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ABSTRACT
Microbial interactions have profound impacts on biodiversity, biogeochemistry, and
ecosystem functioning, and yet, they remain poorly understood in the ocean and with
respect to changing environmental conditions. We applied hierarchical clustering of
an annual 16S and 18S amplicon dataset in the Skidaway River Estuary, which revealed
two similar clusters for prokaryotes (Bacteria and Archaea) and protists: Cluster 1
(March-May and November-February) and Cluster 2 (June-October). We constructed
co-occurrence networks from each cluster to explore how microbial networks and
relationships vary between environmentally distinct periods in the estuary. Cluster 1
communities were exposed to significantly lower temperature, sunlight, NO3, and SiO4;
only NH4 was higher at this time. Several network properties (e.g., edge number, degree,
and centrality) were elevated for networks constructed with Cluster 1 vs. 2 samples.
There was also evidence that microbial nodes in Cluster 1 were more connected (e.g.,
higher edge density and lower path length) compared to Cluster 2, though opposite
trends were observed when networks considered Prokaryote-Protist edges only. The
number of Prokaryote-Prokaryote and Prokaryote-Protist edges increased by >100%
in the Cluster 1 network, mainly involving Flavobacteriales, Rhodobacterales, Peri-
diniales, and Cryptomonadales associated with each other and other microbial groups
(e.g., SAR11, Bacillariophyta, and Strombidiida). Several Protist-Protist associations,
including Bacillariophyta correlated with Syndiniales (Dino-Groups I and II) and
an Unassigned Dinophyceae group, were more prevalent in Cluster 2. Based on the
type and sign of associations that increased in Cluster 1, our findings indicate that
mutualistic, competitive, or predatory relationshipsmay have beenmore representative
among microbes when conditions were less favorable in the estuary; however, such
relationships require further exploration and validation in the field and lab. Coastal
networks may also be driven by shifts in the abundance of certain taxonomic or
functional groups. Sustainedmonitoring ofmicrobial communities over environmental
gradients, both spatial and temporal, is critical to predict microbial dynamics and
biogeochemistry in future marine ecosystems.
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INTRODUCTION
Over the last two decades, the expansion of high-throughput environmental sequencing,
or amplicon metabarcoding, has improved our ability to monitor Bacteria, Archaea,
and protists in the ocean (Sogin et al., 2006; Xia, Guo & Liu, 2017; Caron & Hu, 2019;
Santoferrara et al., 2020; Burki, Sandin & Jamy, 2021). Amplicon surveys have informed
marine microbial dynamics, revealing spatial trends in biodiversity (Ibarbalz et al., 2019),
recurrent seasonal patterns in composition (Ward et al., 2017; Chafee et al., 2018; Giner
et al., 2019), and more accurate representation of rare or cryptic organisms, especially
among protists (Burki, Sandin & Jamy, 2021). These monitoring efforts have also
reinforced the importance of environmental and biological factors in structuring microbial
communities (Fuhrman, Cram & Needham, 2015; Logares et al., 2020). For instance, several
environmental factors, like temperature, nutrients, sunlight, and water depth, consistently
influence microbes on regional to global scales (Gilbert et al., 2012; Sunagawa et al.,
2015). Microbes are also driven by interactions that they have with each other, with
such relationships being subject to environmental stressors (Piccardi, Vessman & Mitri,
2019; Hernandez et al., 2021).

Microbial interactions underpin ocean ecosystem functioning, influencing carbon
transfer, nutrient cycling, and organic matter transformation (Azam et al., 1983;Worden et
al., 2015). Microbes are highly interconnected, exhibiting a range of interactions, from
parasitism and predation to symbiosis and mutualism, all differentially influencing
community diversity and biogeochemical cycles (Worden et al., 2015). Despite their
importance, many interactions remain unresolved. A recent literature review of ∼2500
microbial interactions found that 14% were ambiguous across aquatic environments
(Bjorbækmo et al., 2020). Realistically, the number of unresolved interactions in nature is
likely much higher, owing to the large functional diversity of microbes, the challenges in
culturing them in the lab, and the lack of tools available to examine such interactions at
scale and under high taxonomic resolution (Krabberød et al., 2017). Given the important
role of microbial interactions in shaping biodiversity and ecosystem functioning, it remains
critical to better resolve these interactions and how they may shift over time and space and
under different environmental conditions.

Amplicon surveys coupled with co-occurrence network analysis represent a powerful
method to infer microbial relationships, establishing significant correlations between
amplicon sequence variants (ASVs) based on relative abundance data (Röttjers &
Faust, 2018; Faust, 2021). Co-occurrence networks have been conducted across marine
systems, revealing globally important microbial associations that may reflect interactions,
like parasitism or symbiosis (Lima-Mendez et al., 2015), and providing context for
phytoplankton bloom dynamics, species succession, and biogeochemistry (Needham
& Fuhrman, 2016; Needham, Sachdeva & Fuhrman, 2017; Bolaños et al., 2021). More
recently, a reanalysis of Tara Ocean data revealed that global networks were structured
by environmental (poleward) niches and influenced by factors like temperature, salinity,
and nutrients (Chaffron et al., 2021). Together, these studies emphasize the importance
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of microbial networks to ecosystem functioning and food web dynamics, as well as their
potential susceptibility to environmental changes.

