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Abstract

Bacteria sense and respond to their environment through signaling cascades generally referred to as two-component
signaling networks. These networks comprise histidine kinases and their cognate response regulators. Histidine kinases have
a number of biochemical activities: ATP binding, autophosphorylation, the ability to act as a phosphodonor for their
response regulators, and in many cases the ability to catalyze the hydrolytic dephosphorylation of their response regulator.
Here, we explore the functional role of ‘‘split kinases’’ where the ATP binding and phosphotransfer activities of a
conventional histidine kinase are split onto two distinct proteins that form a complex. We find that this unusual
configuration can enable ultrasensitivity and bistability in the signal-response relationship of the resulting system. These
dynamics are displayed under a wide parameter range but only when specific biochemical requirements are met. We
experimentally show that one of these requirements, namely segregation of the phosphatase activity predominantly onto
the free form of one of the proteins making up the split kinase, is met in Rhodobacter sphaeroides. These findings indicate
split kinases as a bacterial alternative for enabling ultrasensitivity and bistability in signaling networks. Genomic analyses
reveal that up 1.7% of all identified histidine kinases have the potential to be split and bifunctional.
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Introduction

Bacterial responses to many external stimuli are underpinned by

two-component signaling networks (TCSNs). These are found in

most bacterial species and are also present in Archaea, eukaryotic

microbes, and plants [1,2]. TCSNs are built upon the core

reactions involving a histidine kinase (HK) that autophosphor-

ylates on a conserved histidine residue in response to a signal, and

a cognate response regulator (RR) that is activated when the HK

phosphorylates one of its conserved aspartate residues [3].

Evolutionary processes seem to have exploited the modular

structure of these proteins to produce a distinct set of biochemical

features and network structures that reoccur in diverse TCSNs;

bifunctional HKs [4], sink RRs [5], phosphorelays [6] and split

HKs [7]. In order to achieve a broad and predictive understanding

of bacterial signaling, it is important to assess whether these

features enable specific signaling dynamics and properties [8].

There has already been progress towards this goal. Firstly,

bifunctional HKs, which display both phosphatase and kinase

activity towards their cognate RR, enable robustness in system

output with respect to fluctuations in the amount of these signaling

proteins [4,9] and reduce cross-talk among different TCSNs

[10,11]. Further, theoretical work indicates that bi-functional HKs

can generate flexible signal-response relationships [12,13] and

allow higher signal amplification compared to monofunctional

HKs that lack phosphatase activity [10]. Secondly, sink RRs,

which compete with another RR for phosphoryl groups from a

single cognate HK, are suggested to allow faster response

termination [5,14]. Finally, phosphorelays, which contain several

proteins (or domains) acting as a relay between the HK and RR,

are suggested to integrate several signals received on their different

layers [15–17] and implement both ultrasensitive and linear

responses [18,19]. Taken together, these studies suggest that

specific biochemical and structural features in TCSNs could

enable specific functional roles.

Of the different features of TCSNs, split kinases are predicted in

several bacterial genomes [1,2] and are biochemically character-

ized in Rhodobacter sphaeroides [7,20]. In this organism, the split

kinase system is composed of CheA3 and CheA4, which form a

bipartite histidine kinase that phosphorylates the response

regulator CheY6 [21] (Figure 1). CheA4 lacks the phosphoryla-

table P1 domain, whereas CheA3 lacks the dimerization (P3) and

catalytic kinase (P4) domains. Neither CheA3 nor CheA4 can

autophosphorylate when incubated separately with ATP; however,

when a mixture of CheA3 and CheA4 is incubated with ATP, then

CheA3 becomes phosphorylated, indicating that these proteins

can act as a histidine kinase only by forming a complex [21].

Activated by incoming signals, the P4 domain of CheA4 binds

ATP and phosphorylates the P1 domain of CheA3. Subsequently,

CheA3-P acts as a phosphodonor for its cognate response

regulator, CheY6 [21], which controls flagellar rotation [22]. In

vivo, CheA3 and CheA4 co-localize to the cytoplasmic chemotaxis

cluster [23] and are both essential for chemotaxis [7,24]. CheA3

and CheA4 bind to the cytoplasmic cluster via their P5 domains

[25]. Whilst part of this cluster, CheA3 and CheA4 dynamically

interact with one another. To allow phosphorylation of CheA3,
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the P4 domain of CheA4 must transiently bind to the P1 domain

of CheA3 (in the subsequent analysis we refer to this complex as

CheA3:CheA4). Once phosphorylated, the P1 domain of CheA3 is

released by CheA4, and CheA3-P can then donate its phosphoryl

group to the corresponding response regulator CheY6 [21,26]. In

addition to its phosphotransfer function, CheA3 is also a

phosphatase towards CheY6-P [7]. cheA3 mutants retaining

phosphotransfer functions but lacking phosphatase activity do

not support chemotaxis, similarly, cheA3 mutants retaining

phosphatase activity but lacking phosphotransfer activity also fail

to support chemotaxis, indicating that chemotaxis requires both

activities of CheA3 [7,21]. In addition, to being phosphorylated

and dephosphorylated by the split kinase comprising CheA3 and

CheA4 [21], CheY6 is also phosphorylated by CheA2 at the polar

chemotaxis cluster [27].

Despite this wealth of information, the general role of split

kinases in bacterial signaling is not clear. In essence split kinases

are unusual bifunctional HKs, where the autophosphorylation and

subsequent phosphotransfer and phosphatase activities are encod-

ed on two separate proteins. Since the complex formed by these

proteins is functionally equivalent to a bifunctional HK, it is not

clear what the role of splitting biochemical activities in this way

might be. Using the biochemical reactions of CheA3, CheA4, and

CheY6 as a model system, we developed a mathematical model

and analyzed the response dynamics mediated by this split kinase.

