansion of other genes, like MORN2 genes, to
become active invaders. It is unclear whether F. mortiferum should
be classified as an active or passive invader. F. mortiferum lacks
FadA and BMC domains. It contains 59 MORN2 domains, which
is intermediate between the active invaders (�100 MORN2 do-
mains per genome) and the passive invaders (17 to 20 MORN2
domains per genome), and it also contains more copies of RadD
domain-containing genes than the passive invaders (8 copies
rather than the 0 to 3 copies observed in the passive invaders). Our
data suggest that F. mortiferum’s invasion strategy is different
from those of other Fusobacterium spp.

In addition to the large variation in host cell invasion proper-
ties between the active and passive invaders, differences in inva-
sion potential have also been observed within the F. nucleatum
species (5). F. nucleatum strains from several different subspecies
isolated from diseased tissue tended to be more invasive than ex-
amples from the same subspecies isolated from healthy tissue (5).
We were unable to find any clear difference in gene family content
or metabolic pathway composition between these two sets of
F. nucleatum strains (data not shown). Further investigations are
needed to find an explanation for these differences in invasiveness
among active invader species.

Diversity and evolution of genes containing MORN2 do-
mains. There appears to have been an ancient event leading to a
striking expansion and diversification of MORN2 domains in the
active invaders. Further diversity-yielding events, potentially me-
diated by the repetitive nature of the tandem domain repeats
themselves, as well as mobile elements, such as IS elements and
transposases, have further diversified and expanded MORN2 do-
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mains within each clade. The resulting diversity of MORN2 genes
may contribute to Fusobacterium’s ability to adapt to new envi-
ronments and infect many types of cells.

We see a spatial correlation between MORN2 genes and mo-
bile elements (IS elements and transposases; see Text S1 in the
supplemental material), indicating that mobile genetic elements
could be involved in their diversification; however, there was no
evidence to suggest that MORN2 genes were recently acquired.
Instead, our data indicate that the expanded set of MORN2 genes
in active invaders arose primarily through local duplication
(Fig. 5) from an ancestral set of genes containing relatively few
repeats. Tandem domain repeats themselves are often facilitators
of rapid evolution, often imparting useful phenotypic conse-
quences, including rapid variation in microbial cell surface (59).
Recombination between repeat sequences has been proposed to
explain expansions and contractions in the number of repetitive
elements within genes (59) and may explain why MORN2 genes
from active invaders possess more copies of the MORN2 domain
than passive invaders.

Function of proteins containing MORN2 domains. In addi-
tion to genes with well-documented roles, many of the active
invader-specific genes have no known function, including the
MORN2 genes. With only one exception in H. bilis, the massive
expansion of MORN2 domains observed in the active invaders is a
feature highly specific to the Fusobacterium genus (see Text S1 in
the supplemental material). There are two related families of
MORN domains found in Fusobacterium: MORN (Pfam identifier
PF02493), found primarily in eukaryotes, and MORN2 (Pfam
identifier PF07661), found primarily in bacteria, and concen-
trated within the genus Fusobacterium. Previous work on MORN
domains in eukaryotes implicates them in the mediation of inter-
actions between cytoplasmic membranes and other intracellular
structures, such as the cytoskeleton, endoplasmic reticulum, and
kinases (60–64). In contrast, nothing is known about the function
of prokaryotic MORN or MORN2 domains, and, unlike eukary-
otic MORN-containing proteins, MORN2 proteins appear to
function outside the cell, due to the presence of signal peptide
sequences. There are only a few examples of MORN domains
present in actively invading Fusobacterium species (an average of 4
domains in 1.6 proteins per genome), and these are often found in
the same gene as MORN2 domains. Because of the close similarity
between MORN and MORN2 and the fact that no MORN do-
mains were found in Leptotrichia, we propose that fusobacterial
MORN domains are misclassified and are, in fact, a variant of
MORN2 domains that evolved from the closely related MORN2
within the active invaders. Besides MORN, the only other do-
mains that occasionally coincide with MORN2 in the same gene
are DnaJ and the chorismate mutase domain. The chorismate mu-
tase domain has been implicated in virulence in other bacteria,
including Mycobacterium tuberculosis, and is often found on
pathogenicity islands (49, 50).

