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Lung adenocarcinoma (LUAD) is the main pathological subtype of non-small-cell lung cancer. Endoplasmic reticulum stress
(ERS) has been found to be involved in multiple tumor-related biological processes. At present, a comprehensive analysis of
ERS-related genes in LUAD is still lacking. A total of 1034 samples from TCGA and GEO were used to screen differentially
expressed genes. Further, Random Forest algorithm was utilized to screen characteristic genes related to prognosis. Then,
LASSO Cox regression was used to construct a prognostic signature. Taking the median of signature score as the threshold,
patients were separated into high-risk (HR) group and low-risk (LR) group. Tumor mutation burden (TMB), immune cell
infiltration, cancer stem cell infiltration, expression of HLA, and immune checkpoints of the two risk groups were analyzed.
TIDE score was used to evaluate the response of the two risk groups to immunotherapy. Finally, the gene expression was
verified in clinical tissues with RT-qPCR. An eight-gene signature (ADRB2, AGER, CDKN3, GJB2, SFTPC, SLC2A1, SLC6A4,
and SSR4) was constructed. TMB and cancer stem cell infiltration were higher in the HR group than the LR group. TIDE score
and expression level of HLA were higher in the LR group than the HR group. Expression level of immune checkpoints,
including CD28, CD27, IDO2, and others, were higher in the LR group. Multiple drugs approved by FAD, targeting ERS-
related genes, were available for the treatment of LUAD. In summary, we established a stable prognostic model based on ERS-
related genes to help the classification of LUAD patients and looked for new treatment strategies from aspects of immunity,
tumor mutation, and tumor stem cell infiltration.

1. Introduction

Lung adenocarcinoma (LUAD) is the main subtype of non-
small-cell lung cancer (NSCLC), accounting for 40% of all
lung cancers [1]. The survival rate of LUAD is only 4% to
17% [2]. Molecular targeted therapy has made great progress
in the treatment of LUAD, especially in advanced patients
with specific gene aberrations, such as EGFR, KRAS, and
BRAF [2]. However, most LUAD patients without specific
gene aberrations did not benefit from it. Some immunother-
apeutic drugs targeting PD-1 or PD-L1 have entered the
clinic, and patients with LUAD were rapid and lasting
response to them [3]. However, in addition to CTLA-4,
PD-1 and its ligands, other immune checkpoints have not

been further studied in the clinic, and a spectrum of toxic-
ities of immunotherapy is inevitable [4]. To benefit more
LUAD patients, it is essential to find new targeted genes
and immune checkpoints.

Endoplasmic reticulum stress (ERS) can be caused by
multiple factors, such as oxidative stress, nutritional defi-
ciency, and oxygen limitation, leading to the production of
misfolded proteins. When the accumulation of misfolded
proteins exceeds the threshold, it will stimulate the unfolded
protein response (UPR), which is a cell’s corrective response.
IRE1 α (inositol-requiring enzyme 1α), PERK (PKR-like ER
kinase), and ATF6α (activating transcription factor 6α) are
key endoplasmic reticulum transmembrane proteins that
initiate UPR. There are two results after UPR work, restoring
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homeostasis or promoting cell death [5]. Previous research
reported that protease inhibitors can induce ERS in mye-
loma cells and block the IRE1α/XBP-1 pathway, inducing
apoptosis of myeloma cells [6]. The PERK-ATF4 pathway
promoted the resistance of colon cancer cells to 5-fluoroura-
cil, while the effect of PERK inhibitor was opposite [7]. ERS
is related to many biological processes. Ferroptosis can
induce ERS, and both ferroptosis and ERS can promote the
expression of proapoptotic protein PUMA [8]. Hypoxia
can cause ERS, which in turn increases the activity of
hypoxia-related factors and hypoxia-related events [9]. Cells
clean up the damaged endoplasmic reticulum caused by con-
tinuous ERS by autophagy [10]. Immunotherapy has made
great progress in the treatment of LUAD, highlighting the
importance of exploring the immune microenvironment
[1]. Studies have found that endoplasmic reticulum stress
is involved in immune-related biological processes, such as
T-cell exhaustion and lymphocyte differentiation [11–13].
These studies show that ERS can directly affect tumor pro-
gression or indirectly affect tumor progression by participat-
ing in other important biological processes. However, there
is no comprehensive study on the role of ERS-related genes
in the biological characteristics and clinical prognosis of
LUAD.