Repeating this analysis with a bifunctional HK and a conventional

HK-RR pair featuring a separate phosphatase, we found that in

contrast to these configurations, split kinases enable ultrasensitivity

and bistability in the signal-response relationship. We show that

these dynamical features are maintained under a wide parameter

range, provided certain biochemical assumptions are met. These

requirements indicate that the source of ultrasensitivity and

bistability in split kinases is the inverse coupling between their

kinase and phosphatase activities; i.e. the kinase activity cannot be

increased without reducing the phosphatase activity and vice

versa. Through measurements of phosphatase activity, we show

that this condition is met in the R. sphaeroides system in vitro. These

findings suggest that bacteria might be utilizing split kinases as a

means of implementing ultrasensitivity and bistability in cellular

decision making.

Results

Construction of a mathematical model of a split kinase
Since our aim is to study the general response dynamics that split

kinases can mediate, we use the CheA3, CheA4, and CheY6 triplet as

a model system and study its dynamics in isolation through in vitro

experiments, numerical simulation and analytical approaches. We

developed a mathematical model of the system and parameterized it

with in vitro and in vivo measured kinetic rates and protein

concentrations respectively (see Methods and Table 1). We then

analyzed the response dynamics of the resulting model and its variants

both through numerical simulations and deriving analytical solutions

of steady state behavior using approximations and the chemical

network theory [28,29] (see Methods and Text S1). In the subsequent

sections, we use the terms free CheA3 and free CheA3-P to indicate

CheA3 species where the P1 domain is not interacting with the P4

domain of CheA4; in vivo, however, these species are expected to be

always joined to the chemotaxis cluster by their P5 domains.

The input-output relationship for the split kinase shows
ultrasensitivity and bistability

A primary property of interest for any signal transduction

system is the signal-response relationship it implements [30]. To

analyze the signal-response relationship in systems featuring a split

kinase, we defined the system response as the steady state level of

phosphorylated CheY6 (CheY6-P) at a given signal level, and

derived this relationship for different parameters and biochemical

assumptions (see Methods). This analysis revealed that when

assuming free CheA3 as the sole phosphatase for CheY6-P, the

system has a high potential for displaying ultrasensitivity and

bistability (Figure 2 and Figures S1, S2, S3). Both of these

dynamics result in a switch-like behavior; the response of the

system is low until signal levels increase above a certain threshold,

after which the response increases disproportionately to reach a

high level (e.g. Figure 2A). In the case of bistability, the low and

high response levels correspond to stable states of the system,

separated by an unstable region, resulting in abrupt switching

dynamics and hysteresis (i.e. the switching threshold is different

depending on the past state of the system).

The in vitro and in vivo measured kinetic rates and protein

concentrations from R. sphaeroides constitute ‘‘biologically mean-

ingful’’ values that could be representative for two-component

systems in general. To analyze the potential effects of these rates

on the observed nonlinearity of the signal-response relationship,

we have performed a sensitivity analysis by varying the base

parameter values over a large range and quantifying the shape of

the resulting signal-response curve (see Methods). This analysis

shows that the level of ultrasensitivity in the signal-response

relationship is most sensitive to the parameters controlling the

complex formation between CheA3:CheA4 (k1) and the dephos-

phorylation of phosphorylated CheY6 (k9 and k11) (Figure 2 and

Figures S1, S2, S3). The association rate constant (k1/k2) we used

in the basic model is approximately 500-fold higher than that

measured in vitro, using purified R. sphaeroides proteins [21]. We still

consider this high value ‘‘biologically relevant’’ as in vivo conditions

can result in confining of split kinase components to small regions

of the cell, resulting in much higher effective concentrations than

are attainable under the in vitro conditions as used in [21]. For

example, in R. sphaeroides, CheA3 and CheA4 localize to the

cytoplasmic chemoreceptor cluster [23], which - using immunogold

Author Summary

Two-component signaling systems mediate many of the
physiological responses of bacteria. In their core, these
systems consist of a histidine kinase (HK) and a response
regulator (RR) that it can phosphotransfer to. Around this
core interaction, evolution has led to several conserved
biochemical and structural features. In order to achieve a
broad and predictive understanding of bacterial signaling,
it is important to assess whether these features enable
specific signaling dynamics and properties. Our study
provides a potential functional role for one such feature,
the split histidine kinases, where autophosphorylation and
phosphotransfer activities of a conventional HK are
segregated onto distinct proteins capable of complex
formation. We show that that this unusual configuration
can enable ultrasensitivity and bistability in signal trans-
duction under specific biochemical conditions. We exper-
imentally show that one of these requirements, namely
segregation of the phosphatase activity predominantly
onto the free form of one of the proteins making up the
split kinase, is met in proteins isolated from Rhodobacter
sphaeroides. Genomic studies suggest 1.7% of all histidine
kinases could function as bifunctional split kinases. This
study provides a linkage between these proteins and
response dynamics, thereby enabling experimentally test-
able hypotheses in these systems.
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electron microscopy - is estimated to occupy less than 5% of the

cross-sectional area of the cell [31]. Assuming a spherical shape

for both the cell and this cluster, the volume of the latter could

be estimated to be approximately 1% of the total cell volume.

Thus, the effective concentrations of CheA3 and CheA4 in this

cluster could be increased by as much as 100-fold, resulting in a

significantly higher effective association rate constant than

measured in vitro (up to 10,000 fold).

Figure 1. A cartoon diagram of the CheA3-CheA4-CheY6 split kinase system. The diagram is arranged so to highlight the role of free CheA3
acting as a branching point for the two arms that form competing cycles leading to phosphorylation and dephosphorylation of CheY6. Rate
constants are shown on the relevant reactions. In the case of reversible reactions, two rate constants are given (kforward/kreverse).
doi:10.1371/journal.pcbi.1002949.g001

Table 1. Literature source and parameter values used in the analysis of the basic model.