A universal challenge in constructing microbial networks is how to deal with
environmental factors that are known to strongly influence communities (Faust, 2021).
The most common strategy to assess environmental impact has been to aggregate samples
into a single network, including environmental variables as additional nodes that can be
correlated to ASVs (Fuhrman, Cram & Needham, 2015; Needham, Sachdeva & Fuhrman,
2017). However, this approach often results in fewer environmental network correlations
compared to those between species (Gilbert et al., 2012;Chow et al., 2014). Another strategy
involves separating ASV tables into groups, for instance based on temporal (seasons or
years) or spatial scales (water depth), and comparing resulting networks (Lima-Mendez
et al., 2015; Milici et al., 2016; Kellogg et al., 2019; Lambert et al., 2021). Networks can also
be separated by binning nodes (Röttjers & Faust, 2018; Chaffron et al., 2021) but tools are
limited (Faust, 2021) and have not been well applied to marine samples.

Another potential method is to separate samples for network analysis a priori based
on community composition (beta diversity). Separating samples in this manner may be
relevant for estuarine or other coastal microbial communities that are seasonally structured
and sensitive to anthropogenic impacts (Fuhrman et al., 2006; Chafee et al., 2018). Many
estuaries along the southeastern U.S., including the Skidaway River Estuary (GA, U.S.),
were once considered pristine and are now threatened by habitat transformation and
nutrient loading (Verity, Alber & Bricker, 2006). Though well mixed from semidiurnal
tides, long-term monitoring in the Skidaway River has revealed increased nutrient input
correlated to increased abundance of heterotrophic bacteria and most plankton groups
(Verity & Borkman, 2010). Continued anthropogenic input of nutrients in this region
(and others) may enhance warming, eutrophication, and habitat loss, with implications
for fisheries and ecosystem management (Verity, Alber & Bricker, 2006). Identifying and
characterizing microbial relationships that occur over environmentally distinct periods
may provide insight into their long-term dynamics in changing coastal habitats.

The aim of our study was to assess how different environmental conditions influence
relationships among microbes (Bacteria, Archaea, and protists) in the Skidaway River
Estuary. We performed 16S and 18S amplicon surveys on a weekly-monthly basis (33
days) and constructed microbial networks with co-occurrence analysis. Instead of binning
samples categorically, we separated ASV tables for network analysis based on hierarchical
clustering of beta diversity. This approach revealed two distinct communities, similar for
prokaryotes and protists, representative of contrasting environmental conditions, mainly
temperature and nutrients. Despite the same initial number of ASVs used in each network,
we observed differences in network properties (e.g., degree, centrality, and number of
edges) between clusters, as well as changes in the types of associations that occurred. The
response of microbial relationships to anthropogenic threats and changing conditions
remains unclear (Caron & Hutchins, 2013), and so, it is critical to better understand how
current networks vary between environmentally distinct periods.
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MATERIALS & METHODS
Sample collection
Surface water samples (1m)were collectedweekly tomonthly fromMarch 2017 to February
2018 in the Skidaway River Estuary (latitude, 31◦59′25.7′N; longitude, 81◦01′19.7′W),
encompassing 33 sampling days. For consistency between weeks, sampling always occurred
at high tide. Water samples were collected with a 5-L Niskin bottle, filtered on site through
200-µm mesh (to exclude zooplankton) into a 20-L carboy, and transferred to a nearby
lab for processing. Samples (250–1000 ml) were filtered in triplicate from the 20-L carboy
through 47-mm, 0.22-µm polycarbonate filters (Millipore) using vacuum filtration. Filters
were stored at−80 ◦C.On three days (8/30, 10/11, and 11/21), only two biological replicates
were filtered.

Surface temperature, salinity, and dissolved oxygen were measured using a YSI (600S
sonde). Solar radiation data was collected from a nearby land-based site on Skidaway
Island. Triplicate chlorophyll samples (50–100 ml) were filtered onto 0.7-µm GF/F
filters, extracted in 91% ethanol, and measured on a Turner AU10 fluorometer (Graff
& Rynearson, 2011). Dissolved nutrients (NO3, NH4, PO4, and SiO4) were measured via a
Technicon AutoAnalyzer (SEAL Analytical), while particulate organic carbon (POC) and
nitrogen (PON) were measured using a Thermo Flash elemental analyzer (Bittar et al.,
2016; Anderson & Harvey, 2019). Dissolved nutrients and POC/PON were not measured
on 9/6; these samples were not considered in the constrained ordination.

PCR conditions and DNA sequencing
The DNeasy PowerSoil kit (Qiagen) was used to extract DNA following manufacturer’s
protocols. DNA samples were eluted in 10 mM Tris–HCl (pH= 8.5). DNA concentrations
were estimated with the Qubit dsDNA HS kit (Thermo Scientific) and ranged from 2–5
ng µl−1 per sample. A two-step PCR approach was employed with two different primer
sets, targeting prokaryotes (16S rRNA) or protists (18S rRNA). We used the following
primers to target the V4 region of the 18S rRNA gene (Stoeck et al., 2010): forward (5′-
CCAGCASCYGCGGTAATTCC-3 ′) and reverse (5′-ACTTTCGTTCTTGATYRA-3′). For
16S, primers targeted the V4–V5 region (Parada, Needham & Fuhrman, 2016): forward (5′-
GTGYCAGCMGCCGCGGTAA-3′) and reverse (5′-CCGYCAATTYMTTTRAGTTT-3′).
Illumina adapters were attached to each target-specific primer region. 18S PCR conditions
involved an initial denaturation step at 98 ◦C for 2 min, 10 cycles of 98 ◦C for 10 s, 53 ◦C
for 30 s, and 72 ◦C for 30 s, followed by 15 cycles of 98 ◦C for 10 s, 48 ◦C for 30 s, and
72 ◦C for 30 s, and a final extension of 72 ◦C for 2 min (Stoeck et al., 2010; Hu et al., 2015).
16S PCR conditions consisted of an initial denaturation of 95 ◦C for 2 min, 25 cycles of
95 ◦C for 45 s, 50 ◦C for 45 s, and 68 ◦C for 90 s, followed by a final elongation step of
68 ◦C for 5 min (Parada, Needham & Fuhrman, 2016). PCR products were purified and
size-selected using AMPure XP Beads (A63881; Beckman Coulter). A second PCR step was
carried out by attaching dual Illumina indices (P5 and P7) and adapters to template DNA
using the Nextera XT Index Kit. Two separate sequencing runs were performed using an
Illumina MiSeq (2 ×250 bp for 18S; 2 ×300 bp for 16S) at the Georgia Genomics and
Bioinformatics Core at the University of Georgia.
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Bioinformatics
Demultiplexed 16S and 18S FASTQ files were imported and processed separately in
QIIME 2 (Bolyen et al., 2019). Amplicon sequence variants (ASVs) were inferred with
paired-end DADA2 (Callahan et al., 2016). Truncation lengths of the forward and reverse
reads were defined based on read-quality profiles; otherwise, default DADA2 parameters
were used. Protist taxonomy was inferred using QIIME 2-compatible files from the
Protist Ribosomal Reference (PR2) database (Version 4.12.0; Guillou et al., 2013), while
prokaryotic taxonomy was assigned using the SILVA database (Version 138; Pruesse et
al., 2007). For both gene regions, a Naïve Bayes Classifier was used to train the sequences
against reference databases using the feature-classifier plugin in QIIME 2 (Bokulich et al.,
2018). QIIME 2 taxonomy and count table artifact files (.qza files) were imported into R
(Version 3.6.3; R Core Team, 2020) using the read_qza function from the qiime2R package
(https://github.com/jbisanz/qiime2R).