To understand the role of ERS in the prognosis and
treatment of LUAD, we established a prognosis signature
based on ERS-related genes and analyzed the signature in
many aspects. Firstly, we downloaded the mRNA profile,
mutation, and clinical data of LUAD from the public data-
bases. Then, the roles of ERS-related genes in the prognosis,
immunity, tumor mutation burden, and tumor cell stemness
of LAUD were explored. Finally, multiple targeted drugs and
immunotherapy drugs were identified for LUAD patients.

2. Methods

2.1. Material Source. The mRNA, mutation, and clinical data
were downloaded from the TCGA database. The mRNA file
contained 594 samples (535 LUAD samples and 59 nontu-
mor samples). GSE40791, GSE31210, GSE30219,
GSE41271, GSE50081, and GSE72094 from GEO were also
included in this study. GSE40791 consisted of 94 LUAD tis-
sues and 100 normal lung tissues. GSE31210 consisted of
226 LUAD tissues and 20 normal tissues. Samples in
TCGA-LUAD, GSE40791, and GSE31210, a total of 1034,
were used to conduct differential expression analysis. After
removing samples with unknown follow-up time and sur-
vival status, there were 490 samples in TCGA-LUAD cohort
for subsequent analyses. GSE41271, GSE30219, GSE50081,
and GSE72094 were used as testing cohorts. In addition, a
total of 785 ERS-related genes were obtained from the liter-
ature [14]. A total of 24 clinical tissues (12 LUAD tissues and
12 para-tumor tissues) were obtained in the Department of
Respiratory and Critical Care, the Second Affiliated Hospital
of Guangxi Medical University from September 2021 to Jan-
uary 2022. The acquisition of 24 clinical tissues of LUAD
patients was approved by the Ethics Review Committee of
the Second Affiliated Hospital of Guangxi Medical Univer-

sity (Approval Number: 2021-KY (0332)) and approved by
patients with written informed consent.

2.2. Differentially Expressed Gene Screening. The differen-
tially expressed ERS-related genes in TCGA-LUAD,
GSE40791, and GSE31210 datasets were screened, respec-
tively (∣logFC ∣ >1 and FDR < 0:05). Then, the common dif-
ferentially expressed genes in the three datasets were
extracted for subsequent analysis. A heatmap was made
using the “pheatmap” package to visualize common differ-
entially expressed genes. The protein-protein interaction
(PPI) network was performed in the STRING website
(http://string.embl.de/) [15].

2.3. Functional Enrichment Analysis. To observe which path-
ways and functions that differentially expressed ERS-related
genes were enriched, KEGG (Kyoto Encyclopedia of Genes
and Genomes) and GO (Gene Ontology) were conducted
using the “clusterProfiler” package. In order to understand
whether ERS-related genes were involved in lung diseases,
especially LUAD, DO (Disease Ontology) was also con-
ducted using the R package ‘DOSE’ [16].

2.4. Machine Learning and Prognostic Signature. Univariate
Cox regression analysis was used to screen ERS-related
genes that were related to prognosis. To achieve a high
degree of prediction accuracy, Random Forest algorithm
was further employed to screen important prognosis-
related genes using the “randomForest” package. Genes with
an importance score greater than 2 were used for subsequent
signature establishment. The LASSO Cox regression analy-
sis, which has the advantage of minimizing the risk of over-
fitting, was used to construct prognostic signature, using 10-
fold cross-validation with the “glmnet” package. The for-
mula was established as follows: Risk score =
esumðeachgene’sexpression×correspondingcoefficientÞ. Taking the median
of risk score as the threshold, patients were separated into
high-risk (HR) group and low-risk (LR) group. PCA and
tSNE analyses were employed to observe whether the signa-
ture can clearly distinguish patients of two groups using the
“Rtsne” package. To determine whether the signature was an
independent predictor, univariate and multivariate Cox
regression analyses were conducted.

2.5. Immune Microenvironment Analysis. Infiltration levels
of stromal and immune cells can be calculated with the
ESTIMATE algorithm [17]. ssGSEA (single-sample gene
set enrichment analysis) can calculate an enrichment score,
which indicates the enrichment degree of genes in a specific
gene set. The process of ssGSEA includes ranking genes
according to the absolute expression of genes in the sample
and then calculating the enrichment score by integrating
the differences between the empirical cumulative distribu-
tion functions of gene ranking [18, 19]. It was performed
to calculate enrichment scores of sixteen immune cells using
the “GSEABase” and “GSVA” packages. The correlation
between six immune cell infiltration and gene expression
was explored in the TIMER database. We also explored the
effect of gene copy number variation on immune cell
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infiltration in the TIMER database. Six immune cells were B
cell, macrophage, neutrophil, dendritic cell, CD8+ T cell,
and CD4+ T cell.