Parameter Description Value Unit Ref

k1 On rate for binding of CheA3 and CheA4 100 (mM s21) [21] see also Results

k2 Off rate for binding of CheA3 and CheA4 10 s21 [21] see also Results

k3 Forward rate for phosphorylation complex 1 (mM s)21 [21]

k4 Reverse rate for phosphorylation complex 39 s21 [21]

k5 Kcat for phosphorylation of CheA3 by CheA4 varied s21

k6 CheA3-P to CheY6 Phosphotransfer 0.775 (mM s)21 [21]

k7 CheA3-P to CheY6 Reverse phosphotransfer 0.00283 (mM s)21 [21]

k8 Autodephosphorylation 0.169 s21 [7]

k9 Association of phosphatase assisted dephosphorylation complex 5.6 (mM s)21 [48]

k10 Dissociation of phosphatase assisted dephosphorylation complex 0.04 s21 [48]

k11 Kcat for phosphatase assisted dephosphorylation 2.5 s21 See Methods

[A3]tot Total concentration of CheA3 90 mM [7]

[A4]tot Total concentration of CheA4 40 mM [34]

[Y6]tot Total concentration of CheY6 225 mM [34]

[ATP] Total concentration of ATP 1000 mM

doi:10.1371/journal.pcbi.1002949.t001
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Besides parameter values, several modeling choices could also

alter the finding of bistability and ultrasensitivity arising in a split

kinase system. In particular, the basic model presented above

assumes that free CheA3 is the sole phosphatase in the system

(besides the intrinsic autodephosphorylation activity of CheY6-P).

Relaxing this assumption and considering increasing phosphatase

activity by the CheA3:CheA4 and CheA3:CheA4:ATP complexes

(see Text S1, section 1), significantly reduced ultrasensitivity in the

system (Figure 2D and S4). In contrast, the presence of

ultrasensitivity was much more robust to increasing phosphatase

activity by CheA3p (Figure 2D, S4 and S5). Another mechanistic

choice in the modeling of the split kinase system is the fate of the

CheA3:CheA4 complex after phosphorylation of CheA3. In the

basic model analyzed in Figure 2, this is modeled as phosphor-

ylation resulting in the dissociation of the complex and release of

CheA4 and CheA3-P. An alternative would be that the

CheA3:CheA4 complex remains intact post phosphorylation,

resulting in a CheA3-P:CheA4 complex (see Text S1, section 2).

When we assume the presence of CheA3-P:CheA4 complex that

can phosphotransfer to CheY6, bistability was lost, but not

ultrasensitivity (Figure S6). Finally, we found that including an

additional (monofunctional, non-split) kinase in the model, as seen

for example in R. sphaeroides CheA2 (see Text S1, section 3), does not

affect the ultrasensitivity but can result in the loss of bistability

(Figure S7).

It is important to note that the basic model and all of these

variants arising from specific modeling choices are ‘‘nested’’ in the

sense that the basic model can be recovered through appropriate

choice of parameters (e.g. setting dephosphorylation activity of

CheA3p very low). In line with this observation, we find that the

Figure 2. Effects of varying key parameters of the model and addition of different phosphatases. The x- and y-axis show the signal (k5)
level and the corresponding steady state CheY6-P level respectively. Each panel shows a signal-response analysis for varying model parameters (A–C)
or the inclusion of additional phosphatases (D). The results of the basic model are shown in red. Where present, the dark region indicates the region
of unstable steady states and hence the presence of bistability. Arrows on panels A, B and C indicate increasing value of the changed parameter. (A)
The on rate (k1) for CheA3:CheA4 complex formation was varied from basic model value [100(mMs)21] to 10, 1, and 0.208. (B) Concentration of CheA4
was varied from 30 mM, 40 mM (basic model) and 80 mM. (C) The rate of CheA3 mediated dephosphorylation of CheY6-P (k11) was varied from 1 s21,
2.5 s21 (basic model) and 5s21. (D) The basic model has free CheA3 as the sole phosphatase; the effect of having either CheA3-P or CheA3:CheA4 and
CheA3:CheA4:ATP as additional phosphatases is shown. See also Figures S1, S2, S3, S4 for additional sensitivity analyses.
doi:10.1371/journal.pcbi.1002949.g002
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basic model and all of the alternative structures discussed so far

can be analytically shown to possess the ‘‘ability’’ to attain

bistability (see Methods). More particularly, each of the chemical

reaction systems arising from these models have the capacity for

multiple steady states according to the higher deficiency theorem

[32,29]; i.e. these chemical systems permit bistability for some set

of non-zero parameter values and under the assumption of mass

action kinetics (see Text S2).

Segregation of kinase and phosphatase activities allows
ultrasensitivity and bistability

Taken together, these analyses suggest that the ability of a split

kinase to mediate ultrasensitivity and bistability relates to the

segregation of kinase and phosphatase activities. To better

understand how this relates to ultrasensitivity and bistability, we

simulated the time evolution of the system in the presence of step

signals. As expected from the ultrasensitive signal-response

relationship, system response (i.e. increase in free CheY6-P) was

low for step-signals below the threshold and displayed a sudden

large jump for step-signals crossing the threshold (Figure 3). Before

the threshold, increasing signal levels resulted in an increase in the

CheA3:CheY6-P complex, while the crossing of the threshold and

subsequent increases in signal caused it to decrease. The reason for

this behavior is that before the threshold there is enough free

CheA3 in the system to bind and dephosphorylate the CheY6-P

that is formed, while after crossing of the threshold there is no free

CheA3 left in the system (Figure 3). These observations can be

understood if we consider the cyclic nature of the reactions in this

system as shown in Figure 1. The free CheA3 can be seen as a

branching point in the system, with one branch leading to binding

to CheA4 and ultimately to more CheY6 phosphorylation

(phosphorylation branch), while the other leading to binding to

CheY6-P and subsequent dephosphorylation (dephosphorylation

branch). While the phosphorylation branch is regulated externally

of the system by signals sensed by the cytoplasmic cluster (i.e.

