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Alzheimer’s disease (AD) is marked by the presence of extracellular amyloid

beta (Ab) plaques, intracellular neurofibrillary tangles (NFTs) and gliosis, acti-

vated glial cells, in the brain. It is thought that Ab plaques trigger NFT

formation, neuronal cell death, neuroinflammation and gliosis and, ultimately,

cognitive impairment. There are increased numbers of reactive astrocytes in

AD, which surround amyloid plaques and secrete proinflammatory factors

and can phagocytize and break down Ab. It was thought that neuronal cells

were the major source of Ab. However, mounting evidence suggests that astro-

cytes may play an additional role in AD by secreting significant quantities of

Ab and contributing to overall amyloid burden in the brain. Astrocytes are

the most numerous cell type in the brain, and therefore even minor quantities

of amyloid secretion from individual astrocytes could prove to be substantial

when taken across the whole brain. Reactive astrocytes have increased levels

of the three necessary components for Ab production: amyloid precursor

protein, b-secretase (BACE1) and g-secretase. The identification of environ-

mental factors, such as neuroinflammation, that promote astrocytic Ab

production, could redefine how we think about developing therapeutics for AD.
1. Alzheimer’s disease
Alzheimer’s disease (AD), the most common form of dementia, is characterized

by diminished cognitive function, specifically dysfunction of memory and

judgement. With a rapidly ageing population, AD has become a major public

health concern.

Pathologically, AD is marked by the presence of extracellular amyloid

plaques, intracellular neurofibrillary tangles (NFTs) and gliosis [1] in the brain.

The extracellular amyloid plaques are mainly composed of aggregated b-amyloid

peptide (Ab), whereas the NFTs are intracellular and are composed of hyper-

phosphorylated tau, a microtubule-binding protein [2]. Gliosis is a non-specific

phenomenon that occurs in response to any injury to the CNS and involves the

activation, and often proliferation, of glial cells. In AD, gliosis is marked by

increases in activated microglia and reactive astrocytes near the sites of amyloid

plaques [3]. Reactive astrocytes surrounding amyloid beta plaques contribute to

the local inflammatory response and modulate calcium signalling [4,5].
2. Amyloid beta
The widely accepted amyloid cascade hypothesis states that AD is driven by Ab

accumulation [6]. It is thought that Ab aggregates trigger a cascade of reactions,

involving NFT formation, neuronal cell death, neuroinflammation and gliosis

and, ultimately, cognitive impairment. It is important to note that Ab exists

in many forms: monomers, dimers, oligomers, fibrils and plaques [7].

The amyloid cascade hypothesis has significant genetic support. Autosomal

dominant AD (ADAD) mutations have been identified in amyloid precursor
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Figure 1. Ab production. In the amyloidogenic pathway (right), APP is
cleaved by BACE followed by g-secretase which releases Ab peptides and
APP intracellular domain (AICD), which generate the N and C termini of
Ab, respectively. In the non-amyloidogenic pathway (left), APP is cleaved
sequentially by a-secretase and g-secretase, which does not result in the
generation of Ab species.
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protein (APP) [8] and presenilin (PS) [9,10], two necessary genes

for Abproduction. Specifically, 30 APP mutations, 9 APP dupli-

cations, 211 PS1 mutations and 33 PS2 mutations have been

identified that cause early onset ADAD [11]. Furthermore,

Down’s syndrome patients with trisomy of chromosome 21

and individuals with small internal chromosome 21 dupli-

cations have an additional copy of APP and greatly increased

risk of developing AD [12]. While these mutations provide

insight into disease aetiology, they account for a very small

percentage of AD cases. In addition, an APP mutation that

reduces Ab production protects against AD and age-related

cognitive decline [13], providing another line of support for

the Ab hypothesis. It is worth mentioning that how these PS1

and PS2 mutations contribute to the pathogenesis of AD, such

as if they are loss-of-function or gain-of-function, is the subject

of considerable debate [14–19].

Most commonly, AD presents as a sporadic multi-factorial

condition. ADAD studies strongly indicate that Ab plays a

critical role in AD pathogenesis. APP is a highly conserved

integral membrane protein thought to play a role in synapse

formation and neural plasticity, but its primary function

has yet to be described. It can be processed in two separate

pathways. In the amyloidogenic pathway, APP is first cleaved

by b-secretase (BACE) followed by g-secretase cleavage

and release of Ab peptides and APP intracellular domain

(AICD) (figure 1) [20–23]. In the non-amyloidogenic pathway,

a-secretase and then g-secretase cleave APP sequentially; this

does not result in the generation of Ab species and acts as a

negative feedback on g-secretase activity [24,25].

BACE1, an aspartyl protease, is tethered to the membrane

by a long tail; it is found in the endoplasmic reticulum and

Golgi and functions to prune proteins. Many of its substrates

are involved in neural function, including neuregulin and

voltage-gated sodium channels [20–23,26].

