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A B S T R A C T   

The urea transporter UT-B1, encoded by the SLC14A1 gene, has been hypothesized to be a significant protein 
whose deficiency and dysfunction contribute to the pathogenesis of bladder cancer and many other diseases. 
Several studies reported the association of genetic alterations in the SLC14A1 (UT-B1) gene with bladder 
carcinogenesis, suggesting a need for thorough characterization of the UT-B1 protein’s coding and non-coding 
variants. This study used various computational techniques to investigate the commonly occurring germ-line 
missense and non-coding SNPs (ncSNPs) of the SLC14A1 gene (UT-B1) for their structural, functional, and 
molecular implications for disease susceptibility and dysfunctionality. SLC14A1 missense variants, primarily 
identified from the ENSEMBL genome browser, were screened through twelve functionality prediction tools 
leading to two variants D280Y (predicted detrimental by maximum tools) and D280N (high global MAF) for 
rs1058396. Subsequently, the ConSurf and NetSurf tools revealed the D280 residue to be in a variable site and 
exposed on the protein surface. According to I-Mutant2.0 and MUpro, both variants are predicted to cause a 
significant effect on protein stability. Analysis of molecular docking anticipated these two variants to decrease 
the binding affinity of UT-B1 protein for the examined ligands to a significant extent. Molecular dynamics also 
disclosed the possible destabilization of the UT-B1 protein due to single nucleotide polymorphism compared to 
wild-type protein which may result in impaired protein function. Furthermore, several non-coding SNPs were 
estimated to affect transcription factor binding and regulation of SLC14A1 gene expression. Additionally, two 
ncSNPs were found to affect miRNA-based post-transcriptional regulation by creating new seed regions for 
miRNA binding. This comprehensive in-silico study of SLC14A1 gene variants may serve as a springboard for 
future large-scale investigations examining SLC14A1 polymorphisms.   

1. Introduction 

SLC14A1 (Solute carrier family 14 member 1) gene encodes Urea 
transporter type B (UT-B) which is one of the major types of urea 
transporter in mammals. Urea transport across various cell membranes 
depends on the facilitated diffusion through this specialized transporter, 
since the strong dipole moment of urea prevents its passage through the 
non-polar lipid bilayer [1]. According to some recent large-scale 
genome-wide association studies (GWAS) of urothelial bladder cancer, 
variants in the SLC14A1 gene were found to be associated with human 
bladder carcinogenesis [2–4]. 

Bladder, a unique urine depository, deals with a high urine con
centration and is responsible for the maintenance of urea concentration, 

cell homeostasis, and nitrogen balance [5]. Urea transporter UT-B1 is 
more abundantly expressed compared to UT-B2 isoform in the bladder 
than any other tissue and is located primarily in the basolateral mem
brane of the urothelial umbrella cells [6]. In the UT-B knock-out mice, 
the lack of the ‘urea scavenger’ gene has resulted in significant apoptosis 
and DNA damage in the urothelial cells, where the quantity of urea is 
nine times greater than that in wild-type mice, leading to the develop
ment of bladder carcinogenesis [7]. 

Again, increased urea concentrations brought on by UT-B deficiency 
can lead to aberrant arginine metabolism [8] and elevated amounts of 
NO [5], both of which can induce DNA damage and cell death in many 
ways. Hence, the buildup of urea caused by UT-B dysfunction or 
SLC14A1 gene suppression in the urothelium may produce intracellular 
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metabolic abnormalities that interact with conventional UBC (urothelial 
bladder cancer) pathways [9]. 

Additionally, UT-B urea transporters can be found in a wider variety 
of other tissues, including erythrocytes, brain, lung, heart, pancreas, 
colon, small intestine, prostate, kidney, skeletal muscle, bone marrow, 
etc. [10]. Thus, any influence or obstruction of the urea transport 
function of UT-B may result in the pathophysiology of several other 
diseases affecting various organs or tissues as well as blood pressure, 
digestive system, bone metabolism, male reproductive function, brain 
astrocyte activity, and cardiac function [8,11]. 