To determine whether there were differences in immune
checkpoint blockade (ICB) therapy between the HR and LR
group, the expression of multiple immune checkpoint mole-
cules was compared. The TCGA-LUAD cohort was used as
training set and GSE72094 was used as testing set. Differen-
tially expressed immune checkpoints between two groups
were visualized. The TIDE (Tumor Immune Dysfunction
and Exclusion) website (http://tide.dfci.harvard.edu/) pro-
vided TIDE scores on anti-PD-1 and anti-CTLA-4 responses
in melanoma and NSCLC, providing the response of these
two tumors to ICB therapy. TIDE score was negatively
related to the response rate of ICB therapy [20].

2.6. Antigen Presentation Analysis. HLA (human leukocyte
antigen), which is a protein encoded by MHC, is involved
in the antigen presentation process. To observe whether
there were differences in antigen presentation between the
two groups, the expression level of HLA in the two risk
groups was compared using the “limma” packages [21].

2.7. Tumor Mutation Burden and Gene Mutation Analysis.
To observe whether there were genetic mutation differences
between the HR and LR groups, tumor mutation burden
(TMB) analysis was conducted. We combined the mutation
level and risk score level to divide the patients into four
groups and compared their survival time, including the
high-TMB+HR group, low-TMB+HR group, high-TMB
+LR group, and low-TMB+LR group. The landscape of
genetic mutations was shown in a waterfall diagram. The
mutation of signature genes was searched in the cBioPortal
website (http://www.cbioportal.org).

2.8. Cancer Stem Cell Infiltration Analysis. Cancer stem cell,
which is a small and rare subset of cells with stem cell-like
characteristics, plays an important role in tumor prolifera-
tion, metastasis, and recurrence [22]. To observe the differ-
ence of stem cell infiltration between the two groups, we
made a comparative analysis at the DNA and RNA levels.
The independent variable was stress score, and the depen-
dent variable was stem cell index, which represented the
degree of stem cell infiltration.

2.9. Gene Set Enrichment Analyses. To observe whether there
were differences in biological processes and pathways
between the two groups, GSEA (gene set enrichment analy-
sis) was utilized to conduct GO and KEGG analyses using
the R package “org. Hs.eg. db”.

2.10. Drug Sensitivity Analysis. Based on grouping, we
screened drugs for patients in HR or LR groups using the
“pRRophetic” package [23]. IC50 as an evaluation index of
drug sensitivity, the smaller it is, the more sensitive the
patient is to the drug.

Drug sensitivity information file was obtained from the
CellMiner (http://discover.nci.nih.gov/cellminer), which is
a large database integrating different molecular types of
NCI-60 and related metadata [24]. Then, targeting drugs

were selected from the 263 FDA-approved drugs. The posi-
tive correlation indicated that the gene was sensitive to
drugs, while the negative correlation was the opposite. The
results of the first 16 analyses were visualized according to
the P value from small to large row.

2.11. Verification of Signature Genes in Databases. The
mRNA expression level of multiple LUAD cell lines was
downloaded from the CCLE (Cancer Cell Line Encyclopedia,
http://www.broadinstitute.org/ccle). The protein expression
level was verified in the HPA (The Human Protein Atlas)
database.

2.12. Verification of Signature Gene Expression with Clinical
Samples. The mRNA of 24 clinical samples (12 LUAD tis-
sues and 12 paratumor tissues) was extracted. Then, quanti-
tative reverse transcription PCR (RT-qPCR) was used to
verify the gene expression. TRIzol reagent was used to
extract total RNA. cDNA synthesis kit and primers were
purchased from Takara Biotechnology Co. (Dalian, China).
GAPDH acted as the internal control for the RT-qPCR.
The process of RT-qPCR was performed using the
ABI7300 real-time fluorescence quantitative PCR instru-
ment (Thermo Fisher Scientific, USA). The ΔCt of paratu-
mor tissues was normalized to calculate the ΔΔCt of
LUAD tissues. The 2−ΔΔCt method was used to calculate
the relative gene expression [25].