PS is the catalytic subunit of g-secretase [27,28]. Three other

necessary g-secretase subunits have also been identified: nicas-

trin (Nct), anterior pharynx-defective-1 (Aph1) and presenilin

enhancer-2 (Pen2) [29,30]. These four components constitute

the mature g-secretase complex [31,32], and their stepwise

assembly, followed by endoproteolysis of PS into amino-

terminal (PS-NTF) and carboxy-terminal fragments (PS-CTF),
is necessary for active complex formation [33]. Therefore,

g-secretase activity is regulated by the abundance of the four

essential subunits and their assembly. Additionally, only a

small fraction of g-secretase in the cell is actually catalyti-

cally active [34–37]. This suggests that additional events are

necessary to activate the inactive complex [38].
3. Astrogliosis and neuroinflammation
Ab accumulation triggers a neuroinflammatory state that plays

a significant role in the progression of AD [39,40]. Levels of Ab

in the brain are regulated by an innate immune response. Ab,

thought to be primarily produced by neurons, can activate an

inflammatory response that ultimately drives microglia and

astrocytes to uptake and clear it from the brain [41–43]. Genetic

studies identifying single-nucleotide polymorphisms in inflam-

matory genes that are associated with the risk of AD underline

the involvement of inflammation in AD [44–48]. Furthermore,

AD patients have higher levels of proinflammatory cytokines

and activated inflammasomes [49].

Astrocytes are key regulators of the brain’s inflammatory

response and, as mentioned previously, reactive astrogliosis

is a universally acknowledged feature of AD. Marked by

cellular hypertrophy and an increase in glial fibrillary acidic

protein (GFAP) and S100B expression, astrogliosis is observed

in post-mortem tissues from AD patients and mouse models.

Moreover, the degree of astrogliosis is correlated with cognitive

decline [50–52].

Astroglia are found throughout the CNS and are thought to

be the most prevalent cell type in the brain [53]. Astrocytes

function in territorial domains in which they are connected to

the vasculature through processes terminating in the endfoot.

Furthermore, their processes also envelope neuronal synapses

[54]. This intricate system of connections enables astrocytes to

exert control over many necessary brain functions including

regulation of the blood–brain barrier, delivering nutrients to

nervous tissue and maintaining ion and metabolite balance.

Astrocytes can propagate calcium currents, release gliotrans-

mitters and signal with neurons [55]. Specifically, astrocytes

release neurotransmitters such as glutamate, GABA and

ATP, neuromodulators D-serine and kynurenic acid, and

growth factors and inflammatory mediators [56–58]. A chief

role of astrocytes in the brain is to protect in all manners

against CNS injury and to repair nervous tissue after injury.

This is primarily achieved through astrogliosis, an evolutiona-

rily conserved event that contributes to the neuroprotection

and isolation of damaged tissue through the formation of a

glial scar and removal of pathogens from the CNS [59].

Astrogliosis occurs when astrocytes respond to injuries to

the CNS by undergoing a spectrum of molecular and morpho-

logical changes. Inflammatory mediators released by microglia,

neurons, oligodendrocytes, endothelial cells, leucocytes and

other astrocytes in response to injury initiate the changes

associated with an astrocyte becoming reactive. Molecular

changes entail a wide spectrum of genes resulting in differing

expression of structural proteins, transcriptional regulators,

extracellular matrix components, inflammatory regulators,

vascular regulators and synaptic modulators (figure 2).

Interestingly, these molecular changes are highly context

specific. While there is a core group of genes that are consistently

upregulated across different reactive models, approximately

50% of the altered gene expression varies depending on the
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Figure 2. Cellular stress can trigger astrogliosis—increased numbers of reactive astrocytes, which are characterized by hypertrophy of processes. Astrocytes undergo
many molecular changes when activated and can secrete a plethora of proinflammatory cytokines.
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initiating injury [60,61]. The primary morphological change

during reactive astrogliosis is hypertrophy of processes, which

is linked to increased expression of intermediate filament,

most notably GFAP [62,63]. The functional consequences of

this increased GFAP expression are not yet fully understood;

however, it appears to be critical in limiting Abplaque build-up.

The impact of reactive astrogliosis in disease is complex:

reactive astrocytes can be both harmful and beneficial to sur-

rounding cells and may worsen or resolve the initial CNS

injury. Notably, reactive astrocytes are necessary for scar for-

mation, which helps to contain the spread of inflammatory

cells, and also for repairing insults to the blood–brain barrier.

Reactive astrocytes surround Ab plaques in a manner simi-

lar to glial scarring and express receptors such as RAGE,

low-density lipoprotein receptor-like protein, membrane-

associated proteoglycans and scavenger receptor-like receptors

that are known to bind Ab [3].