Sequences were deposited at the Sequence Read Archive of the National Center for
Biotechnology Information (NCBI) and made publicly available under accession numbers
PRJNA575563 (18S) and PRJNA680039 (16S). R code used for data analysis, including a
full list of R packages, is on GitHub (https://github.com/sra34/SkIO-network). This project
has been archived on Zenodo (https://doi.org/10.5281/zenodo.6549350).

Statistical analyses
Community dynamics were investigated separately for 16S and 18S datasets in R, using
packages including phyloseq (McMurdie & Holmes, 2013), vegan (Oksanen et al., 2018),
and tidyverse (Wickham et al., 2019). Average values presented in the text refer to the
mean. To focus on protists, we removed eukaryotes within Metazoa and Streptophyta that
were amplified with the 18S primers. Unassigned reads at the supergroup level for protists
(PR2 Rank 2) or domain level for prokaryotes (SILVA Rank 1) were also removed, as well
as prokaryotic reads assigned to chloroplasts or mitochondria. After filtering, there were
51,770 sequence reads on average across samples for protists (16,857–84,369), assigned to
8,700 ASVs. There were 81,165 sequences on average for prokaryotes (47,250–177,521),
assigned to 15,716 ASVs. Two samples in the 16S dataset were removed (3/16 B and 9/20
C) due to low sequence read numbers (94 total samples for 16S vs. 96 for 18S). Rarefaction
curves were generated using the R package ranacapa (Kandlikar et al., 2018). Unfiltered
taxonomic assignments and read counts for microbial ASVs are provided in Table S1.

To assess community dynamics, singletons were removed (except for alpha diversity)
and samples were rarefied to the minimum read count for 16S (47,249) and 18S tables
(16,849), respectively (Weiss et al., 2017). Community composition was correlated to
environmental variables with distance-based redundancy analysis (dbRDA; Oksanen et
al., 2018). Constrained ordinations were run with unweighted UniFrac distance matrices
and log-transformed environmental factors. Environmental variables that were significant
to the ordination (ANOVA, p-values <0.05) were identified using the ordistep function
(both directions) in vegan with 999 permutations (Oksanen et al., 2018). After a final
dbRDA run, significant variables were added to the ordination as arrows. Hierarchical
clustering (Ward’s method) of UniFrac distances was performed using the hclust function
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in vegan. The optimal number of clusters was evaluated based on average silhouette widths,
a measure of the similarity between each sample and its cluster compared to its similarity
to other clusters (Rousseeuw, 1987).

Group-specific 16S and 18S relative abundance was assessed over the year and local
regression (loess) curves were applied to visualize temporal trends using the geom_smooth
function in ggplot2 (Wickham et al., 2019). Relative abundances were correlated with
environmental variables using Spearman rank correlations (R), considering only variables
that were significant to the dbRDA.We focused on themost relatively abundant prokaryotes
and protists in the dataset at the order level (>2% on average). Observed richness
and Shannon diversity were estimated with the estimate_richness function in phyloseq
(McMurdie & Holmes, 2013). Singletons were considered for diversity estimates to account
for rare microbes. Shapiro–Wilks’s normality tests were applied to the diversity data,
whereafter either paired t-tests (richness) or Wilcoxon tests (Shannon) were used to
compare mean diversity or richness between clusters. Similar comparative tests (Wilcoxon
or t -test) were performed for environmental variables, after checking how each variable
was distributed (Shapiro–Wilks).

Covariance networks
Microbial association networks were constructed for separate clusters using the SParse
Inverse Covariance estimation for Ecological Association and Statistical Inference (SPIEC-
EASI; Version 1.1.0) package in R (Kurtz et al., 2015). SPIEC-EASI uses ASV count tables
as input and computes an inverse covariance matrix, using conditional independence
to infer direct associations (Kurtz et al., 2015; Röttjers & Faust, 2018). The program also
supports merging ASV tables across gene marker regions, an approach that has been tested
previously to investigate cross-domain associations (Tipton et al., 2018). SPIEC-EASI aims
to be robust to the compositional nature of amplicon data and aims to infer sparse networks
that are more conservative against false-positive or indirect edges (Kurtz et al., 2015).