2.13. Statistical Software. Except that the results of RT-qPCR
were statistically analyzed using the SPSS 26.0 (IBM Corpo-
ration, Illinois, USA), other data were analyzed using the
R.4.1.1 (R Core Team, Massachusetts, USA). Differentially
expressed gene analysis, tumor mutation burden analysis,
ssGSEA score, immune checkpoints analysis, and HLA anal-
ysis were conducted using the Mann–Whitney test. Cancer
stem cell infiltration and drug sensitivity analyses were per-
formed using Pearson’s correlation test. The differences
between clinical tissues were tested by Student’s t-test. Log-
rank test and the Kaplan-Meier analysis were used to com-
pare the overall survival (OS) between groups.

3. Results

The flowchart of this study is shown in Figure 1. All 785
ERS-related genes are listed in Table S1.

3.1. Differentially Expressed Genes and Functional
Enrichment Analysis. There were 44 common differentially
expressed genes in TCGA-LUAD, GSE31210, and
GSE40791, including 20 upregulated and 24 downregulated
genes (Figures 2(a) and 2(b)). PPI showed that most genes
were interrelated (Figure 2(c)). DO analysis demonstrated
that they were associated with lung disease, lung adenocarci-
noma, arteriosclerosis, and so on (Figure 2(d)). KEGG anal-
ysis showed that they were focused on focal adhesion, ECM-
receptor interaction, PI3K-Akt signaling and HIF-1 signal-
ing pathway, and so on (Figure 2(e)). GO analysis showed
that these 44 genes were mainly enriched in cellular response
to peptide, regulation of binding, lipid transport, and so on
in the biological process; endoplasmic reticulum lumen,
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rough endoplasmic reticulum, cell-cell contact zone, and so
on in the cellular component; peptide binding, amide bind-
ing, protein-lipid complex binding, and so on in the molec-
ular functions (Figure 2(f)). As expected, differentially
expressed genes were mainly involved in the biological pro-
cesses and pathways of endoplasmic reticulum related func-
tions and participate in the development of LUAD.

3.2. Machine Learning and Prognostic Signature. Twelve
genes were related to the prognosis of LUAD (Figure S1A).
Further, nine characteristic genes were screened out by
Random Forest algorithm (trees = 114) (Figure S1B, C). An
eight-gene signature was constructed (Figure S1D, E). The
calculation formula of the risk score was as follows: Risk
score = ð−0:204766423Þ ∗ADRB2 + ð−0:01476427Þ ∗AGER
+ 0:132930848 ∗ CDKN3 + 0:08065608 ∗GJB2 + ð−
0:006115914Þ ∗ SFTPC + 0:071988516 ∗ SLC2A1 + ð−
0:106235847Þ ∗ SLC6A4 + ð−0:218749074Þ ∗ SSR4. Risk
score of all testing cohorts was calculated according to the
formula. The survival analysis of TCGA and validation
cohorts showed that OS of patients in the HR group was

significantly lower than in the LR group (Figure S2A-E).
The AUC of TCGA cohort was 0.698 at 1 year, 0.666 at 2
year, and 0.682 at 3 year (Figure 3(a)). The AUC of
GSE30219 at 1, 2, and 3 years was 0.837, 0.803, and 0.830
(Figure 3(b)). The AUC of GSE41271 at 1, 2, and 3 years
was 0.630, 0.697, and 0.703 (Figure 3(c)). The AUC of
GSE50081 at 1, 2, and 3 years was 0.814, 0.672, and 0.615
(Figure 3(d)). The AUC of GSE72094 at 1, 2, and 3 years
was 0.724, 0.705, and 0.694 (Figure 3(e)). PCA and tSNE
analysis showed that the signature can well distinguish
between HR patients and LR patients (Figures 3(f)–3(o)).
Also, scatterplots showing distribution of risk score were
produced (Figure S3A-J). These indicated that the
signature had robust power in predicting the prognosis of
LUAD patients and distinguishing patients with different
risk levels. The risk score was identified as an independent
predictor of LUAD by two Cox regression analyses
(Figure S3K and L).

3.3. Immunity Correlation Analysis. The ESTIMATE score
of immune cells was positively correlated with the risk score,
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while the relationship between ESTIMATE score of stromal
cells and the risk score was not statistical significance
(Figures 4(a) and 4(b)). Next, we compared the immune cell
scores of two groups. Both training and testing cohorts
showed that the infiltration score of most immune cells in
the LR group was higher than that in the HR group, such
as aDCs, B cells, and T helper cells (Figures 4(d) and 4(e)).