Conversely, reactive astrocytes may be neurotoxic when

producing reactive oxygen species or some inflammatory cyto-

kines [64]. Further research into the mechanisms regulating the

balance between when reactive gliosis is neuroprotective and

when it is neurotoxic is critical to understanding the functional

consequence of reactive astrocytes in AD. However, a caveat to

much of this research is the reliance on rodent models, as

human astrocytes are much larger and have a multitude more

processes than their rodent counterparts [65]. To summarize,

reactive astrogliosis is a complicated and diverse phenomenon

yet is ubiquitous across various CNS pathologies.
4. Astrocytes in Alzheimer’s disease
Astrocytes undergo complex and conflicting region-specific

changes during the course of AD. The number of astrocytes

is thought to remain constant throughout the brain during

the progression of disease; however, some populations,

those in proximity to amyloid beta plaques, become reactive,

while conversely, large numbers of astrocytes atrophy [66].

In the 3XTg AD model, the initial astroglial phenotype is

general dystrophy [66].

Astrodegeneration, defined as reduced astrocyte volume

and surface area and a decrease in protoplasmic processes,

has been observed in mouse models of AD. Beginning early in
pathology, prior to amyloid beta presence, 3XTg AD mice exhi-

bit astrodegeneration in the medial prefrontal cortex (mPFC),

entorhinal cortex (EC) and hippocampus [3,67,68]. Similarly,

astroglial atrophy is observed in the hippocampus prior to amy-

loid beta presence in the PDAPP mouse model [69]. At the later

stages of disease, the presence of Ab triggers a secondary astro-

glial response by activating astrocytes, resulting in reactive

astrogliosis in areas surrounding the plaques [3,70].

Both resting and reactive astrocytes are key regulators of

the brain’s inflammatory response and are capable of releas-

ing, and responding to, a spectrum of immune mediators

[71]. Specifically, astrocytes secrete many cytokines capable

of inducing inflammation, notably IFNg, IL-1b, TNFa, IL-6

and TGFb [72–75]. Many of these proinflammatory cytokines

are upregulated in human AD brain samples and in transgenic

mouse models of AD [76–79].

IFNg is a potent regulatory cytokine that activates microglia,

promotes inflammation and is upregulated in the AD brain [80].

It is primarily produced by T cells and natural killer cells but can

also be secreted by microglia and astrocytes [81,82]. TNFa, a

cytokine involved in inducing acute-phase inflammation, is

elevated in AD serum, CSF and cortex [83]. Tg2576 mice

deficient in CD40 (a TNF receptor gene) have reduced BACE

activity, Ab load and gliosis compared with normal Tg2576

mice, highlighting the importance of TNF in AD progression

[79]. IL-6 can be both proinflammatory and anti-inflammatory

and has been reported to be elevated in the plasma, cerebro-

spinal fluid, and the brain of AD [84–89]. IL-1b, one of the

first cytokines secreted in response to injury, is an important

mediator of inflammatory response as well as cell proliferation,

differentiation and apoptosis. It is found at high levels near the

sites of amyloid plaques [87,90,91].

A genetic polymorphism in transforming growth factor

b1 (TGFB1), an immunosuppressive cytokine, is associa-

ted with the risk of developing AD [92]. Additionally,

post-mortem AD brains contain increased levels of TGFb,

specifically in plaques, suggesting it may play a role in path-

ology [93,94]. In agreement, aged mice overexpressing TGFb

in astrocytes displayed Ab deposition, and astrocytes con-

taining TGFB1 are found in close proximity to Ab deposits

in mice overexpressing APP with the Swedish mutation.

This suggests that the mechanism by which TGFb contributes

to pathology is astrocyte specific [78,95–97].
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5. Astrocytes contribute to Ab load
It was long thought that neurons were the only cell type that

expressed high levels of BACE1 and, therefore, were the only

cell capable of producing Ab [98]. However, subsequent

studies have demonstrated that astrocytes express BACE1 at

sufficient levels to generate Ab, and that expression can be

increased by cellular stress [99–104]. Additionally, stressors

can upregulate APP expression and, therefore, Ab secretion.

The effect of cellular stress on the activity of g-secretase, the

third necessary factor for amyloid production, in astrocytes

has yet to be fully elucidated. As astrocytes substantially out-

number neurons in the brain, the identification of

environmental factors (i.e. inflammation), which promote

astrocytic Ab production, could redefine how we think about

developing therapeutics for AD.

As mentioned previously, FAD mutations in APP and PS

have been extensively studied to gain insight into the mechan-

isms underlying AD. However, the majority of these studies

have focused on neurons. In order to determine the effect of

FAD PS1 mutations on Ab production from cell types other

than neurons, Veeraraghavalu et al. [105] selectively inactivated

PS1DE9 in postnatal forebrain excitatory neurons, which are

thought to be the primary source of Ab, by crossing PS1DE9flox

mice with CaMKIICre mice. They determined that at 10–12

months of age, total Ab burden in these mice was indistinguish-

able from mice expressing PS1DE9 in all cell types. This

suggests that the FAD mutation drives high Ab load by increas-

ing Ab secretion in other types of neurons or glial cells. To

identify these other cellular sources of Ab, they dissociated

primary astrocytes and microglia from the brains of newborn

PS1DE9flox or APPswe mice or 8-week-old APPswe/PS1DE9flox

mice. Both astrocytes and microglia secreted detectable Ab.