Networks constructed with too many edges can result in ‘‘hairball’’ networks that
are difficult to interpret and may yield ambiguous relationships (Röttjers & Faust, 2018).
Therefore, ASV tables were filtered for network analysis to include the top 150 most
abundant (based on sequence reads) 16S and 18S ASVs (300 total ASVs) per cluster.
Covariance networks were constructed with the spiec.easi function using ASV count
tables as input (with matching sample IDs) and the ‘‘mb’’ (Meinshausen–Buhlmann)
neighborhood selection setting. Two samples that were excluded from the 16S dataset
due to low read numbers (3/16 B and 9/20 C) were also filtered from the 18S set at this
stage to support merging of ASV tables. The Stability Approach to Regularization Selection
(StARS) was used to select the optimal sparsity parameter with a threshold set to 0.05
(Liu, Roeder & Wasserman, 2010). The spiec.easi function performs centered log-ratio (clr)
transformation of ASV count tables, eliminating the need to pre-transform abundance
data (Tipton et al., 2018). SPIEC-EASI outputs a correlation matrix of positive and negative
values (weights) for all significantly paired edges.

Networks were visualized in Cytoscape (Shannon et al., 2003). The total number of
positive and negative edges were compared between networks for domain level associations
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(e.g., Protist-Protist, Prokaryote-Protist, and Prokaryote-Prokaryote), as well as the most
prevalent types of order level (SILVA Rank 4; PR2 Rank 5) relationships within each
broader category. Topological features were measured using the NetworkAnalyzer plugin
(Assenov et al., 2008), analyzing networks overall or based on the major domain level
pairings. Edge density and average path length were measured for each network, which in
this case, referred to the fraction of realized to potential microbial edges and the average
distance between any two microbial nodes (Faust & Raes, 2012). Degree and closeness
centrality were estimated for each node (or ASV). Degree refers to the number of edges
connected to a given microbe (represented as nodes), whereas closeness centrality indicates
the proximity of a given microbe to all other microbes in the network; higher centrality
indicates a greater contribution to network connectivity (Röttjers & Faust, 2018). Centrality
and degree data were non-normal (Shapiro–Wilks) and compared at the domain level and
for the most relatively abundant class level groups (SILVA Rank 3; PR2 Rank 4) over the
year (Wilcoxon tests).

RESULTS
Several environmental variables fluctuated over the year (Table S2), most notably
temperature, SiO4, and NO3, all peaking in June-October. Temperature and SiO4 were
strong covariates in the dataset (Spearman R= 0.86,p-value <0.001). Temperature also
covaried with NO3 and PO4 (both with Spearman R= 0.48, p-values <0.01), as well as NH4

(Spearman R=−0.73, p-value <0.001). Other factors like PO4, salinity, POC, and PON
were less variable, while NH4 peaked in December-February (Table S2). Chlorophyll (<200
µm) ranged from 1.32–6.39 µg L−1, varying more greatly between sampling intervals from
March-August (Table S2).

Environmental impact on prokaryotes and protists
For both prokaryotes and protists, the number of read counts vs. ASVs was saturated
across samples (Fig. S1). Several dominant prokaryotic and protist groups were temporally
variable and significantly correlatedwith environmental variables, particularly temperature,
NO3, and SiO4 (Figs. 1; 2). Temporally variable prokaryotes included Actinomarinales,
which peaked in abundance in June-October and was strongly correlated to temperature
(Spearman R= 0.8,p-value <0.001), as well as Flavobacteriales, Rhodobacterales, and
Oceanospirillales that contributedmost to relative abundance inMarch-May orNovember-
February and were negatively correlated to temperature (Spearman R=−0.59 to −0.8,
p-values <0.05; Figs. 1A–1B). SAR11 Clade, the most abundant prokaryotic group on
average over the year, became most relatively abundant in November-February (Fig. 1A);
however, SAR11 abundance was not significantly correlated to any environmental factor
tested (Fig. 1B).

Several protist groups, like Unassigned Dinophyceae and Dino-Groups I and II
(Syndiniales), were most relatively abundant in June-October and positively correlated
to temperature (Spearman R= 0.68−0.83, p-values <0.001; Figs. 2A–2B). Other groups,
like Peridiniales, Gymnodiniales, and Cryptomonadales, peaked in either March-May or
November-February and were negatively correlated to temperature (Spearman R=−0.42
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Figure 1 Group-specific 16S relative abundance over the year and correlation to environmental vari-
ables. (A) Relative abundance (%) of the top ten most relatively abundant order level prokaryotes over the
year (> 2% relative abundance). Local regression (loess) curves (continued on next page. . . )

Full-size DOI: 10.7717/peerj.14005/fig-1
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Figure 1 (. . .continued)
represent smoothed trends (black lines) and 95% confidence intervals (shaded gray). Abundance data is
shown in triplicate or duplicate (8/30, 10/11, and 11/21) and samples are grouped by month on the x-axis.
(B) Spearman correlations between group-specific prokaryotic relative abundance and environmental
variables. Only significant correlations are shown (Spearman R, p-values < 0.05), with the sign of corre-
lation indicated by a red (negative) to blue (positive) color gradient. Stronger correlations are represented
by darker colors. White boxes indicate no significant correlation.

to −0.56, p-values <0.05; Figs. 2A–2B). Bacillariophyta and Mamiellales were the most
abundant protist groups on average over the year (Fig. 2A). Bacillariophyta relative
abundance was lowest in March-May and positively correlated with SiO4 (Spearman
R= 0.36, p-values <0.05; Figs. 2A–2B). Group-specific abundances of Mamiellales,
Strombidiida, and Choreotrichida were consistent and not correlated with any factors
(Figs. 2A–2B). Microbial groups that were positively (or negatively) correlated with
temperature were inversely correlated with NH4 (Figs. 1B; 2B).