The expressions of multiple immune checkpoints in the
HR group, such as CD28, CD27, and IDO2, were signifi-
cantly higher than that in the LR group. However, there
was no difference in the expression of PD-1/PD-L1/PD-L2
and CTLA-4 between two groups (Figures 4(f) and 4(g)).
TIDE score of the LR group was higher than the HR group,
indicating that the LR group was more prone to immune
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Figure 3: ROC, PCA, and tSNE analyses of training and testing sets. (a–e) ROC; (f–j) PCA analysis; (k–o) tSNE analysis. (a, f, and k) TCGA-
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escape than the HR group, and the effectiveness of immuno-
therapy of the HR group was better (Figure 4(c)).

It was found that the infiltration of immune cells was
related to eight signature genes. CDKN3 was negatively cor-
related with CD4+ T cell, macrophage, B cell, and dendritic
cell and positively correlated with CD8+ T cell and neutro-
phil (Figure 5(e)). SLC2A1 was negatively related to CD4+
T cell and B cell and positively related to other four immune
cells (Figure 5(k)). GJB2 was negatively correlated with B cell

and positively correlated with other five immune cells
(Figure 5(g)). SSR4 was positively correlated with B cell
and negatively correlated with other five immune cells
(Figure 5(o)). ADRB2, AGER, SFTPC, and SLC6A4 were
positively correlated with all six immune cells (Figures 5
(a), 5(c), 5(i), and 5(m)).

Compared with the diploid/normal group, copy number
variation of genes could affect the immune cell infiltration.
Arm-level deletion of ADRB2 and CDKN3 decreased the
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Figure 4: Immunity correlation analysis. (a) ESTIMATE score of immune cells. (b) ESTIMATE score of stromal cells. (c) TIDE score. (d)
Abundance of immune cells in TCGA-LUAD cohort. (e) Infiltration score of immune cells in GSE72094. (f) Expression of immune
checkpoints in TCGA-LUAD cohort. (g) Expression of immune checkpoints in GSE72094.
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abundance of six immune cells (Figures 5(b) and 5(f)). Arm-
level gain of AGER decreased the infiltration of six immune
cells. GJB2 and SFTPC were lack of high amplification
(Figures 5(h) and 5(j)). Arm-level gain of GJB2 was nega-
tively associated with infiltration of B cell, CD4+ T cell, mac-
rophage, and neutrophil. Deep deletion, arm-level deletion,
and arm-level gain of SFTPC were negatively related to the
infiltration of CD4+ T cell. Copy number variation of
SLC2A1 mainly affected CD4+ T cell and macrophage
(Figure 5(l)). SLC6A4 and SSR4 did not have deep deletion
(Figures 5(n) and 5(p)). Arm-level deletion of SLC6A4 neg-
atively affected the infiltration of CD4+ T cell and macro-
phage. Arm-level deletion of SSR4 decreased the
infiltration of macrophage, neutrophil, and dendritic cell.

3.4. Antigen Presentation Analysis. There was significant dif-
ference in the expression of HLA related to antigen presen-
tation between the HR group and LR group. In both
training and test cohorts, HLA class I (including HLA-E
and HLA-F) was higher in the LR group than in the HR
group. The expression of multiple HLA class II, such as
HLA-DMA, HLA-DMB, and HLA-DOA, was also higher
in the LR group (Figures 6(a) and 6(b)).

3.5. Tumor Mutation Burden and Gene Mutation Analysis.
TMB of the HR group was higher than the LR group
(Figure 6(c)). The mutation frequency of most genes in the
HR group was higher, such as TP53, TTN, MUC16, and
RYR2 (Figures 6(d) and 6(e)). The OS of high-TMB+HR
group was higher than of low-TMB+HR group, and the
OS of high-TMB+LR group was better than of low-TMB
+LR group (Figure 6(f)). Eight signature genes had differ-
ences in the mutation frequency and types (Figure S4A-H).
Among the eight genes, SFTPC had the highest mutation
frequency, which was 5%, and SLC2A1 and CDKN3 had
the lowest mutation frequency, which was 1.2% (Figure S4I).

3.6. Cancer Stem Cell Infiltration Analysis. The stem cell
infiltration analysis exhibited that the higher the risk score,
the higher the degree of stem cell infiltration. The value of

R was 0.2 (P = 2:1e − 05) in the DNA score, and 0.39
(P < 2:2e − 16) in the RNA score (Figures 6(g) and 6(h)). It
indicated that LUAD cells in the HR group had more obvi-
ous stem cell characteristics and lower degree of cell
differentiation.