Treatment with a g-secretase inhibitor prevented Ab secretion

and resulted in the accumulation of the bCTF fragment [105].

This suggests that not only are astrocytes capable of producing

Ab, but that they do so in levels substantial enough to contrib-

ute significantly to total amyloid load. If this is the case, then

astrocytes must express appreciable levels of APP, BACE and

g-secretase. In support, Grolla et al. [106] detected APP,

BACE1 and g-secretase subunits PS1, PS2, PEN2 and NCT

expression in primary rat hippocampal astrocyte cultures.
6. Amyloid precursor protein expression in
astrocytes

APP is expressed in all tissues; however, the relative amount of

APP in different cell types varies [107–109]. Astrocytic

expression of APP has been demonstrated. APP695, APP751

and APP770 mRNA have been identified in non-neuronal

cells in the human brain [110] and rat astrocytes [111]. This is

supported in primary microglial and astrocyte culture of new-

born rat pups, which express mRNA for all three APP isoforms

[112]. When normalized to beta-actin mRNA levels, primary

rat astrocytes expressed 94% of the amount of APP as neurons

[113]. Additionally, inflammatory mediators have been shown

to regulate APP levels [114–116].

Multiple proinflammatory cytokines have been shown to

upregulate APP in the mouse brain and in human neuroblas-

toma cells and non-neuronal cells such as human astrocyte

cultures [116]. This implies that in the neuroinflammatory
context of AD, reactive astrocytes express higher levels of

APP than when at rest and, therefore, could produce more

Ab. Lipopolysaccharides (LPS) treatment induces chronic neu-

roinflammation [117,118] and can contribute to learning and

memory deficits [119–121]. It has been established that stress

from injections of LPS, a known activator of CNS glia [122],

can induce a twofold increase in APP expression in the whole

brains of APPswe mice. Dramatically, LPS treatment resulted

in an 18-fold increase in bCTF, suggesting massively increased

BACE activity, and ultimately a threefold upregulation of both

Ab40 and Ab42. While this study looked at the whole brain,

and not specific cell types, it is worth noting that LPS treatment

also increased the levels of GFAP-positive astrocytes in the

cortex and hippocampus [123].

APP expression can be upregulated by the transcription

factor AP-1, which is found in the promoter region of most

acute-phase proteins that are induced by IL-1b and IL-6,

suggesting APP may be regulated by these specific cytokines

[114,115]. Supporting this, IL-1b has been shown to upregulate

APP in human astrocytes and the U373MG human astrocytoma

cell line [124,125].

Zhao et al. [103] demonstrated that in primary mouse astro-

cytes, stimulation with several proinflammatory cytokine

combinations (LPS þ IFNg, TNFa þ IFNg and TNFa þ IL-

1b þ IFNg) markedly increases expression of APP. The same

combinations of cytokines also induce increases in BACE1

protein by up to eightfold. The downstream consequence is a

20–40% increase in Ab40 secretion [103]. A combination of

IFNg and TNFa has also been shown to induce Ab secretion

from primary human astrocytes and the U373 cell line [104].

To conclude, systemic inflammation from LPS treatment and

specific AD-associated inflammatory mediators can upregulate

APP expression in astrocytes.

As previously mentioned, TGFb is associated with AD

development [92]. Lesné et al. [126] confirmed this effect in a

mouse model that overexpresses TGFb under the GFAP pro-

moter, driving astrocytic expression. They found increased

APP and soluble Ab40 and Ab42 in the whole brain. To inves-

tigate whether the increase in Ab was produced by the

astrocytes, or whether the TGFb overexpressing astrocytes

released a secondary mediator that, in turn, induced neuronal

Ab production, they cultured primary neurons and astrocytes

with TGFb. They found an increase in APP and Ab40 and

Ab42 in the astrocyte culture, but not in the neuronal culture,

indicating that the increased Ab in the mice was produced

by astrocytes [126]. Furthermore, astrocytoma cell lines and

normal human astrocytes have increased expression of APP

when exposed to TGFb [127–129]. Taken together, this

suggests that TGFb increases Ab in the AD brain by inducing

APP upregulation in astrocytes and subsequently inducing

astrocytic Ab secretion.
7. BACE1 expression in astrocytes
It has been thought that astrocytes do not contribute to Ab load

due to a lack of BACE1 activity, which is highly expressed in

the brain but primarily in neurons [22]. There is little evidence

to suggest that nonreactive astrocytes express significant levels

of BACE1 [99,130,131]. Zhao et al. [132] generated two mouse

models overexpressing the APP751. In one line, APP was

under the NSE promoter driving neuronal expression, while

in the other line the GFAP promoter was used to drive
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astrocytic expression. They determined that primary neurons

from the NSE-APP mice produced large amounts of bCTF,

suggesting high BACE1 activity. However, primary astrocytes

from the GFAP–APP mice had very little BACE1 activity and

no detectable Ab production [20–23,132].