Single nucleotide polymorphisms (SNPs) are the most common types 
of genetic variations in the human genome. Among these variations, 
non-synonymous (nsSNPs)/missense SNPs in the coding regions are 
crucial and account for residual alteration that may exert a harmful 

effect on the encoded protein [12]. Missense mutations account for 
almost half of all DNA variants related to genetic illnesses as causal or 
susceptibility factors [13]. These genetic changes may cause protein 
structural destabilization, improper gene regulation, protein hydro
phobicity changes, charge disturbances, changes in geometry, dynamics, 
translation, protein-protein interactions, and protein integrity loss [14]. 

Despite the reported association of SLC14A1 variants with bladder 
carcinogenesis and potential impact on other body functions, the 
mutational characterization of the SLC14A1 gene (UT-B1) and the mo
lecular mechanism of its coding and non-coding variants has not been 
fully explored. Recent research has seen an uptick in the usage of in 
silico methods for predicting how nsSNPs may affect protein structure 
and function [15,16]. Therefore, the current work aims to examine the 
structural and functional impact of some common coding 

Fig. 1. Representation of the methodology in the flowchart.  
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non-synonymous and non-coding SNPs of the SLC14A1 gene on the 
UT-B1 protein and its dynamic nature by utilizing a variety of publicly 
available online computational tools. The analyses of this study can 
potentially enhance the investigation of UT-B1 protein and the 
advancement of targeted therapies and drugs. 

2. Materials and methods 

The step-by-step investigation, the techniques, and the tools 
employed in this study to evaluate the impact of some common SNPs of 
the SLC14A1 gene are outlined in Fig. 1. 

2.1. Retrieval of SNP data 

The study involves the investigation of the SLC14A1 gene for its 
genetic variants in the ENSEMBL genome browser (https://www.ens 
embl.org/index.html) [17]. Among the 20 transcripts (splice variants) 
of this gene, a transcript encoding the canonical size of the UT-B1 pro
tein (389 amino acids) was chosen for SNP data retrieval. Moreover, the 
sequence of the UT-B1 protein was retrieved from UniProt (https 
://www.uniprot.org/) [18]. 

2.2. Identification of the most frequent missense SNPs 

Genetic variants of the selected transcript of the SLC14A1 gene were 
presented in the tabular form enabling to identification of the most 
frequently occurring missense SNPs (nsSNPs) by setting the consequence 
type as missense variant and the global MAF (minor allele frequency) 
range of 0.05–0.5. 

2.3. Analysis of functional consequence 

The filtered nsSNPs were subjected to screening through several 
bioinformatics tools, including SIFT, PolyPhen2, MutPred2, etc., and 
finally, two selected variants were analyzed utilizing other web-based 
tools to predict the effect of the SNP on the function of the encoded 
protein. 

SIFT-Sorting Intolerant from Tolerant (https://sift.bii.a-star.edu.sg/) 
algorithm predicts the functional impact of an amino acid substitution 
based on sequence homology and the altered amino acid’s physical 
characteristics. The threshold value of the SIFT score is 0.05, below 
which substitutions are referred to as “deleterious,” whereas all others 
are “tolerated” [19]. 

PolyPhen-2 (Polymorphism Phenotyping v2) (http://genetics.bwh. 
harvard.edu/pph2/) uses simple physical and comparative factors to 
foretell the functional impact. The PolyPhen score ranges from 0 to 1, 
based on which the SNPs are categorized into three classes: probably 
damaging, possibly damaging, and benign [20]. 

CADD (The Combined Annotation Dependent Depletion) (htt 
ps://cadd.gs.washington.edu/) evaluates the deleteriousness of SNPs 
and indel variants by combining numerous annotations into a single 
measure. CADD score ranges from 1 to 99 with no threshold value. SNP 
with a higher CADD score are more likely to be deleterious [21]. 