3.7. Gene Set Enrichment Analyses. KEGG showed that path-
ways enriched in the HR group include cell cycle, DNA rep-
lication, and P53 signaling pathway, and pathways enriched
in the LR group include asthma, autoimmune thyroid dis-
ease, and alpha linolenic acid metabolism (Figures 6(i) and
6(j)). In addition, GO showed that genes of the HR group
were enriched in cell cycle checkpoint, cell cycle G2 phase
transition, centromere complex assembly, chromatin assem-
bly or disassembly, and so on, and genes of the LR group
were involved in B cell-mediated immunity, axoneme
assembly, antigen receptor mediated-signaling pathway,
activation of immune response, and so on (Figures 6(k)
and 6(l)).

3.8. Drug Sensitivity Analysis. The IC50 of docetaxel, erloti-
nib, AG.014699 (also known as rucaparib), AKT.inhibitor.
VIII, and embelin were lower in the HR group than the LR
group, suggesting that patients in the HR group were more
sensitive to these drugs (Figures 7(a)–7(d)). The IC50 of
ABT.888 (also known as veliparib), AS601245, ATRA, and
axitinib were higher in the HR group than the LR group
(Figures 7(e)–7(i)).

To provide reference for gene targeted therapy, we inves-
tigated the relationship between eight signature genes and
drug efficacy in NCI-60 cell lines, which included LUAD cell
lines. The results of the first 16 analyses were visualized
according to the P value from small to large row (Figure 7
(j)). AGER, SLC6A4, and SSR4 were all sensitive to fluphen-
azine, AGER and GJB2 were sensitive to gemcitabine,
ADRB2 was sensitive to dacomitinib. SFTPC was sensitive
to Denileukin Diftitox Ontak, while CDKN3 and SLC2A1
were resistant to it. The names of genes and drugs and their
correlation coefficients were also provided in Table S2.
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3.9. Verification of Signature Genes. We further verified the
expression of seven signature genes in the HPA database,
founding the SLC2A1, SSR4, and GJB2 were upregulated,
and AGER, SFTPC, SLC6A4, and ADRB2 were downregu-
lated (Figures 8(a)–8(g)). The expression of the same gene
was different in different LUAD cell lines (Figures 9(a)–9
(h)). Between LUAD tissues and its counterpart, there was
significant difference in expression of signature genes
(Figures 10(a)–10(h)). The primer sequences are provided
in Table S3 and the clinical information of all patients is
provided in Table S4.

4. Discussion

LUAD is the main subtype of NSCLC [26]. In recent years,
researchers have studied the pathogenesis of LUAD from
different pathways and biological processes and made great
progress in LUAD targeted therapy and immunotherapy.
However, greater efforts are still needed. ERS is involved in
many biological processes, such as ferroptosis [8], hypoxia
[9], and autophagy [10]. So, it is worth exploring the role
of ERS in LUAD.

To build a signature with stable prediction performance,
we used a large number of samples (1034 in total) to screen

the differentially expressed ERS-related genes. Then, Ran-
dom Forest tree algorithm, which uses bootstrap aggregation
and randomization of predictors based on importance filter-
ing [27], was used to identify important genes. Eventually,
LASSO, which is also a kind of machine learning and a pop-
ular method for regression with high-dimensional predictors
[28], was used to construct an eight-gene prognostic signa-
ture, including ADRB2, AGER, CDKN3, GJB2, SFTPC,
SLC2A1, SLC6A4, and SSR4. ADRB2/PKA pathway inhib-
ited the apoptosis of prostate cancer cells and propranolol
targeting ADRB2 can reduce the mortality of prostate cancer
[29]. AGER, which is a member of the immunoglobulin
superfamily, was detected at low expression level in NSCLC
tissue and inhibited the proliferation of NSCLC cells [30].
However, it was upregulated in cervical cancer, promoting
proliferation and migration of cervical cancer cells [31].
Mir-181d-5p suppressed the biological behavior of NSCLC
cells by inhibiting CDKN3/Akt signaling pathway [32].
GJB2, which was a downstream target of CAR10, was upreg-
ulated in NSCLC and induced NSCLC cell migration [33].
The low expression of SFTPC could lead to poor prognosis
in LUAD patients, and mir-629-3p could enhance the low
expression of SFTPC [34]. The lncRNA PVT1/mir-378c/
SLC2A1 axis was involved in the regulation of LUAD

0.0

Enriched in low risk group

–0.2

–0.4

–0.6

8

4

0

Ra
nk

ed
 li

st 
m

et
ric

Ru
nn

in
g 

en
ric

hm
en

t s
co

re

–4

5000 10000

Rank in ordered dataset

15000

GOBP_ACTIVATION_OF_IMMUNE_RESPONSE

GOBP_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF IMMUNE_RECEPTORS_BUILT