Studies propose that resting astrocytes express BACE1

mRNA but not protein, indicting a translational block may

inhibit Ab production in astrocytes [131]. This suggests that

stress may be able to upregulate BACE1 activity by overturning

this translational block. Hartlage-Rubsamen et al. [130] demon-

strated that activation of glial cells induces BACE1 expression

in six rat models of acute stress known to induce reactive glio-

sis: LPS þ IFNg treatment, intraaccumbal a,b-methylene

adenosine 50-triphosphate (a,b-meATP) treatment, middle

cerebral artery occlusion, experimental autoimmune encepha-

lomyelitis or Borna disease virus infection. Interestingly, they

found marked increases in BACE1 expression in GFAP-

positive astrocytes in the chronic models of stress, but not

in the acute inflammation resulting from LPS þ IFNg or

a,b-meATP [130]. This suggests that in the context of AD,

neuroinflammatory stress my upregulate BACE expression

in astrocytes. In fact, BACE1 expression has been demonstra-

ted in reactive astrocytes and in astrocytes in human AD

patients [99–102].

BACE expression is observed in reactive astrocytes around

amyloid plaques. The number of these BACE1-positive reactive

astrocytes was increased in AD patients compared to old age

controls, particularly in the entorhinal cortex [100]. In Tg2576

mice, which overexpress APP695 with the Swedish mutation,

the level of BACE1 protein is correlated to the level of Ab in

astrocytes. Additionally, reactive astrocytes surrounding Ab

plaques always stain positively for BACE1 protein, whereas

resting astrocytes do not [99,101].

Similar to APP expression, inflammation has also been

shown to upregulate BACE1 [133]. Specifically, proinflamma-

tory cytokines upregulate BACE1 activity [134]. Many

proinflammatory cytokines signal through JAK/STAT path-

ways to ultimately influence transcriptional changes. STAT1

directly binds to the BACE1 promoter, suggesting a possible

mechanism by which inflammation induces BACE1 expression.

Specifically, IFNg induces BACE1 expression in the U373 cell

line and in primary mouse astrocytes [135]. In support of this,

it has been shown that IFNg and TNFa regulated BACE1

expression and Ab production in APPswe transgenic mice. Fur-

thermore, APP overexpressing mice, with the IFNg receptor

knocked out, have reduced Ab deposition compared with

APP transgenic mice. This is paired with reduced numbers of

astrocytes and microglia in the cortex and hippocampus. Pri-

mary astrocytes overexpressing APP with the Swedish

mutation (via adenovirus) secrete higher levels of TNFa than

wild-type (WT) astrocytes, and this effect is abolished in

IFNGR KO astrocytes, indicating that IFNg signalling is critical

for TNFa secretion. Furthermore, TNFa induces BACE1

expression and Ab production in astrocytes in a dose-depen-

dent manner. This effect was enhanced by the addition of

IFNg [136]. Taken together, we can conclude that IFNg and

TNFa upregulate BACE1 expression in astrocytes and ulti-

mately increase Ab secretion. Subsequently, Cho et al. [137]

demonstrated that this upregulation was mediated by the

activation of JAK2 and ERK1/2 signalling.

Other inflammatory mediators have also been shown to

upregulate BACE1 expression. NF-kB is a protein complex of

DNA transcription factors that plays a role in cytokine
production and cell survival. In the aged and AD brain, there

are increased levels of NF-kB and NF-kB transcription factor-

mediated responses to stress are enhanced [138–140]. Ab

stimulates NF-kB activation in primary rat astrocytes in a

dose- and time-dependent manner [141]. The rat and human

BACE1 promoters have an NF-kB binding site [142]. Deletion

studies suggest that the NF-kB binding site suppresses

BACE1 expression and Ab secretion in neurons when occupied

by NF-kB [143,144]. It has been demonstrated that NF-kB sup-

presses BACE1 expression in nonreactive astrocytes; however,

it has the opposite effect in TNFa-activated primary rat astro-

cytes. We can conclude, that in the context of inflammation,

when astrocytes are reactive, NF-kB can induce BACE1

expression [145].

Other specific stress-induced pathways that upregulate

BACE1 have been identified. The transcription factor Ying

Yang 1 (YY1) functions in glucose metabolism, DNA repair

and notch signalling and can bind to the BACE1 promoter to

induce BACE1 activity in primary rat astrocytes and neurons.

When permanent cerebral ischaemia was induced in rats by

coagulation of the middle cerebral artery [146] in order to

stress astrocytes, primary cultured astrocytes from these rats

robustly expressed YY1. This suggests that YY1 can upregulate

BACE1 activity in astrocytes under stressful conditions [147].