Hierarchical clustering to distinguish separate communities
Two clusters were determined to be optimal for each dataset based on plots of average
silhouette widths, here referred to as Clusters 1 and 2 (Fig. S2). Hierarchical clustering
revealed a more separated cluster of samples from March-May and November-February
(Cluster 1) and a tightly grouped set of samples from June-October (Cluster 2; Figs.
S3–S4). 16S and 18S samples were clustered in the same manner (Fig. 3). Distance-based
redundancy analysis (dbRDA) revealed temporal variability in microbial composition, with
significant environmental variables explaining 58% (18S) and 63% (16S) of the variance
from the sum of the first two axes (Figs. 3A–3B). Temperature was among the strongest
variables significantly influencing the ordination (ANOVA, p-value= 0.01), distinguishing
Cluster 2 samples from Cluster 1 (Fig. 3). Other factors like SiO4 and NO3 were also
significant constraints on the dbRDA (ANOVA, p-values <0.01) and distinguished Cluster
2 samples (Fig. 3). In contrast, lower NH4 was a significant explanatory factor (ANOVA,
p-value = 0.01) for the change in composition from Cluster 1 to 2 samples (Fig. 3).

Cluster 1 and 2 microbial communities experienced different environmental conditions
(Table 1). For example, temperature, sunlight, and nutrients (except for NH4) were
significantly higher (Wilcoxon or paired t -test, p-values <0.05) in Cluster 2 vs. 1 (Table
1). Mean observed protist richness and Shannon diversity were not significantly different
between clusters (Wilcoxon or paired t -test, p-values >0.2; Table 1), though for prokaryotes,
both richness and diversity were significantly higher (Wilcoxon or paired t -test, p-values
<0.01) in Cluster 2 compared to 1 (Table 1).

Network analysis of sample clusters
SPIEC-EASI was used to identify significant statistical correlations between ASVs (based
on their abundance), with such associations (or edges) indicating potential relationships
between microbes. These putative relationships may or may not reflect true biological
interactions. Cluster 1 samples formed a network with 1086 edges (66% positive) between
300 ASVs, while the Cluster 2 network revealed 707 edges (59% positive) between 297
ASVs (Table 2; Fig. S5). Three ASVs were not connected to any other ASV in the Cluster
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ables. (A) Relative abundance (%) of the top ten most relatively abundant order level protists. (B) Spear-
man correlations (Spearman R, p-values < 0.05) between group-specific protist relative abundance and
environmental variables. Other details are identical to Fig. 1.
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Table 1 Differences in variables between clusters.Mean and standard deviation of environmental vari-
ables, species richness, and Shannon diversity between Cluster 1 and Cluster 2 samples. Prokaryotes (16S)
and protists (18S) were clustered similarly (n = 16 for Cluster 1; n = 17 for Cluster 2). Replicate sam-
ples were considered for diversity metrics and varied between 16S (n = 46 and 48 for Cluster 1 and 2)
and 18S (n = 47 and 49 for Cluster 1 and 2) due to removal of two 16S samples (3/16 B and 9/20 C) with
low sequence read numbers. Means were compared between clusters, with significantly different variables
indicated by an asterisk (Wilcoxon or paired t-tests, * p-value < 0.05; ** p-value < 0.01). Temp= tem-
perature (◦C); SiO4 = silicate (µM); NO3 = nitrate (µM); PO4 = phosphate (µM); NH4 = ammonium
(µM); Chl= chlorophyll (µg L−1); Sal= salinity (psu); Solar= solar radiation (MJ m−2); POC/PON=
particulate organic carbon or nitrogen (µg C or N L−1).

Variables Cluster 1 Cluster 2

Temp** 16.43 (5.04) 28.39 (1.99)
SiO4** 44.83 (13.97) 105.79 (20.90)
NO3** 0.44 (0.29) 0.98 (0.46)
PO4** 0.56 (0.12) 0.67 (0.11)
NH4** 2.4 (1.4) 1 (0.93)
Chl 3.15 (1.26) 3.79 (1.43)
Sal 29.22 (1.44) 29.36 (1.55)
Solar* 9.57 (5.69) 13.83 (3.66)
POC 60.27 (30.12) 62.83 (14.67)
PON 10.8 (4.41) 11.41 (3.4)
18S richness 488.15 (124.71) 500.78 (77.22)
18S Shannon 4.3 (0.48) 4.47 (0.28)
16S richness** 221.15 (67.07) 271.73 (47.31)
16S Shannon** 4.07 (0.52) 4.46 (0.18)

2 network analysis. Network nodes were represented by similar order level microbial
groups (56% shared), while nodes were often different at the ASV level (20% shared)
between clusters (Table S3). For both networks, only a handful of archaeal ASVs (five
and six) were considered as nodes in the network analysis (Table S3; Fig. S5), reflecting
their lower abundance in the 16S dataset (<2% on average) compared to Bacteria (Table
S1). Protist-Protist associations contributed most to the overall number of edges in each
network, followed by Prokaryote-Prokaryote and Prokaryote-Protist associations (Table
2). The number of Prokaryote-Prokaryote and Prokaryote-Protist associations increased
by >100% in Cluster 1 (Table 2). For both networks, nearly half of Protist-Protist and
Prokaryote-Protist edges were positive (47–58%); however, Prokaryote-Prokaryote edges
were 84% and 87% positive in Cluster 1 and 2 networks, respectively (Table 2).