through altering k3 and/or k5), the dephosphorylation branch is

controlled internally by the covalent modification of CheY6. This

results in a dynamical motif that is similar to that seen in metabolic

branching points and that can embed ultrasensitivity [33]. The

split kinase system can embed a high level of nonlinearity as it

contains both an inverse coupling of the two branches themselves

(via CheY6) and their regulation (via CheA3). At low signals, these

two branches allow enough free CheA3 in the system so to result in

equally fast phosphorylation and dephosphorylation of CheY6. As

the signal increases, however, the rate of the phosphorylation

branch increases, while at the same time shutting down the

dephosphorylation branch. In other words, the phosphorylation

and dephosphorylation branches are coupled inversely, such that

the kinase activity cannot be increased without reducing the

phosphatase activity and vice versa. These dynamics can be

observed in Figure 3; the loss of free CheA3 in the system

coincides with an abrupt increase in CheA3-P and CheY6-P, while

the CheA3:CheA4 complex maintains a fast turnover. This

dynamical picture also explains the parameter effects observed

in Figure 2 (and Figures S1, S2, S3, S4). For example, the decrease

in ultrasensitivity from the reduction of CheA3-CheA4 association

rate constant (k1) can be explained by a slowing down of the

phosphorylation branch. Similarly, the decrease in ultrasensitivity

from the inclusion of additional phosphatase activity via species

other than free CheA3 can be explained by its perturbing effects

on the inverse coupling between the phosphorylation and

dephosphorylation branches (Figure S4 and S5). It must also be

noted that the total level of CheA4 in the cell allows additional

(internal) control on the dynamics of the system (Figure 2B and

Figure S3), through its effects on the phosphorylation branch.

To further test whether the inverse coupling of kinase and

phosphatase activities through free CheA3 is the underpinning

mechanism of ultrasensitivity, we considered dynamics in two

alternative models where such coupling is missing; (i) a bifunc-

tional HK that is not split, and (ii) a traditional HK that is neither

bifunctional nor split, with a dedicated auxiliary phosphatase for

the phosphorylated RR. An analytical treatment of the dynamics

arising in the former scenario suggests that non-split bifunctional

HKs (where the phosphorylated/non-phosphorylated HK acts as

kinase/phosphatase on its cognate response regulator) gives rise to

hyperbolic signal-response relationships and provides the system

with robustness towards variations in component concentrations

[9]. For the latter scenario (e.g. CheA-CheY-CheZ system found

in the E. coli chemotaxis system) we developed a simplified model

and solved it for the steady state levels of phosphorylated response

regulator. We compared this analytical solution to that derived

from a simplified model of a split kinase system (see Text S1, section

4). This analytical treatment shows that the latter displays a higher

level of nonlinearity for the steady state expression of phosphor-

ylated RR. More importantly, we find that of the three possible

alternative structures - bifunctional and split, monofunctional and

split, bifunctional and non-split - only the chemical reaction system

arising from the bifunctional and split kinase have the capacity for

multiple steady states according to the higher deficiency theorem

[32,29] (see Text S3–6 for detailed results). Taken together, these

analytical findings show that for bistable and ultrasensitive

dynamics to be realized in a split kinase system, both bifunctionality

of the HK and the splitting of these two functionalities (i.e. kinase

and phosphatase activity) are needed.

Experimental verification that free CheA3 is a better
phosphatase than CheA3:CheA4

As shown above, the ability of the split kinase to achieve both

segregation and inverse coupling of kinase and phosphatase

activities requires that free CheA3 is the predominant phosphatase

with other CheA3 containing species (in particular CheA3:CheA4

and CheA3:CheA4:ATP) showing much lower phosphatase

activity. Testing this requirement, or directly the level of

ultrasensitivity in vivo, is complicated both by the presence of

additional components in the system and our lack of knowledge of

the signal identity in split kinase systems studied to date. As an

alternative, and to achieve an approximate test of our theoretical

understanding of split kinase response dynamics, we performed in

vitro measurements of CheY6-P dephosphorylation in the presence

of CheA3 and CheA4. In these experiments we used a purified

phosphorylated P1 domain of CheA3 (CheA3P1-P) as the sole

phosphodonor in the environment. As CheA3P1-P is known to

lack phosphatase activity [7], this setup allows us to test directly the

phosphatase activity of free CheA3 and the CheA3:CheA4

complex. If kinase and phosphatase activities are segregated into

the complexed and free CheA3 respectively, these measurements

should reveal a decrease of phosphatase activity with increasing

CheA4 concentration, as this would sequester free CheA3 into the

CheA3:CheA4 complex. In contrast, such an effect would be

absent if the CheA3:CheA4 complex possessed the same level of

phosphatase activity as free CheA3. We found evidence for such a

decrease, with increasing CheA4 concentrations reducing the rate

of CheA3 mediated dephosphorylation of CheY6-P (Figure 4 and

Figure S8). To rule out the possibility of any interference from free

CheA4, we have also confirmed the lack of dephosphorylation

activity by CheA4 (Figure 4B). This observation qualitatively

matches predictions from a specific model of this in vitro

Bistability in Two-Component Signaling Networks
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experimental setup where we assumed phosphatase activity to be

restricted to only free CheA3 (see Text S1 and Figure 4). These

experimental findings strongly suggest that the CheA3:CheA4

complex has much lower phosphatase activity than free CheA3.