REVEL (Rare Exome Variant Ensemble Learner) (https://sites.googl 
e.com/site/revelgenomics/) estimates the pathogenicity of missense 
variants by combining the results from several tests, including FATHMM 
v2.3, VEST 3.0, SIFT, PROVEAN, MutationTaster, LRT, etc. Scores vary 
from 0 to 1, and the likelihood of pathogenicity increases with 
increasing scores [22]. 

MetaLR predicts the deleteriousness of an SNP using a logistic 
regression-based ENSEMBL method and scores between 0 and 1 with a 
cut-off of 0.5 [23]. 

Mutation Assessor (http://mutationassessor.org/) predicts the 
functional impact of amino acid changes based on evolutionary con
servation in protein homologs and assigns a score ranging from 0 to 1 to 
each mutation, with higher scores indicating a higher likelihood of 

functional impact [24]. 
SNPs&GO (https://snps.biofold.org/snps-and-go/snps-and-go. 

html) analyzes protein structure, function, as well as biological path
ways and processes to determine if an SNP is disease-associated or 
neutral. If the disease probability score is > 0.5, the SNP is predicted 
disease associated [25]. Analysis for PhD-SNP [26] and PANTHER [27] 
is also performed by the SNPs&GO server. 

MutPred2 (http://mutpred.mutdb.org/) classifies amino acid re
placements as pathogenic or benign. Unlike SIFT and PolyPhen2, it 
predicts variant pathogenicity and the chemical causes behind it, along 
with a prediction score [28]. 

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) compiles data on 
genetic variation and its impact on human health as well as descriptions 
of related features from various sources like Office of Rare Diseases, 
GeneReviews, OMIM, and the Human Phenotype Ontology (HPO), etc. 
[29]. 

SuSPect (http://www.sbg.bio.ic.ac.uk/suspect/) is an SAV (support 
vector machine) based method that offers scores between 0 and 100 
with a cutoff value of 50 and predicts the phenotypic impact of missense 
variants using information from sequence-, structure- and system 
biology-based features [30]. 

2.4. Conservational analysis and surface accessibility prediction 

ConSurf (https://consurf.tau.ac.il/) was used for the analysis of the 
evolutionary conservation levels of amino acids in protein sequences. By 
comparing homologous sequences from related animals, the program 
assigns color-coded conservation scores to each amino acid that shows 
how consistently an amino acid is used throughout a family of proteins. 
It also uses the NACSES algorithm to inform if a particular amino acid 
residue is exposed or buried [31]. 

NetSurfP-3.0 (https://services.healthtech.dtu.dk/services/Net 
SurfP-3.0), a free web server, uses protein language models and deep 
learning approach to accurately and quickly predict surface accessi
bility, secondary structure, disorder, and phi/psi dihedral angles of the 
amino acids in a protein sequence. Amino acids with RSA greater than 
25% were considered exposed, while others were buried in the protein’s 
3D structure [32]. 

2.5. Protein stability analysis 

I-Mutant2.0 (http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mut 
ant3.0/I-Mutant3.0.cgi), an SVM (support vector machine) tool, was 
employed to foretell how altering an amino acid would affect protein 
stability based on protein sequence or structure. Using empirical and 
machine learning methodologies, it estimates amino acid substitution- 
induced Gibbs free energy (ΔG) variations. Protein stability status is 
expressed by a value of G that is negative or greater than zero, indicating 
decreased or increased stability correspondingly [33]. 

MUpro (https://mupro.proteomics.ics.uci.edu/) is also a web-based 
tool for the prediction of protein stability change resulting from amino 
acid alteration using the Gibbs free energy (ΔG), which additionally 
assigns a confidence level between − 1 and 1 [34]. 