GOBP_B_CELL_MEDIATED_IMMUNITY

GOBP_B_CELL_RECEPTOR_SIGNALLONG_PATHWAY

GOBP_CILIUM_MOVEMENT

(l)

Figure 6: TMB, GSEA, and expression of HLA. (a) Expression of HLA in TCGA-LUAD cohort. (b) Expression of HLA in GSE72094. (c)
TMB. (d) The landscape of genetic mutations of HR group. (e) The landscape of genetic mutations of LR group. (f) Survival analysis of risk
score combined with TMB. (g) Evaluation of infiltration of cancer stem cells at RNA level. (h) Evaluation of infiltration level of cancer stem
cells at DNA level. (i) KEGG of the HR group. (j) KEGG of the LR group. (k) GO of the HR group. (l) GO of the LR group.

26 Journal of Immunology Research



p < 2.22e−16

–8

–6

–4

Low High

Risk

D
oc

et
ax

el
 se

ns
iti

vi
ty

 (I
C5

0)

Risk
Low

High

(a)

Low High

Risk

Risk
Low

High

6.5e−15

3

6

9

Er
lo

tin
ib

 se
ns

iti
vi

ty
 (I

C5
0)

(b)

Low High

Risk

Risk
Low

High

4.3e−08

0

2

4

6

A
G

.0
14

69
9 

se
ns

iti
vi

ty
 (I

C5
0)

(c)

1.7e−07

0

2

4

6

8

Low High

Risk

A
KT

.in
hi

bi
to

r.V
II

I s
en

sit
iv

ity
 (I

C5
0)

Risk
Low

High

(d)

Figure 7: Continued.

27Journal of Immunology Research



Low High

Risk

p < 2.22e−16

2.5

5.0

7.5

10.0
Em

be
lin

 se
ns

iti
vi

ty
 (I

C5
0)

Risk
Low

High

(e)

Low High

Risk

0.019

4.5

5.0

5.5

6.0

6.5

A
BT

.8
88

 se
ns

iti
vi

ty
 (I

C5
0)

Risk
Low

High

(f)

p < 2.22e−16

2

4

6

8

A
S6

01
24

5 
se

ns
iti

vi
ty

 (I
C5

0)

Low High

Risk

Risk
Low

High

(g)

0.033

4

5

6

A
TR

A
 se

ns
iti

vi
ty

 (I
C5

0)

Low High

Risk

Risk
Low

High

(h)

Figure 7: Continued.

28 Journal of Immunology Research



proliferation [35]. SLC6A4, which is a stress-related gene,
could regulate transcription through epigenetic mechanism
[36]. Compared with young B-cell chronic lymphoblastic
leukemia (B-CLL) cells, aged B-CLL cells downregulated
the expression of SLC6A4 [37]. SSR4 was a subunit of TRAP
(translocation associated protein), and its deletion would
cause congenital disorders of glycosylation [38]. At present,
there are few studies on SSR4 in cancers. It showed that eight

genes affected the infiltration of immune cells, which may
suggest that these genes can affect the biological process of
tumor by affecting the infiltration of immune cells. Gene
copy number variation would affect the degree of immune
cell infiltration. The AUC of all four testing sets was high,
demonstrating the prediction accuracy and stability of the
signature. We also screened drugs targeting these genes,
such as gemcitabine, which is effective for NSCLC whether
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used in combination with other drugs or alone [39]. And
Daktinib, which is an irreversible epidermal growth factor
receptor (EGFR) tyrosine kinase inhibitor (TKI), signifi-
cantly improved survival in patients with EGFR mutation
positive NSCLC [40].

In our study, immune cell infiltration analysis showed
that infiltration of antigen-presenting cells, such as DCs,
neutrophils, and B cells, was higher in the LR group. DC
cells can be divided into conventional type 1 (cDC1s), con-