Edge density was slightly higher (and average path length lower) in Cluster 1 for the
overall network or when networks were analyzed for each domain level pairing (Table 2).
The exception were Prokaryote-Protist edges, which exhibited higher edge density and
lower average path length in Cluster 2 (Table 2). Mean degree and closeness centrality were
significantly higher (Wilcoxon tests, p-values <0.001) in Cluster 1 vs. 2 networks across all
16S or 18S ASVs used in the analysis (Figs. 4A–4B; Table S3). This pattern was conserved
among the most relatively abundant microbial groups at the class level (Figs. S6–S7). Mean

Anderson and Harvey (2022), PeerJ, DOI 10.7717/peerj.14005 12/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.14005#supp-3
http://dx.doi.org/10.7717/peerj.14005#supp-3
http://dx.doi.org/10.7717/peerj.14005#supp-9
http://dx.doi.org/10.7717/peerj.14005#supp-1
http://dx.doi.org/10.7717/peerj.14005#supp-1
http://dx.doi.org/10.7717/peerj.14005#supp-3
http://dx.doi.org/10.7717/peerj.14005#supp-10
http://dx.doi.org/10.7717/peerj.14005#supp-11
http://dx.doi.org/10.7717/peerj.14005


Table 2 Number of associations in eachmicrobial network.Number of microbial edges, nodes, edge
density, and average path length for both Cluster 1 and 2 networks overall, as well as for networks based
on major domain level associations (Protist-Protist, Prokaryote-Prokaryote, and Prokaryote-Protist). Pro-
portion of edges that were positive (%) are shown for each type of association.

Relationship type Network Number of
edges

Number of
nodes

Edge
density

Average
path length

Total Cluster 1 1086 (66%) 300 0.02 3.3
Cluster 2 707 (59%) 297 0.02 4.3

Protist-Protist Cluster 1 501 (58%) 150 0.05 3
Cluster 2 433 (52%) 150 0.04 3.2

Prokaryote-Prokaryote Cluster 1 340 (84%) 150 0.03 3.6
Cluster 2 167 (87%) 147 0.02 6.5

Prokaryote-Protist Cluster 1 245 (58%) 228 0.01 8.4
Cluster 2 107 (47%) 150 0.17 3

degree was not significantly different between network clusters for Mamiellophyceae and
Syndiniales (Fig. S7).

Though represented by similar order level microbes, the most prominent types of edges
(both positive and negative) varied between networks (Fig. 5; Table S4), often becoming
more prevalent in Cluster 1. Common Prokaryote-Prokaryote edges (mostly positive)
that were higher in Cluster 1 vs. 2 included Flavobacteriales-SAR11, Flavobacteriales-
Rhodobacterales, and Flavobacteriales-Flavobacteriales (Fig. 5A). Several Protist-Protist
edges were higher in Cluster 2, including Bacillariophyta associated with Unassigned
Dinophyceae, Dino-Groups I and II, Gonyaulacales, and Tintinnida (Fig. 5B). In contrast,
associations between Bacillariophyta and Mamiellales, Cryptomonadales, and Peridiniales
were elevated in Cluster 1 (Fig. 5B). Flavobacteriales-Bacillariophyta was the most
prevalent cross-domain relationship in both networks and increased in Cluster 1 (Fig. 5C).
Several cross-domain edges that were common in Cluster 1, including Rhodobacterales-
Gymnodiniales, Rhodobacterales-Bacillariophyta, and Flavobacteriales-Strombidiida were
not observed in the Cluster 2 network (Fig. 5C).

DISCUSSION
Marine microbes interact with each other in a multitude of ways, influencing food web
dynamics and the flow of energy in the ocean (Worden et al., 2015). Co-occurrence network
analysis of amplicon metabarcoding data has become a widely used and powerful approach
to characterize associations between microorganisms (Faust & Raes, 2012; Faust, 2021).
Though providing ecological insight, network associations do not necessarily translate
to causal interactions (Blanchet, Cazelles & Gravel, 2020). For instance, a positive (or
negative) association between microbes may reflect an overlapping (or separate) niche
(Deutschmann et al., 2021). Relationships generated from amplicon data should be verified
by experimental testing and reinforced by searching for such interactions in primary
literature and interaction databases (Bjorbækmo et al., 2020). Despite these drawbacks,
network findings can be used to form (or build) hypotheses (Santoferrara et al., 2020) that
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can be further tested in culture or in the field, advancing our knowledge of microbial
interactions.

In our study, samples for network analysis were partitioned based on hierarchical
clustering of 18S and 16S amplicon data, resulting in two environmentally distinct sample
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Figure 5 Differences in the number of order level microbial associations between clusters. (A)
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Figure 5 (. . .continued)
Number of positive (green) and negative (purple) network edges for each relationship are compared be-
tween clusters. Relationships that are absent from a given network were not detected. 16S abbreviations:
Actino= Actinomarinales; Betapro= Betaproteobacteriales; Flavo= Flavobacteriales; Micro=Micro-
coccales; Puni= Puniceispiralles; Rhodo= Rhodobacterales; SAR11= SAR11 Clade; SAR86= SAR86
Clade. 18S abbreviations: Bacill= Bacillariophyta; Crypto= Cryptomonadales; DGI= Dino-Group I;
DGII= Dino-Group II; Mamiell=Mamiellales; Gonyau= Gonyaulacales; Gymno= Gymnodiniales;
Peridin= Peridiniales; Strom= Strombidiida; Tintinn= Tintinnida; Udino= Unassigned Dinophyceae.
See Table S4 for a full list of network correlations.

sets: Cluster 1 = March-May/November-February vs. Cluster 2 = June-October. Several
network properties, like network centrality, degree, and edge number, were higher in
Cluster 1, despite networks having the same initial number of 16S (150) and 18S (150)
ASVs (300 total) and being mainly (56%) represented by similar order level groups. Sample
clusters reflected different environmental conditions, namely temperature, sunlight, NO3,
and SiO4 (all lower in Cluster 1) that may have influenced network structure and microbial
relationships. Temperature, sunlight, and nutrients are universal determinants of microbial
metabolism, growth (or grazing), and community structure (Hutchins & Fu, 2017; Logares
et al., 2020). Microbial physiology is often thought to scale with temperature in particular,
though responses are species-specific and depend on other available resources, like nutrients
(Sarmento et al., 2010; Barton & Yvon-Durocher, 2019). Applying these principles may also
be challenging for microbial relationships, which are highly dynamic and vary over time
and space in the ocean (Chaffron et al., 2021). Nevertheless, it remains important to better
understand marine microbial networks and relationships, especially when considering the
response of microbes to changing ecosystems.