2.6. Protein-protein interactions by STRING v11.5 database 

STRING (Search Tool for the Retrieval of Interacting Genes/Pro
teins) (https://string-db.org/), a biological database and web resource 
covering a wide range of model and non-model organisms, was used to 
predict gene ontology and the interaction profile of the UT-B1 protein 
with other proteins which can be either direct (physical) interaction or 
indirect (functional) association. The website uses computational 
methods to infer functional and physical relationships, and it links data 
from several databases to shed light on the proteins’ interconnected 
networks [35]. 
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2.7. Analysis of structural consequence 

HOPE (Have Our Protein Explained) (https://www.projecthope. 
org/) is a freely accessible next-generation approach that analyzes the 
impact of point mutation on the 3D structure of the encoded protein. It 
gathers data from a variety of sources using WHAT IF Web services and 
describes the biological basis of a disease-related phenotype of proteins 
in a fully automated manner. It informs us about the change in size, 
charge, hydrophobicity, spatial structure, and bond differences brought 
on by alterations in human proteins. HOPE performs multiple sequence 
alignment (MSA), and based on conservancy level, it gives a MetaRNN 
score that ranges between 0.0 and 1.0. The higher the score, the more 
likely it is to be pathogenic [36]. 

2.8. Secondary structure analysis 

SOPMA (Self-Optimized Prediction Method with Alignment) (https 
://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html) is a tool for secondary 
structure prediction of any given amino acid sequence of protein based 
on sequence homology with a known protein. An amino acid sequence 
that is short and homologous will typically create comparable secondary 
structures. SOPMA has an accuracy of about 70–80% in predicting the 
secondary structure (helix, sheet, turn, and coil) of proteins [37]. 

2.9. 3D modeling of proteins 

An online platform called I-TASSER (Iterative Threading ASSEmbly 
Refinement) (https://zhanggroup.org/I-TASSER/) was employed to 
automatically generate a high-quality 3D model of the UT-B1 protein 
and its variants. I-TASSER is a 3D modeler based on the threading 
approach [38], also known as fold recognition, as it searches for specific 
secondary conformation of a known protein structure instead of an 
entire sequence of a homologous protein [39]. Templates having the 
highest Z-score for structure modeling are identified from the PDB li
brary by LOMETS, a meta-server threading approach. C-score refers to a 
confidence score that normally falls between [− 5,2], with a higher 
C-score denoting a model with a high level of confidence and vice versa 
[38]. 

2.10. Refinement and quality assessment of the 3D structures 

The predicted models from I-TASSER were checked for Ramachan
dran favored region and ERRAT score by SAVES v6.0 (https://saves. 
mbi.ucla.edu/), a comprehensive toolkit for evaluation of the stereo
chemical parameters of the models [40]. The Ramachandran plot dis
plays a model’s overall geometry along with the verified score and 
outcome, including favored, allowed, and forbidden regions. 

Models having lower Rama-favored regions were refined using 
GalaxyRefine (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=
REFINE). It is a web server for protein structure refinement that excels 
at enhancing the quality of local structures by refining loop or terminal 
sections through ab initio modeling [41]. 

Further evaluation of the three predicted tertiary structures for wild- 
type protein and its two variants was done using tools like the Swiss- 
model structure assessment (https://swissmodel.expasy.org/), ERRAT, 
and ProSA (Protein Structure Analysis) (https://prosa.services.came. 
sbg.ac.at/prosa.php) [42]. These servers forecasted the results for the 
critical metrics used to assess the modeled structures, including Mol
Probity, Ramachandra plot, QMEAN, Z scores, and ERRAT scores. 

2.11. Structural alignment and comparison between the variants and 
wild-type protein 

The variant structures were assessed using Pymol [43] and TM-align 
(https://zhanggroup.org/TM-align/) [44] to estimate root mean square 
deviation (RMSD) and template modeling scores (TM score), 

respectively. RMSD stands for the amount of deviation between the 
native structure and the predicted model. For, identical structures, the 
RMSD value is 0, and it progressively increases as the dissimilarity be
tween the two structures grows. So, a higher RMSD score means that the 
mutant structure is more deviated from the native structure [45]. TM 
score is opposite to RMSD ranging between 0 and 1. TM-score of 
0.5–1.00 designates that the aligned proteins are in about the same fold. 
An exact match between superimposed wild-type and variant structures 
receives a score of 1. Hence, the backbone C alpha coordination 
discrepancy between wild-type and mutant forms increases with 
decreasing TM score [46]. 