Furthermore, astrocytes also express BACE2, a close hom-

ologue of BACE1. Whether BACE2 activity results in APP

cleavage, and ultimately Ab production, is still up for

debate. Ablation of BACE1 and BACE2 in a mouse model

had reduced Ab production compared to just a BACE1

knockout, suggesting BACE2 does, in fact, contribute to Ab

load [148]. BACE2 activity is detectable in nonreactive pri-

mary rat astrocytes and levels of activity actually decrease

when the astrocyte is activated [103,104,131].

Ab itself could be considered a proinflammatory mediator

due to its ability to induce inflammation [149]. Additionally,

it is well established that Ab can stimulate proinflammatory

cytokine release from astrocytes [150,151] Therefore, we can

conclude that in AD, Ab itself can upregulate BACE1

expression in astrocytes by stimulating an inflammatory

response. Additionally, Abmay cause neurotoxicity by disrupt-

ing intracellular calcium homeostasis in neurons and in glial

cells. Disrupted calcium homeostasis is observed in the brains

of AD patients; however, the mechanism of this Ab-induced

deregulation is unclear [152]. Nuclear factor of activated T

cells (NFAT) is a transcription factor that regulates BACE1

expression by directly binding to its promoter region

in response to signalling by the calcium- and calmodulin-

dependent phosphatase calcineurin. BACE1 expression is

enhanced in primary neuronal cells and SH-SY5Y neuro-

blastoma cells after stimulation by a calcium ionophore. This

upregulation can be blocked by pretreatment with either an

inhibitor of calcineurin or a calcium chelator. Ab treatment

stimulates activation and nuclear translocation of NFAT1 result-

ing in increased BACE1 expression. Additionally, NFAT1

activation is observed in APPswe mouse brains. Taken together,

Ab induces increases in intracellular calcium that can stimulate

BACE1 expression, inducing further Ab generation [153].

Jin et al. [101] demonstrated Ab1–42 or Ab25–35 treat-

ment enhances BACE1 promoter activity and BACE1 protein

levels in U373 cells, and this can be blocked by pretreatment

with a calcineurin inhibitor. This increase in BACE1 levels

resulted in increased Ab secretion that could also be prevented

by pretreatment with a calcineurin inhibitor. Furthermore, this
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Ab-induced BACE1 upregulation can be blocked by pre-

venting calcium influx through treatment with 2APB, an

inhibitor of IP3-dependent calcium release, and U73122,

an inhibitor of PLC. Ab can form pores in cell membranes

that may be permeable to calcium influx, which can be blocked

by Zn2þ [154]. Jin et al. [101] used pretreatment with ZnCl2 to

prevent calcium influx through Ab-induced pores and found

that Ab no longer enhanced BACE1 expression.

Dal Prà et al. [155] found little Ab secretion from resting

normal adult human astrocytes. However, when these cells are

activated by exposure to Ab25–35, an Ab42 proxy which con-

tains its active site [155], there was a translocation of HIFa to

the nucleus. This upregulated BACE1 and increased g-secretase

activity, ultimately leading to significant Ab42 secretion [156].

These observations indicate that neuronally secreted Ab could

induce Ab production in reactive astrocytes through HIF1a.

8. g-Secretase activity in astrocytes
As previously mentioned, g-secretase activity is not correlated

with the quantity of catalytic subunit; this makes it difficult to

quantify, so it is not surprising that little is known about

g-secretase activity in astrocytes in AD. PS1 mRNA is highly

expressed in astrocytes [10], and PS1 protein expression has

been confirmed in glial cells in primate brain; however, stain-

ing is weak compared to neuronal cells [157]. Similar to APP

and BACE1 expression, PS1 is elevated in reactive astrocytes

in the AD brain [158,159]. Specifically, TGFb may upregulate

PS1 mRNA in the human U87 MG astrocytoma cell line

[160]. However, as g-secretase protein levels do not correlate

to g-secretase activity levels, these studies do not fully elucidate

the role of g-secretase-mediated Ab production in astrocytes.

9. Other stressors
In addition to neuroinflammation, there may be other physio-

logically relevant cellular stressors that trigger APP and BACE

and promote Ab generation in astrocytes. Under stress, the

activation of the hypothalamic–pituitary–adrenal axis results

in glucocorticoid (GC) secretion from the adrenal cortex.

Elevated GC is associated with cognitive impairment and has

been implicated in AD pathology [161,162]. There are GC

response elements in the APP and BACE1 promoter, indicating

that GC signalling can upregulate their expression [163,164].

Wang et al. [165] demonstrated that GCs promote Ab40 and

Ab42 secretion from primary mouse astrocytes. They attribu-

ted this to an increase in both APP and BACE1 mRNA and

protein. Next, they demonstrated a similar increase in APP,

BACE and Ab production in 9-month-old mice treated with

dexamethasone. Furthermore, this treatment induced reactive

astrocytes that stained positively for both APP and BACE, indi-

cating that this change occurs primarily in reactive cells [165].