The domain organization of MORN2 genes points to a possible
role for their products in adhesion. Examples of diverse expanded
families of adhesins have been observed in other organisms, where
variable numbers of repeats in cell wall proteins allow for rapid
modulation of adhesive properties, adaptation to the environ-
ment, or evasion of the host immune system (59, 65, 66). Often
these domains represent subunits, which oligomerize to form a
large variable structure. In H. pylori, genes encoding Sel1-like re-
peats (SLRs) are involved in adaption of H. pylori to specific hosts,

due to strain-specific variations in the number of SLRs (67). SLR
genes are similar to MORN2 genes, in that they are of similar
length, are poorly conserved, and have repetitive domains, with a
similar pattern of conserved residues. In fact, Sel1 domains are
found in the same proteins as MORN2 domains in some strains of
Escherichia coli, Shigella, Salmonella, and Yersinia. The repetitive,
modular structure of MORN2 genes points to their involvement
in adhesion and in promoting rapid adaptation to diverse envi-
ronmental conditions.

In addition, the spatial organization of MORN2 genes within
the genome points to a possible role in virulence, invasion, and
adhesion. Genes containing MORN2 domains are found clustered
with genes encoding known virulence adhesins (FadI, FadA, and
RadD, as well as other FadA and RadD family proteins),
membrane-associated pathogenicity factors (such as OmpA pro-
teins), and virulence factors (including chorismate mutase
domain-containing proteins) (49, 68), as well as secreted and
membrane-associated proteins of unknown function. That ex-
pansion of MORN2 is so particular to actively invading species of
Fusobacterium, in addition to a distantly related organism also
implicated in pathologies similar to those of actively invading Fu-
sobacterium species, suggests involvement of MORN2 genes in
pathogenicity in the active invaders. The fact that these expansions
are present in all F. nucleatum, including those resident in the
healthy mouth as well as those in cancerous tumors, indicates that
these invasive capabilities may be characteristic of all F. nucleatum.
Targeting MORN2 proteins, as well as other active invader-
specific proteins of unknown function, in future research may
reveal functions in adhesion and invasion and indicate good anti-
virulence targets, which would be of high interest, considering the
association between F. nucleatum and human maladies, such as
colorectal cancer (16, 17).

Conclusions. Fusobacterium species have steadily gained at-
tention as important bacterial pathogens, now implicated in a
diverse range of human pathologies, including colorectal cancer
and preterm birth. However, largely due to their genetic intracta-
bility, little is known about the mechanisms that have allowed
some species to become such pervasive pathogens. In the largest
comparison of fusobacterial genomes, our work has helped to
close this knowledge gap by (i) constructing the highest-
resolution phylogeny of Fusobacterium to date, (ii) characterizing
the gene content and genomic architecture of member species,
(iii) identifying genetic features and molecular pathways that dis-
tinguish the most invasive forms of Fusobacterium, and (iv) ex-
plaining the evolution of active forms of host cell invasion. Impor-
tantly, we have discovered a class of genes of unknown function
that strongly associate with active forms of host cell invasion and
likely represent new strategies for bacterial adherence to and in-
vasion of host cells. The insights gained represent an important
step forward in unraveling the mechanisms of Fusobacterium
pathogenesis and will enable development of diagnostic and ther-
apeutic strategies for the detection and treatment of fusobacterial
disease.

MATERIALS AND METHODS
The strains selected for genome analysis are described in Table S1 in the
supplemental material. Methods for DNA sequencing, genome assembly
and annotation, orthogroup clustering, phylogenetic analysis, renaming
of strains, ANI and shared-gene analysis, multiple alignments, and other
bioinformatics analyses are described in the supplemental material.
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