2.12. Molecular docking 

The wild type, as well as two variant structures (D280Y and D280N), 
were caused to undergo molecular docking with four ligands, including 
cholesteryl hemisuccinate, octyl beta-D-glucopyranoside, tetraethylene 
glycol, and urea to observe the impact of variation on the ligand binding 
property of the protein. The first three small molecules were reported as 
ligands for urea transporter UT-B1 on PDB (Protein Data bank) (htt 
ps://www.rcsb.org/) since they were found associated with the X-ray 
Crystallography structure of Human Urea Channel SLC14A1/UT1 [47]. 
Urea was selected since UT-B1 is a urea transporter and is thought to 
interact with the transporter protein while being transported [48]. The 
3D structures of these ligands were obtained from PubChem (https://p 
ubchem.ncbi.nlm.nih.gov/) [49]. PyRx-embedded AutoDock Vina tool 
was used for this docking purpose [50]. Utilizing AutoDock Vina wizard, 
blind docking was performed between the protein (macromolecule) and 
selected ligands by setting the grid box to maximum (Dimensions X: 
50.0819 Å, Y: 52.2146 Å, Z: 66.2067 Å) to cover the entire protein 
structure and other parameters were kept at default state. Up to nine 
conformers were taken into account for each ligand throughout the 
docking procedure. The conformations exhibiting the most favorable 
(lowest) free binding energy were chosen for the analysis of the in
teractions between the target receptor and ligands using Discovery 
Studio Visualizer [51] and PyMOL [43]. 

2.13. Molecular dynamics simulation 

The GROMACS (version 2020.6) simulation software was used to run 
100 ns (nanosecond) molecular dynamics (MD) simulations on the wild- 
type and variant models of the UT-B1 protein [52]. The force field uti
lized in the simulation to describe the macromolecular system was 
GROMOS96 43a1. The spc216 water model was used to create a water 
box with edges 0.5 nm from the protein surface. Following energy 
minimization, isothermal-isochoric (NVT) equilibration, and isobaric 
(NPT) equilibration of the system, a 100 ns molecular dynamic simu
lation was performed using periodic boundary conditions. The snapshot 
interval for assessing the trajectory data was set to 100 ps (picosecond). 

The root mean square deviation (RMSD), root mean square fluctua
tion (RMSF), the radius of gyration (Rg), and solvent accessible surface 
area (SASA) analyses were carried out following the completion of the 
simulation using the rmsd, rmsf, gyrate, and sasa modules built into the 
GROMACS software. Each of these studies’ plots was created in RStudio 
using the ggplot2 package [53]. 

2.14. Analysis of non-coding SNPs 

Some particular non-coding SNPs (ncSNPs) of the SLC14A1 gene 
were filtered out from the ENSEMBL genome browser [17] and were 
subjected to the RegulomeDB database (https://regulomedb.org/) to 
investigate the regulatory influence of the non-coding variants. The 
database assigns a rank between 1 and 7 to each variant, along with a 
regulomeDB score based on the type and strength of the evidence sup
porting its functional effect [54]. 

The Genotype-Tissue Expression (GTEx) (https://gtexportal.org 
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/home/), a research project that aims to create an atlas of gene 
expression and regulation in multiple human tissues, offers public access 
to data such as gene expression, QTLs, and histology images [55]. The 
ncSNPs screened through RegulomeDB were further checked using the 
GTEx portal for their effect on gene expression in various tissues. 