Discussion

Two component signaling systems mediate many of the

physiological responses of bacteria and display several conserved

biochemical and structural features. Here, we analyzed how one

such feature, the split kinase, affects response dynamics. Our

theoretical treatment proved that the chemical reaction system

arising from a bifunctional split kinase gives rise to the possibility of

bistability, whereas systems arising from bifunctional, non-split

and monofunctional, split kinases lack such capability (unless

featuring dead-end complex formation [12]). Sampling the

parameter space around kinetic rates and protein concentrations

measured in (or estimated from) R. sphaeroides, we found that a split

kinase system set in a ‘‘biologically relevant’’ parameter regime has

potential for an ultrasensitive and bistable signal-response

relationship. These nonlinear dynamics arise from the bifunctional

and split nature of the kinase, which introduce a branching point

into the system between phosphorylation and dephosphorylation

reactions. Thus, the level of ultrasensitivity (and emergence of

bistability) in the system is determined by the parameters and the

biochemical mechanisms found in the reaction cycles linked to this

branching point.

We found that the one crucial biochemical aspect enabling

ultrasensitivity and bistability in the split kinase system is the

predominant allocation of phosphatase activity to the free protein

(rather than any of the complexes in the system). Using in vitro

phosphotransfer assays in the CheA3-CheA4-CheY6 split kinase

system isolated from R. sphaeroides, we found support for free

CheA3 being the principal phosphatase in that system (Figure 4). It

Figure 3. Time-course analyses. The model is simulated with increasing and decreasing signal levels (k5) in course of time. k5 is increased from 2
to 6 and decreased in similar fashion at indicated time points (top most, left panel), and changes in each species were measured (as indicated on each
panel). The dotted line represents the highest signal level, with equal signal steps on each side of it. The noted asymmetry around this line shows the
presence of hysteresis in the system. The x- and y-axis represent time and species concentration respectively, where the latter is normalized by the
appropriate total protein levels.
doi:10.1371/journal.pcbi.1002949.g003

Bistability in Two-Component Signaling Networks
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remains to be shown whether this system enables ultrasensitivity or

bistability in vivo. The theoretical findings of this study suggest that

the switch-like dynamics resulting from ultrasensitivity and

bistability could be relevant in the physiological context of the

CheA3-CheA4-CheY6 system, which is involved in the integration

of cytoplasmic and extracellular signals for proper chemotaxis

Figure 4. Measurement of CheY6-P dephosphorylation rates under different conditions (as indicated). An excess of CheY6 was
phosphorylated using CheA3P1-P as phosphodonor. The phosphotransfer reaction was complete within 10 s of adding CheY6 to the reaction
mixture. Subsequently the decay in CheY6-P levels was followed over time. (A) Phosphorimages showing the decay in CheY6-P levels over time. (B)
Graph comparing the observed pseudo-first order rate constant (kobs) for CheY6-P dephosphorylation with and without CheA3 and CheA4. The values
predicted by the modeling are shown with a dashed line, while the experimentally measured values are shown in black. Results from a control
experiment (without CheA3 and solely CheA4) is shown in grey. Error bars show the standard error of the mean obtained from eight independent
experiments.
doi:10.1371/journal.pcbi.1002949.g004

Bistability in Two-Component Signaling Networks
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[7,34]. It would be plausible for example, if the switching

dynamics described here allowed cells to override external

chemotaxis signals in favor of internal signals such as those related

to metabolism, which could contribute to motility decisions [35–

37]. As shown in Figure 2, several internal parameters of the

system, including the total expression level of CheA4, allow control

of the dynamics mediated through CheA3:CheA4 and might

enable further tuning of such decision making mechanisms.

While our results highlight split kinases as a potential strategy

for implementing ultrasensitivity in bacterial two-component

systems, it is not the only one. Previous theoretical studies have

found that ultrasensitivity can be achieved in phosphorelays

[18,19], in classical HK-RR systems embedding specific spatial

dynamics [38] and in systems with bifunctional HKs, where

unphosphorylated HKs and RR form a dead-end complex that is

incapable of HK autophosphorylation [12,39]. These findings

suggest that there are several diverse structural, spatial and

dynamics that are possible in bacterial two-component systems

and that have the potential to enable nonlinear response

dynamics. Our theoretical findings extend this list with split

kinase systems. Further, we provide experimental support for a

condition that increases their potential for generating ultrasensi-

tivity and bistability. Such responses are known to be common in

eukaryotes and can enable decision making at the cellular level

[40–42]. Thus, it is perhaps not surprising that bacterial signaling

systems harbor mechanisms to enable similar levels of ultra-

sensitivity.

Although rare, split kinases are found in several other bacteria.

A recent study looking at CheAs identified 11 split CheAs (2.3%)

versus 470 complete CheAs (97.7%) in fully sequenced non-

redundant genomes [1]. In addition to these split CheAs, there is

the potential for other HKs to be split where the HisKA

(dimerization and histidine phosphotransfer) and the catalytic

HATPase (histidine kinase ATPase) domains are found on

separate proteins. In vitro studies of the osmosensing histidine

kinase, EnvZ, have shown that it possible to split the HATPase

and HisKA domains onto separate polypeptides whilst retaining

their activity [43]. Interrogation of the SMART database reveals

that out of the 42417 proteins containing HisKA domains

(dimerization and histidine phosphotransferase), 1556 (3.66%)

lack a HATPase (histidine kinase ATPase) domain (expect

value,0.01), and of these, 711 (1.7%) have the phosphatase

sequence motif (HE/DxxN/T) [44] and could therefore be split

bi-functional kinases. The results presented here suggest that cells

may use such split kinases to allow high sensitivity and bistability

enabling switch-like physiological responses to environmental

stimuli.

As the highly modular TCSNs are used by bacteria to control

many of their physiological responses, it will be valuable to explore

other mechanisms which can enable specific response dynamics in

these systems and to determine the evolutionary drivers that were

responsible for their emergence. This would increase our ability to

better understand microbial signaling and exploit it in synthetic

biology applications.