Other stressors, such as tissue damage, have been shown to

induce APP expression in astrocytes. Hippocampal lesions

stimulate APP expression in nearby astrocytes [166]. Brain

injury has been shown to enhance astrocytic APP expression

[167,168]. Traumatic brain injury has long been linked to the

risk of developing AD [169,170] and is associated with acceler-

ated Ab deposition in AD [171]. Significant evidence suggests

that acute brain injury can induce PS1 expression in mice [172],

rats [173] and in human brains following cerebral infarcts

[174,175]. Importantly, these studies indicate that brain injury

induces PS1 expression in astrocytes. Nadler et al. [176] used
three models to induce brain injury closed head injury (CHI),

a well-established model for head trauma which is

accompanied by neuroinflammation [177], brain stabbing or

intracerebroventricular injection of LPS. In each incidence,

the brain trauma resulted in more reactive astrocytes and

increased expression of presenilin-1 and nicastrin.

Inorganic arsenic (iAs), a toxic metalloid, can contaminate

drinking water and is associated with cognitive impairment

[178,179]. Cells process iAs to a highly toxic monomethylarso-

nous acid, MMAIII, which has been suggested to be associated

with neurodegenerative disorders, although epidemiological

studies have failed to demonstrate association. Primary rat

astrocytes exposed to MMAIII have increased mRNA levels

of a plethora of AD-related cytokines including IL-1b, IL-6

and TNFa. Additionally, MMAIII induces a roughly threefold

increase in APP and BACE1 mRNA expression [180].

These studies fit with the wider narrative that chronic stress

can induce Ab production [181,182]. Taken together, this

suggests that a feed-forward mechanism is at play. Amyloid

beta, perhaps initially from neurons, stimulates proinflamma-

tory cytokine release from microglia and astrocytes, which in

turn leads to upregulation of APP and BACE expression and

possibly g-secretase activity to drive astrocytic Ab secretion

(figure 3). This inflammation-induced Ab then stimulates

further neuroinflammation and ultimately additional amyloid

production.

Furthermore, Ab produced by astrocytes may be more

pathogenic than that of neurons. A large portion of the Ab

species comprising amyloid beta plaques are N-truncated

[183–185]. Ab peptides beginning at Glu3 and at Phe4 are

abundant in plaques. Studies suggest that these N-truncated

species arise because other enzymes either compete with or

modify BACE1 cleavage of APP [186–188]. The proportion of

N-truncated peptides making up Ab plaques seems to increase

with disease progression and Braak stage [189]. N-truncation

may affect the pathogenicity of the peptide; for example,

Ab42 with a truncated N-terminus is highly prone to aggrega-

tion [190]. Oberstein et al. [191] observed that astrocytes

produced sevenfold less Ab40 than neurons; however, they

found that 60% of the Ab secreted by astrocytes was

N-truncated, compared to 20% from neurons.
10. Astrocytes and ageing
As the primary risk factor for AD is ageing, it is important to

understand the effect of ageing on astrocytes. However, cur-

rently, little is known about the effect of ageing on metabolic,

biochemical and morphological changes in astrocytes. Some

research has demonstrated that ageing is associated with

increased astroglial proliferation and reactivity, measured as an

increase in GFAP expression, particularly in the CA1 region of

the hippocampus [192–196]. In this model of ‘inflammageing’,

reactive astrocytes contribute to chronic neuroinflammation

throughout the brain [197]. This suggests that there is the

potential for ageing to induce reactive astrogliosis, which could

result in astrocyte Ab production. Therefore, ageing-induced

neuroinflammation may be an initiating factor of late onset AD.

Studies in other regions of the brain have found evidence of

age-associated astroglial atrophy [198–200]. Using GFAP, glu-

tamine synthetase, and s100b as markers for astroglia,

Rodriguez et al. [66] confirmed ageing is associated with both

reactivity and atrophy in different brain regions. Owing to
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the heterogeneity of astrocytes throughout the brain, it is poss-

ible for ageing to be associated with both astroglial dystrophy

and reactivity. To conclude, ageing-dependent changes in

astroglia are context and region specific, and more research

into the downstream consequences of astroglial ageing needs

to be done as a framework to fully understand the role of

astrocytes in AD.
11. Ab as an anti-microbial protein
Ab is generally described as having no normal physiological

role. However, it has recently been suggested that Ab may act

as anti-microbial protein (AMP) in the brain as first line of

defence against invading pathogens. AMPs, also known as

host defence peptides, are broad spectrum antibiotics that

are active against a host of pathogens, including bacteria,

fungi and viruses [201]. If this is the case, then astrocytes,

as mediators of innate immunity, may secrete Ab in response

to stress as an innate defence mechanism.