PolymiRTS (Polymorphism in microRNAs and their TargetSites) 
(https://compbio.uthsc.edu/miRSNP/) database was used to find out 
ncSNPs that occur at the seed region and target site of miRNA and affect 
mRNA-based post-transcriptional regulation. Several sources, such as 
miRecords, TarBase, and miTarBase, were compiled with experimen
tally verified miRNA-target interactions from both low-throughput and 
high-throughput research [56]. 

3. Result 

3.1. Retrieval of SNP data of SLC14A1 gene 

The SNP data for the SLC14A1 gene was extracted from the 
ENSEMBL genome browser. A total number of 7977 variants was asso
ciated with the transcript ID ENST00000321925.9 of the SLC14A1 gene, 
which was classified into various types such as missense variants 
(4.11%), 3′UTR variants (8.14%), 5′UTR variants (0.45%), intron vari
ants (81.87%), synonymous variants (1.47%) and others (3.96%) 
(Fig. 2). Missense or non-synonymous SNPs (nsSNP) alter the amino acid 
sequence of a protein and tend to affect its function. Therefore, nsSNPs 
were targeted for this study. 

3.2. Identification of the most frequent missense SNPs in the SLC14A1 
gene 

Frequently occurring missense variants were filtered out from the 
variant table of the selected SLC14A1 gene transcript (Supplementary 
Table 1). Two SNPs, rs2298720 (E44K) and rs1058396 (D280N) were 
identified as having a global MAF of 0.235 and 0.411, respectively. 
However, rs1058396 had two other variants, D280H and D280Y. 
Therefore, all four variants were selected for analysis of their functional 
impact. 

3.3. Analysis of functional consequence of the selected SNPs 

Twelve web-based tools, including SIFT, PolyPhen-2, CADD, REVEL, 
MetaLR, Mutation assessor, SNPs&GO, PhD SNP, PANTHER, MutPred2, 
ClinVar and SuSPect were employed for the evaluation of the functional 
impact of the four variants (D280N, D280Y, D280H and E44K) on the 
UT-B1 protein. Among them, D280Y was predicted deleterious or 

disease-associated by maximum tools, whereas D280H and E44K were 
forecasted as deleterious by 4 and 3 tools, respectively. All twelve tools 
refer D280N variant as benign, having no impact on the protein function 
(Table 1). Hence D280Y variant was preferred for further analysis along 
with D280N, as D280N is the most commonly occurring variant in the 
global population among all three variants of rs1058396. 

3.4. Determining the conservation level and surface accessibility 

All the amino acid residues of the UT-B1 protein were represented 
using the ConSurf algorithm in terms of their structural and functional 
conservation levels. The ConSurf result revealed that the amino acid 
residue targeted in this study was an exposed residue and had a con
servation score of 1. (Supplementary Fig. 1). Lower conservation score 
represents the D280 residue located in a variable region. 

Again, an examination of surface accessibility using NetSurfP-3.0 
predicted relative surface accessibility of all the amino acid residues of 
the protein, along with a representative RSA score. Asp (D) residue at 
280 position that belongs to an alpha-helical structure is exposed and 
accessible with an RSA of 50% (Supplementary Fig. 2). 

3.5. Effect on UT-B1 protein stability 

The impact of the two variants (D280Y and D280N) on the stability 
of UT-B1 protein was evaluated by screening through two web-based 
tools: I-mutant 3.0 and MUpro. Since different algorithms are used by 
I-Mutant 3.0 and MUpro, the predicted result or assigned ΔΔG value 
slightly varied from each other. However, both tools predicted the two 
variants to decrease the stability of the protein as the ΔΔG is less than 
zero in each case. ΔΔG represents the free energy balance between the 
folded and unfolded states of the protein structure, and a negative score 
implies a reduction in the stability of the structure [57]. I-Mutant 3.0 
predicted ΔΔG value was − 1.36 kcal/mol for the D280Y variant and 
− 1.30 kcal/mol for the D280N variant. Again, the ΔΔG value was pre
dicted − 0.695 kcal/mol for D280Y and − 1.068 kcal/mol by MUpro. 