Methods

A mathematical model for a split kinase
To model the CheA3-CheA4-CheY6 split kinase system, we

considered its dynamics in isolation of other cellular compo-

nents. The reactions in this system that we have included in the

‘‘basic model’’ are (see also alternative reaction schemes shown

in Text S1);

A3zA4/?
k1

k2

A3A4

A3A4zATP/?
k3

k4

A3A4ATP ?
k5

A3pzA4zADP

A3pzY6/?
k6

k7

A3zY6p

Y6p ?
k8

Y6zPi

A3zY6p /?
k9

k10

A3Y6p ?
k11

A3zY6zPi

where A3, A4, Y6 stand for CheA3, CheA4 and CheY6 respectively

and the -p suffix represents phosphorylated forms of these proteins.

Variant models which include additional CheY6-P de-phosphory-

lation reactions involving alternative phosphatases such as CheA3-

P, and CheA3:CheA4 complex are shown in supplementary text S1,

and their effects are analyzed in Figure 2D and S4. The above

‘‘basic model’’ reaction scheme can be used to derive a system of

ordinary differential equations (ODEs), which describe the changes

in concentrations of proteins over time;

d½A3p�
dt

~k5
:½A3A4ATP�zk7

:½A3�:½Y6p�{k6
:½A3p�:½Y6p�

d½A3A4�
dt

~k1
:½A3�:½A4�zk4

:½A3A4ATP�

{½A3A4�:(k2zk5
:½ATP�)

d½A3A4ATP�
dt

~k3
:½A3A4�:½ATP�{½A3A4ATP�:(k4zk5)

d½A3Y6p�
dt

~k9
:½A3�:½Y6p�{½A3Y6p�:(k10zk11)

d½Y6p�
dt

~k10
:½A3Y6p�zk6

:½A3p�:½Y6�

{½Y6p�:(k7
:½A3�zk8zk9

:½A3�)

In addition, we have three conservation equations;

½Y6�tot~½Y6�z½Y6p�z½A3Y6p�

½A3�tot~½A3�z½A3p�z½A3A4�z½A3A4ATP�z½A3Y6p�

½A4�tot~½A4�z½A3A4�z½A3A4ATP�

To analyze the behavior of the split kinase motif with increasing

signal, we simulated the incoming signals from receptors as an

increase in the autophosphorylation rate of the kinase (k5). The

model was parameterized with data from literature (see Table 1). In

the case of the dephosphorylation of CheY6-P by CheA3, we

derived the relevant parameters (k9, k10, and k11) through fitting

simulation data to previously published in vitro dephosphorylation

measurements [7]. Fitting was done using a hybrid genetic

algorithm (functions ga and fmincon from the MATLAB Global

Optimization Toolbox).

We numerically integrated the model to derive time course and

steady state signal-response relationships. The latter analysis gives

the steady state CheY6-P level at a given signal (k5) where signal

Bistability in Two-Component Signaling Networks
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was taken as the rate of autophosphorylation of split kinase and

allows deriving a so-called signal-response curve. This curve is

found by numerically integrating the system to steady state at a

fixed signal level and then numerically ‘‘following’’ this steady state

(i.e. steady state CheY6-P level), while changing the signal. This

analysis is equal to allowing the system to reach steady state under

different signal values. Both time course and signal-response

analyses were performed using the software packages XPPAUT

(http://www.math.pitt.edu/,bard/xpp/xpp.html) and Oscill8

(http://oscill8.sourceforge.net/).

Sensitivity analysis. We have quantified the sensitivity of

the shape of the signal-response curves to variations in each of the

parameters from their described base values (Table 1) and in a

biologically relevant range. For these analyses, we measured the

‘‘sigmoidality’’ of the signal-response curve, RS, as its maximum

slope (smax) multiplied by the signal level at which this slope occurs

(k5s) (i.e. RS = k5sNsmax). This measure is similar to the ‘‘response

coefficent’’, which measures the slope between 90% and 10%

saturation [33], but is better able to distinguish between hyperbolic

and sigmoidal dose-response curves. For each parameter, we

varied it in a wide range around its basic value and measured

‘‘sigmoidality’’ of the resulting dose-response curves, as well as the

maximum response of the system (Figures S1, S2, S3). The same

analysis is also applied for alternative models featuring additional

phosphatase species (Figure S4).

Analytical comparison of different models. To perform a

formal check for the potential of bistability in the different models

(discussed in the main text and Supplementary Information), we have

utilized the chemical network theory [28,29]. This theory provides

several analytical tests that can provide a definite answer on the

possibility of existence of multiple stationary states in a given

reaction network. We have applied these tests to the basic and

alternative models we had devised using the Chemical Network

Tool v2.2 (http://www.chbmeng.ohio-state.edu/,feinberg/

crntwin/). The model files used with this tool and describing the

chemical reaction systems, as well as the analytical results from the

tool are provided as supplementary Text S2–4.

Plasmid and strains. See Table 2 for the plasmids and strains

used. E. coli strains were grown in LB medium at 37uC. Antibiotics

were used at concentrations of 100 mg ml21 for ampicillin and

25 mg ml21 for kanamycin, where needed. E. coli M15pRep4 cells

were made competent using the calcium chloride technique [45].

Transformations were performed according to [46].

Protein purification. His tagged R. sphaeroides CheA3,

CheA4, CheA3P1 and CheY6 proteins were purified as described

previously [47]. Protein purity and concentration was measured as

described in [24]. Purified proteins were stored at 220uc.

Preparation of CheA3P1-32P. CheA3P1 was phosphorylat-

ed using [c-32P] ATP and CheA4 and purified as described before

with the following modifications [7]. Proteins were phosphorylated

in reactions performed at 20uC in phosphotransfer buffer (50 mM

Tris HCl, 10% (v/v) glycerol, 5 mM MgCl2, 150 mM NaCl,

50 mM KCl, 1 mM DTT, pH 8.0). The final reaction volumes

were 2 ml. For production of CheA3P1-32P, reaction mixtures

contained 300 mM CheA3P1 and 20 mM CheA4. Reactions were

initiated by addition of 2 mM [c-32P] ATP (specific activity 14.8

GBq mmol21; PerkinElmer). After 1 hour incubation, samples

were purified by using Ni-NTA columns (Qiagen) as described

previously for unphosphorylated His-tagged CheA3 [47]. This

purification step removed the unincorporated ATP and also

removed the CheA4 protein from the CheA3P1-32P preparation.