BACE1 and BACE2 double knockout mice have higher neo-

natal mortality rates than WT mice and this is not due to

maternal care issues or deficient active immunity. This

increased mortality disappears when the mice are housed in

a pathogen-free facility, suggesting they may have increased

susceptibility to pathogens [148]. If this is the case, their com-

promised innate immune system may be due to the lack of

Ab in these mice.

Soscia et al. [202] compared the ability of Ab to inhibit the

growth of pathogens to that of LL-37, an established human

AMP in the cathelicidin family [202,203]. Ab was active

against 8 of 12 pathogens, in rates similar to that of LL-37.

Furthermore, homogenate from the temporal lobe of AD

patients had 24% greater activity against Candida albicans
than that of control subjects. This activity returned to that

of control patients when they immunodepleted Ab from

the homogenate [202].

Ab has also been shown to be protective against viral

infections such as Herpes simplex virus 1 (HSV-1) and

H3N2 and H1N1 influenza A virus (IAV). HSV-1 is a

known AD risk factor and viral particles colocalize with amy-

loid plaques [204,205]. Pretreatment of fibroblast, epithelial
and neuronal cell lines with either Ab40 or Ab42 reduced

HSV-1 replication [206]. In vitro, Ab42 reduces epithelial

cell uptake of IAV and causes aggregation of viral particles.

Ab42 also reduced viral protein synthesis monocytes and

decreased IL-6 secretion [207].

After intracerebral injection of Salmonella Typhimurium,

4-week-old 5XFAD transgenic mice, which overexpress both

human APP and PS1 with five FAD mutations, and therefore

express high levels of Ab, had increased survival compared

with WT mice. In the same assay, APP knockout mice that

do not produce Ab fared worse than non-transgenic mice.

Consistent with this, the human brain neuroglioma cell line

H4, stably overexpressing either Ab40 or Ab42, has increased

survival when challenged with C. albicans compared to WT

H4 cells. The mechanism behind this seems to be reduced

adhesion to Ab overproducing cells and increased microbial

agglutination [208]. Taken together, this suggests that Ab

may play a role as an AMP in the innate immune system

and this may explain why astrocytes secrete Ab in response

to cellular stressors.
12. Interplay with neurons and microglia
If inflammation-induced astrocytic Ab production plays a

significant role in AD pathology, then the relationship

between microglia, astrocytes and neurons needs to be rede-

fined. Microglia play a central role in the immune system of

the CNS and produce and respond to a variety of inflamma-

tory mediators that are implicated in AD [209]. Genetic

studies support the significance of microglia in pathology:

it is well established that mutations in triggering receptor

expressed on myeloid cells 2 (TREM2) and CD33 increase

the risk for AD [45–48,210].

Similar to astrocytes, microglia undergo substantial

changes in response to stimulus and may be resting or acti-

vated depending on the cellular environment [211]. Microglia

can be activated by Ab from either neurons or astrocytes and

in response secrete proinflammatory cytokines [212,213]. It

has been suggested that there is a delicate balance between

harmful and beneficial microglial cytokine production in AD.

Inflammation is necessary to promote efficient microglial
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clearance of Ab, but excessive inflammation may accelerate dis-

ease by causing neuronal and glial cell death [214,215]. We

argue that microglial cytokine production also contributes to

disease progression by inducing astrocytic Ab production.

Taken together, this suggests a complicated relationship

between neurons, microglia and astrocytes in the context of

AD. Neurons contribute to total amyloid load, which conse-

quently activates microglia and astrocytes. Microglia respond

to Ab by producing proinflammatory cytokines, which in

turn activate astrocytes, inducing APP and BACE1 expression

and further Ab production. At the same time, astrocytes are

also capable of clearing and degrading amyloid and secreting

inflammatory mediators [216–218]. Downstream, inflam-

mation may be a triggering event for the neuronal death seen

in AD and contribute to cognitive decline (figure 4).
13. Conclusion
Several of the causal and risk factor genes for AD—amyloid

precursor protein (APP), presenilin-1, presenilin-2, ApoE, clus-

terin (CLU), phosphatidylinositol-binding clathrin assembly

protein (PICALM), triggering receptor expressed on myeloid

cells 2 (TREM2)—are expressed not only by neurons but also,

if not predominantly, by astrocytes [102], corroborating the

idea that astrocytes are important players in AD pathogenesis.
Neurons are often considered the lone source of Ab in AD, yet

there is plenty of evidence that astrocytes also contribute to Ab

load [111]. In particular, astrocytes activated by a multitude of

cellular stressors upregulate the necessary machinery for Ab

production. This may be part of an innate immune response

where Ab functions as an AMP. Furthermore, astrocytes can

be stimulated by Ab from nearby neurons to make and secrete

Ab. In this cycle, Ab-exposed astrocytes act as vectors to spread

Ab production in a self-sustaining way [219] that may drive

AD pathology.
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C, Torres-Ramos MA, Aguirre-Bañuelos P, Gandolfi
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