ventional type 2 (cDC2s), and plasmacytoid DC (pDCs)
[41, 42]. In the mouse model, loss of cDC1s in the lung
increased the tumor burden and decreased the infiltration
of CD8+T cells [43]. cDC2s played an antitumor role by
presenting tumor-derived antigen to CD4+ conventional T
cells [44]. pDCs promoted the production of Tregs, which
can inhibit antitumor immunity and facilitate the immune
escape of tumor cells [45]. Previous studies have opposite
views on the role of neutrophils in tumors, but so far, the
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Figure 9: Gene expression in different LUAD cell lines. (a) ADRB2. (b) AGER. (c) CDKN3. (d) GJB2. (e) SFTPC. (f) SLC2A1. (g) SLC6A4.
(h) SSR4.
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literature on the role of neutrophils in promoting tumor
growth had greatly exceeded the literature on the role of
neutrophils in inhibiting tumor growth [46]. Subpopulations
of B cells play an opposite role in antitumor immunity. Bregs
inhibited antitumor immunity by inhibiting antitumor cells
[47], while TIL-B cells were involve in the process of anti-
NSCLC [48]. Also, the infiltration level of TILs, which have
antitumor effects and have become the focus of immuno-
therapy [49], was higher in the LR group. HLA-I and
HLA-II are mainly expressed by antigen-presenting cells

[50]. So accordingly, the expression of HLA-I and HLA-II
was consistent with the infiltration of antigen-presenting
cells, which was higher in the LR group. It was reported that
the induction of ERS and the activation of UPR can inhibit
the expression of MHC-I molecules [51]. When MHC-I
was reduced or eliminated, tumor cells would escape
immune supervision [50]. MHC-II was also expressed by
tumor cells, such as NSCLC cells [52]. These results may
explain why the OS of the LR group was higher than that
of the HR group.
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Figure 10: Verification of gene expression with clinical tissues. (a) ADRB2. (b) AGER. (c) CDKN3. (d) GJB2. (e) SFTPC. (f) SLC2A1. (g)
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In a part of NSCLC patients, the use of antibodies targeting
PD-1 and CTLA-4 had shown significant efficacy in clinical
practice [53–55]. However, this mainly benefits patients who
express higher PD-1 and CTLA-4. In this study, we found no
difference in the expression of PD-1 or CTLA-4 between the
HR group and LR group. However, we found that other
immune checkpoints were differentially expressed between the
two groups, such as CD28, CD27, and IDO2. The drugs for
these immune checkpoints can be used alone or in combination
with other immunotherapeutic drugs and have the advantage of
low toxicity. For instance, tumor targeting CD28 bispecific anti-
body, which had small side effects, could enhance the antitumor
efficacy of PD-1 immunotherapy, prolonging antitumor immu-
nity [56]. Targeting CD27 antibody synergizes with PD-L1
blockade to enhance the activation of CD4+ T cells and the pro-
liferation and function of CD8+ T cells [57]. The silencing of
IDO2 in DC not only negatively regulated the growth of tumor
cells but also helped to improve the immunotherapeutic effect
of DC-based cancers [58]. Interestingly, although there was no
difference in PD-1 and CTLA-4 expression between the HR
and LR groups, TIDE score was high in the HR group. Further,
we also found a variety of drugs that patients in the HR group
were more sensitive to, such as erlotinib, docetaxel, and gefi-
tinib. Some drugs that patients in the LR group were more sen-
sitive to include methotrexate, ABT.888, and axitinib.

TMB, which represents the number of tumor-derived new
antigens, is a key determinant of ICB response, and higher
somatic TMB is related to better OS [59]. In this study, the
OS of high-TMB+HR group was better than of low-TMB
+HR group, and the OS of high-TMB+LR group was better
than of low-TMB+LR group, suggesting that higher TMB is
beneficial to OS of LUAD patients. Cancer stem cells have a
strong ability to renew and replicate the heterogeneity of pri-
mary tumors [60]. The infiltration of cancer stem cells in the
HR group was higher than the LR group, indicating that
LUAD cells in HR group had more obvious stem cell charac-
teristics and lower degree of cell differentiation. These may
also explain why the lower OS in the HR group.

Multiple analyses were conducted, and experimental ver-
ification was carried out. However, there were still some
deficiencies in this study. Only gene mRNA expression had
been completely verified. The verification of CDKN3 protein
was lacking because there was no CDKN3 expression data in
HPA database. At the same time, there was a lack of func-
tional experiments in vitro and in vivo to verify the effect
of gene expression on the biological process of LUAD.
What’s more, it was unclear why the expression of PD-1
and CTLA-4 did not differ significantly between the two
groups, while the difference of TIDE score between the two
groups was statistically significant. It is necessary to carry
out corresponding experiments in the future.

5. Conclusion

A stable prognostic signature was established based on ERS-
related genes to help the classification of LUAD patients. We
also comprehensively analyzed and looked for new treat-
ment strategies from aspects of immunity, TMB, and tumor

stem cell infiltration. What’s more, multiple drugs for target-
ing genes and different groups of patients were screened.
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