Microbial relationships vary between environmentally distinct
periods
Prokaryote-Prokaryote and Prokaryote-Protist edges increased in number by >100%
in Cluster 1, indicating these types of relationships may have been preferable in the
estuary when conditions were less favorable for microbial growth and production (lower
temperature, sunlight, and nutrients). Interestingly,∼85% of Prokaryote-Prokaryote edges
were positive, which may represent mutualism among bacteria. This would be consistent
with the stress gradient hypothesis, where facilitative associations among organisms
increase under stressful conditions (Bertness & Callaway, 1994; He & Bertness, 2014).
Prokaryote-Prokaryote associations often involved SAR11 and either Rhodobacterales
or Flavobacteriales, the latter two being important for processing phytoplankton-
derived organic carbon (Buchan et al., 2014). Oligotrophic (and genetically streamlined)
microorganisms like SAR11may rely on copiotrophs to assimilate sources of carbonor other
metabolites needed for growth (Buchan et al., 2014; Giovannoni, Thrash & Temperton,
2014). In addition to lower temperature or sunlight, bacteria may have been impacted by
depleted carbon sources. Diatoms were least relatively abundant in March-May (Cluster
1), and while winter-spring blooms can occur, phytoplankton biomass is typically lower
at this time in the estuary (Verity & Borkman, 2010; Anderson & Harvey, 2019). Therefore,
increased mutualism among heterotrophic bacteria may represent strategies to exchange
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carbon, vitamins, or other metabolites and maximize growth when resources are otherwise
limited and thermal conditions are less favorable.

The number of Prokaryote-Protist edges (both positive and negative) also increased
in Cluster 1, especially heterotrophic bacteria (Flavobacteriales and Rhodobacterales)
associated with diatoms, dinoflagellates, and ciliates. Diatom-bacteria associations are well
known in the marine environment, spanning antagonistic, competitive, mutualistic, and
symbiotic relationships (Amin, Parker & Armbrust, 2012; Moran et al., 2012; Amin et al.,
2015; Seymour et al., 2017). Diatoms in our studywere largely represented by chain-forming
genera, like Chaetoceros and Thalassiosira, which form episodic blooms in the Skidaway
River Estuary (Anderson & Harvey, 2019). Flavobacteriales and Rhodobacterales are known
to closely associate with diatoms and rapidly exploit diatom-produced organic matter
(Buchan et al., 2014). As observed among bacteria, positive diatom-bacteria relationships
may reflect mutualism, with microbes exchanging metabolites and other compounds
(e.g., nutrients, vitamins, and hormones) required for growth (Amin et al., 2015). Negative
diatom-bacteria associations may indicate resource competition or algicidal effects (Amin,
Parker & Armbrust, 2012; Meyer et al., 2017), as well as other activities (e.g., bacterial
growth following consumption of plankton organic matter) that may have promoted
niche separation. These potential relationships may have been more common among these
groups during less favorable conditions in Cluster 1.

Other cross-domain edges were only present in Cluster 1, including Flavobacteriales
and Rhodobacterales associated with heterotrophic (or mixotrophic) dinoflagellates, like
Gymnodiniales (mainly Gymnodinium) and Peridiniales (mainly Heterocapsa), as well as
the ciliate group Strombidiida (mainly Strombidinium). Negative associations between
these taxa may indicate predation. Protist grazers are capable of ingesting bacteria (Jeong
et al., 2008), utilizing alternative food sources when temperatures are lower (Aberle et al.,
2012) or when their preferred algal prey is less abundant (Paffenhöfer, Sherr & Sherr, 2007).
Measurable bacteria ingestion rates have been recorded forHeterocapsa and Strombidinium
(2–34 cells protist−1 hr−1), though in general, ingestion by large protists is low compared
to smaller flagellates (Ichinotsuka, Ueno & Nakano, 2006; Kyeong et al., 2006). Positive
dinoflagellate-bacteria associations may represent symbiotic relationships, including
photosymbiosis, nutrient fixation, or vitamin exchange (Decelle, Colin & Foster, 2015;
Bjorbækmo et al., 2020). Yet, Prokaryote-Protist relationships remain largely unresolved in
the ocean, especially at the species level (Bjorbækmo et al., 2020), which warrants further
network studies inclusive of multiple domains of life and validation of such interactions in
controlled lab (or field) experiments.

Shifts in group-specific abundance between networks
Microbial networks may also vary over time and space due to changes in taxonomy and
functional groups (Stoecker & Lavrentyev, 2018; Vincent & Bowler, 2020; Chaffron et al.,
2021). While our networks were represented by similar taxa, the abundance of certain
taxonomic groups changed, likely influencing network structure and relationships. Several
groups, like Cryptomonadales, Peridiniales, Flavobacteriales, and Rhodobacterales, were
more abundant and accounted for more network edges in Cluster 1. While impacted by
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temperature, these groups were also correlated with ammonium (NH4), which may have
influenced their population dynamics and associations. Ammonium is a key nitrogen source
in estuaries (Damashek & Francis, 2018) and evidence suggests that smaller phytoplankton,
including cryptophytes and dinoflagellates, may better utilize NH4 compared to larger
phytoplankton, like diatoms, that prefer NO3 (Glibert et al., 2016). Heterotrophic bacteria
can also assimilate a substantial portion ofNH4 (>20%) in coastal environments (Kirchman,
1994). In the Skidaway River Estuary, increased levels of NH4 (and other nutrients) have
been recorded over decadal scales, resulting from increased anthropogenic activities (Verity,
2002; Verity, Alber & Bricker, 2006). As such, the role of dissolved nutrients in microbial
networks should be considered, particularly in coastal areas with high nutrient runoff and
potential for eutrophication or habitat loss.