Purified proteins were stored at 220uC.

Measurement of CheY6-P dephosphorylation rate
Assays were performed at 20uC in phosphotransfer buffer.

Purified CheA3P1-32P was used as the phosphodonor. An excess of

CheY6 (100 mM) was added to 30 mM of purified CheA3P1-32P in

the presence of 2.5 mM CheA3 and 0–60 mM CheA4. Following the

addition of CheY6, reaction aliquots of 10 ml were taken at the

indicated time points and quenched immediately in 10 ml of 2 X

SDS-PAGE loading dye(7.5% (w/v) SDS, 90 mM EDTA,

37.5 mM Tris HCl, 37.5% glycerol, 3% (v/v) b- mercaptoethanol,

pH 6.8). Quenched samples were analyzed using SDS-PAGE and

phosphorimaging as described previously [24].

Supporting Information

Figure S1 The sensitivity of the signal response curve ‘‘sigmoid-

ality’’ to parameter changes. The ‘‘sigmoidality’’ of the signal-

response curve, RS, is measured as its maximum slope (smax)

multiplied by the signal level at which this slope occurs (k5s) (i.e.

RS = k5sNsmax). On each panel, the y-axis shows the ratio of RS,

resulting from models with different values of a specific parameter,

to that resulting from the basic model. x-axis shows the ratio of this

parameter value to its corresponding value in the basic model.

Data points in red indicates presence of bistability in the signal-

response relationship. Note the log scale on both axes.

(TIF)

Figure S2 The sensitivity of the maximum phosphorylation level

of CheY6 to parameter changes. On each panel, the y-axis shows

the ratio of the maximal CheY6 phosphorylation, resulting from

models with different values of a specific parameter, to that

resulting from the basic model. x-axis shows the ratio of this

Table 2. Plasmids and strains used and the associated literature source.

Strains/plasmid Description Source/Reference

E.coli strain M15pREP4 Expression host containing pREP4; kanamycin resistant Qiagen

pQE30 IPTG inducible expression vector. Introduces RGS(H)6 at the N terminus of the expressed protein. Confers
ampicillin resistance

Qiagen

pQE60 IPTG inducible expression vector. Introduces RGS(H)6 at the C terminus of the expressed protein. Confers
ampicillin resistance

Qiagen

pQE60A3P1 CheA3P1 expression plasmid. pQE60 derivative [7]

pQEY6 CheY6 expression plasmid. pQE30 derivative [24]

pQEA3 CheA3 expression plasmid. pQE30 derivative [21]

pQEA4 CheA4 expression plasmid. pQE30 derivative [21]

doi:10.1371/journal.pcbi.1002949.t002
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parameter value to its corresponding value in the basic model.

Data points in red indicates presence of bistability in the signal-

response relationship. Note the log scale on both axes.

(TIF)

Figure S3 The sensitivity of the signal response curve ‘‘sigmoid-

ality’’ to changes in the concentration of CheA3 (A) and CheA4

(B). The ‘‘sigmoidality’’ of the signal-response curve, RS, is

measured as its maximum slope (smax) multiplied by the signal level

at which this slope occurs (k5s) (i.e. RS = k5s N smax). On panel A (B),

the y-axis shows the ratio of RS, resulting from models with

different values of CheA3 (CheA4) concentration, to that resulting

from the basic model. x-axis shows the ratio of this concentration

to its corresponding value in the basic model. Data points in red

indicates presence of bistability in the signal-response relationship.

The sensitivity of the maximum phosphorylation level of CheY6 to

changes in the concentration of CheA3 (C) and CheA4 (D). On

panel C (D), the y-axis shows the ratio of the maximal CheY6

phosphorylation, resulting from models with different values of

CheA3 (CheA4) concentration, to that resulting from the basic

model. x-axis shows the ratio of this concentration to its

corresponding value in the basic model. Data points in red

indicates presence of bistability in the signal-response relationship.

Note the log scale on both axes on all panels.

(TIF)

Figure S4 Analysis of signal-response relationship, in an

alternative model considering phosphatase activity from additional

species (see Supplementary Information, section 1). (A) Signal-

response curves resulting from a model where both CheA3:CheA4

and CheA3:CheA4:ATP are considered to have phosphatase

activity in addition to CheA3. For comparison, signal-response

curve from the basic model is shown in red. Where present, the

dark region indicates the region of unstable steady states and

hence the presence of bistability. The different curves correspond

to increasing levels of phosphatase activity (shown with the arrow)

from the additional species. Phosphatase activity is varied in the

same way for both CheA3:CheA4 and CheA3:CheA4:ATP by

assuming that kon and kcat for these species are the same (i.e.

k12 = k15 and k14 = k17) and by varying one set of rates

simultaneously. The ratio between these rates (k12 and k14) to

their corresponding values for CheA3 (k9 and k11) is shown on the

x-axis of panel C. (B) Signal-response curves resulting from a

model where CheA-P is considered to have phosphatase activity in

addition to CheA3. For comparison, signal-response curve from

the basic model is shown in red. Where present, the dark region

indicates the region of unstable steady states and hence the

presence of bistability. The different curves correspond to

increasing levels of phosphatase activity (shown with the arrow)

from CheA3-P. Phosphatase activity is varied by changing both kon

and kcat for CheA3-P (i.e. k18 and k20) simultaneously. The ratio

between these rates (k18 and k20) to their corresponding values for

CheA3 (k9 and k11) is shown on the x-axis of panel D. (C) The

sensitivity of the signal response curve ‘‘sigmoidality’’ to increasing

phosphatase activity from CheA3:CheA4 and CheA3:CheA4:ATP.

The ‘‘sigmoidality’’ of the signal-response curve, RS, is measured as

its maximum slope (smax) multiplied by the signal level at which this

slope occurs (k5s) (i.e. RS = k5s N smax). y-axis shows the ratio of RS,

resulting from models with increasing phosphatase activity by

additional species, to that of resulting from the basic model. X-axis

shows the ratio of kinetic rates governing phosphatase activity (k12

and k14) to those in the basic model (k9 and k11). Data points in red

indicates presence of bistability in the signal-response relationship.

(D) The sensitivity of the signal response curve ‘‘sigmoidality’’ to

increasing phosphatase activity from CheA3-P. The ‘‘sigmoidality’’

of the signal-response curve, RS, is measured as its maximum slope

(smax) multiplied by the signal level at which this slope occurs (k5s) (i.e.

RS = k5s N smax). Y-axis shows the ratio of RS, resulting from models

with increasing phosphatase activity by additional species, to that of

resulting from the basic model. x-axis shows the ratio of kinetic rates

governing phosphatase activity (k18 and k20) to those in the basic

model (k9 and k11). Data points in red indicates presence of

bistability in the signal-response relationship. Note the log scale on

both axes in panels C and D.

(TIF)

Figure S5 Time-course analysis using an alternative model

where both CheA3:CheA4 and CheA3:CheA4:ATP are consid-

ered to have phosphatase activity in addition to CheA3 (see

Supplementary Information, section 1). The model is simulated

with increasing and decreasing signal levels (k5) in course of time.

k5 is increased from 2 to 6 and decreased in similar fashion at

indicated time points (top most, left panel), and changes in each

species were measured (as indicated on each panel). The x- and y-

axis represent time and species concentration respectively, where

the latter is normalized by the appropriate total protein levels.

(TIF)

Figure S6 Signal-response curves resulting from an alternative

model that allows for the possibility that phosphorylated CheA3

remains in complex with CheA4 and that this CheA3p:CheA4

complex is also capable of acting as phosphatase towards CheY6p

(see Supplementary Information, section 2). The y-axis shows

steady state Y6-P level normalised by total Y6, while x-axis shows

signal (k5) level. Where present, a dark region indicates the region

of unstable steady states and hence the presence of bistability. (a)

The signal-response curve from the basic model (included for

comparison). (b) Signal-response curve from the alternative model

and simulating signal level through changing both k95 and k5

simultaneously. (c) Signal-response curve from the alternative

model and simulating signal level through changing k5, while

k95 = 0.1 s21.

(TIF)

Figure S7 Analysis of signal-response relationship, in an

alternative model considering additional kinase activity (see

Supplementary Information, section 3). (A) Signal-response curves

resulting from a model where additional kinase activity (from

CheA2) is considered. For comparison, the signal-response curve

from the basic model is shown in red. Where present, the dark

region indicates the region of unstable steady states and hence the

presence of bistability. The different curves correspond to

increasing levels of autophosphorylation rates for CheA2 (i.e.

increasing background signalling through CheA2). (B) The

sensitivity of the signal-response ‘‘sigmoidality’’ with increasing

background kinase activity (from CheA2). The ‘‘sigmoidality’’ of

the signal-response curve, RS, is measured as its maximum slope

(smax) multiplied by the signal level at which this slope occurs (k5s)

(i.e. RS = k5s N smax). y-axis shows the ratio of RS, resulting from

models with increasing background kinase activity (k*5) to that of

the case where such activity is minimal (i.e. k*5,0). Data points in

red indicates presence of bistability in the signal-response

relationship. Note the log scale on both axes.

(TIF)

Figure S8 CheY6-P dephosphorylation time course data (circles)

along with the fitted first-order exponential decay curves (red line)

and simulated data (black line). The exponential fits are used to

derive an estimate for overall CheY6p dephosphorylation rate

(kobs), which are shown in Figure 4.

(TIF)
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Table S1 Parameter values used for the models with additional

phosphatases.

(PDF)

Table S2 Parameter values used for the models with alternative

reaction scheme.

(PDF)

Table S3 Parameter values used for the models with additional

kinase.

(PDF)

Table S4 Parameter values used for the model of the in vitro

experimental system.

(PDF)

Text S1 Supplementary information on alternative models and

their analyses.

(PDF)

Text S2 Results of the analytical analysis of the basic model. The

file contains the reaction system considered and the report

produced with the Chemical Network Tool v2.2 (http://www.

chbmeng.ohio-state.edu/,feinberg/crntwin/).

(DOC)

Text S3 Results of the analytical analysis of a model with a

monofunctional kinase and a separate phosphatase. The file

contains the reaction system considered and the report produced

with the Chemical Network Tool v2.2 (http://www.chbmeng.

ohio-state.edu/,feinberg/crntwin/).

(DOC)

Text S4 Results of the analytical analysis of a model with a

monofunctional kinase. The file contains the reaction system

considered and the report produced with the Chemical Network

Tool v2.2 (http://www.chbmeng.ohio-state.edu/,feinberg/

crntwin/).

(DOC)

Text S5 Results of the analytical analysis of a model with a

bifunctional, non-split kinase. The file contains the reaction system

considered and the report produced with the Chemical Network

Tool v2.2 (http://www.chbmeng.ohio-state.edu/,feinberg/

crntwin/).

(DOC)

Text S6 Results of the analytical analysis of a model with a

monofunctional, split kinase. The file contains the reaction system

considered and the report produced with the Chemical Network

Tool v2.2 (http://www.chbmeng.ohio-state.edu/,feinberg/

crntwin/).

(DOC)
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