Differences in network properties between clusters may have also been influenced by
functional changes among dominantmicrobes. Certain protists that becamemore prevalent
in Cluster 1, namely dinoflagellates and cryptophytes, are known to exhibit mixotrophy
(Stoecker et al., 2017). Groups that can exploit both autotrophic and heterotrophic lifestyles
may interact with a wider diversity of organisms, facilitating higher network connectivity
(Chaffron et al., 2021). In general, we observed higher edge density and lower path length
between nodes in Cluster 1 networks, which suggests that microbes were more connected
to each other at this time. However, opposite trends were observed for Prokaryote-
Protist edges, likely because cross-domain edges were spread out over more nodes in the
Cluster 1 network. Despite fewer overall connections in Cluster 2, certain edges increased,
including associations between diatoms and Syndiniales (Dino-Groups I and II), which
are ubiquitous protist parasites in marine and estuarine ecosystems (Guillou et al., 2008).
Increased parasite abundance and prevalence in Cluster 2 networks may have been driven
by increased temperature, as parasitic infection is thought to be thermally influenced (Park,
Yih & Coats, 2004). Though putative relationships, like infection (positive) or deterrence
(negative), have not been empirically verified for Syndiniales and diatoms, these groups
are often correlated in co-occurrence networks (Sassenhagen et al., 2020; Vincent & Bowler,
2020). Diatoms were also the most relatively abundant 18S group in our study (∼25% on
average), which may have explained their large contribution to Protist-Protist associations,
including with Syndiniales.

Considerations for co-occurrence analysis
An important consideration with co-occurrence network analysis is accounting for the
presence of indirect edges that can contribute to dense (‘‘hairball’’) networks andmay cloud
interpretation (Röttjers & Faust, 2018; Faust, 2021). Computational methods like SPIEC-
EASI (used here) aim to account for indirect dependencies during network construction
between microbes and promote sparser networks (Kurtz et al., 2015). Other recently
developed programs, like EnDED (environmentally driven edge detection), are designed
to reduce environmentally-driven associations after network construction, filtering for
indirect dependency due to environmental factors (Deutschmann et al., 2021). To further
improve network sparsity, we included only the most abundant 16S and 18S ASVs, a
common strategy among co-occurrence network studies (Faust, 2021). This approach,
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however, may limit detection of microbial correlations that are common in the community
but involve less abundant taxa. For instance, though Archaea were present in our study,
they exhibited low relative abundance in the 16S dataset (<2% on average) and contributed
to <3% of network connections. It will be important to employ approaches to better
characterize rare microbial relationships, while limiting the detection of indirect edges that
may bias network analysis.

To assess environmental effects on networks, environmental variables are typically
included as nodes in a single merged network (Needham & Fuhrman, 2016). Networks can
also be constructed categorically (e.g., by season) to reflect temporally variable conditions
(Kellogg et al., 2019).With our approach, we separated samples for network analysis a priori
based on beta diversity clustering, resulting in two environmentally distinct communities.
Similar clustering of prokaryotes and protists allowed for merging of ASV tables in our
study, though merging may not be possible in cases where different marker regions are
distinctly clustered from each other. Even with our approach, collapsing weekly samples
into one or two networks will undoubtedly mask network variability, underestimating
ephemeral interactions that occur at hourly to weekly scales in dynamic estuaries (Cloern,
Foster & Kleckner, 2014) and making it difficult to estimate network properties over a range
of environmental factors. One idea would be to compare networks at a reasonable scale
(e.g., between months) in coastal areas that experience seasonal gradients in environmental
factors. However, this would require sustaining∼daily sampling frequency (as inNeedham
& Fuhrman, 2016; Martin-Platero et al., 2018) to maintain high sample to ASV ratios
and avoid spurious correlations (Faust, 2021). Higher sampling frequency and binning
of samples into more coarse time points would support correlations between network
properties (e.g., centrality and degree) and environmental variables, a strategy that has
been employed with spatial samples (Chaffron et al., 2021).

CONCLUSIONS
We explored correlation networks between two environmentally distinct microbial
communities in a subtropical estuary. Instead of binning amplicon data arbitrarily, we
used hierarchical cluster analysis to separate samples. With this approach, we observed
higher network centrality, degree, and edge number for microbes in Cluster 1, even though
environmental conditions were less favorable at this time (lower temperature, sunlight,
and nutrients). Prokaryote-Prokaryote and Prokaryote-Protist edges increased the most
in Cluster 1, while Protist-Protist associations were more stable. Though correlation
networks present inferred associations (and not ecological interactions), differences in
network properties may reflect changes in the types of relationships (e.g., mutualism or
competition) or shifts in taxonomic (or functional) prevalence in response to separate
environmental periods. These findings represent an important step towards predicting
microbial networks under varying conditions. Applying these clustering methods to new
and existing amplicon surveys will help to broaden the scope of the analysis presented
here (e.g., single site and year), allowing for a deeper understanding of marine microbial
networks, their relation to environmental factors, and potential sensitivity to anthropogenic
ocean change.
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