3.6. Exploring the interaction profile with other proteins 

Assessment of protein interaction by STRING v11.5 server antici
pated that the UT-B1 protein encoded by the SLC14A1 gene exhibited 
interconnection with ten other proteins, including proteins encoded by 
SLC28A1, SLC4A1, AQP1, AQP2, AQP3, RHCE, RHBG, KEL, ACP1 and 
ZNF134 genes (Fig. 3A). The proteins encoded by these genes are mainly 
membrane-embedded and are involved either in the transportation of 
ions, small molecules and water across the biological membrane or in 

Fig. 2. Percentage of various SNP types of SLC14A1 gene.  
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blood group system. Moreover, gene ontology (GO) analysis character
ized the appropriate biological processes, cellular components, and 
molecular functions linked with the target SLC14A1 gene, which can be 
better identified and visualized in Fig. 3B. 

3.7. Evaluation of the structural consequence 

HOPE server discovered the underlying reasons for which variations 
in the amino acid sequence would possibly distort the protein structure 
and hamper its function. The server gave a clear view of how the wild- 
type residue was changed into the mutated residue in both variations 

Table 1 
Functional consequence prediction by twelve web-based tools.  

Tools rs1058396 (D280Y) rs1058396 (D280N) rs1058396 (D280H) rs2298720 (E44K) 

Score Prediction Score Prediction Score Prediction Score Prediction 

SIFT 0.01 Deleterious 0.65 Tolerated 0.02 Deleterious 0.02 Deleterious 
PolyPhen 0.647 Possibly damaging 0.009 Benign 0.666 Possibly damaging 0.281 Benign 
CADD 22 Likely benign 8 Likely benign 17 Likely benign 23 Likely benign 
REVEL 0.212 Likely benign 0.061 Likely benign 0.173 Likely benign 0.158 Likely benign 
MetaLR 0.169 Tolerated 0 Tolerated 0.168 Tolerated 0 Tolerated 
Mutation assessor 0.712 Medium 0.187 Neutral 0.712 Medium 0.884 Medium 
SNPs&GO 0.279 Neutral 0.111 Neutral 0.147 Neutral 0.194 Neutral 
PhD SNP 0.618 Disease associated 0.329 Neutral 0.43 Neutral 0.581 Disease associated 
PANTHER 0.435 Neutral 0.182 Neutral 0.326 Neutral 0.214 Neutral 
MutPred2 0.698 Pathogenic 0.126 Likely benign 0.512 Likely Pathogenic 0.37 Likely benign 
Clinvar – Not reported – Benign – Not reported  Not reported 
SuSPect 32 Likely benign 23 Likely benign 29 Likely benign 12 Neutral  

Fig. 3. (A) Interaction framework of SLC14A1 with other cellular proteins predicted by STRING; (B) Significant gene ontology terms of SLC14A1 (BP, Biological 
process; CC, Cellular components; MF, Molecular function). 

Fig. 4. Visualization of the native Aspartate residue alteration into variant Tyrosine (A) and Asparagine (B) through superimposition by Project HOPE. The image 
depicts the native residue in green, the variant residues in red, and the protein structure in grey. The encircled pink region is the site of alteration. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(Fig. 4). In the case of the D280Y variant, the size, charge, and hydro
phobicity were altered due to the mutation. The mutant residue Tyr (Y) 
was greater in size, neutral in charge compared to negatively charged 
Asp (D), and more hydrophobic in nature, while in the D280N variant, 
the Asn (N) residue only differed in charge from the wild-type Asp (D). 

3.8. Differences in secondary structure 

Relative secondary conformation, including helix, sheet, turn, coil, 
etc., was predicted by SOPMA for the wild-type UT-B1 protein as well as 
the mutant variants (D280Y and D280N). The prediction unveiled dif
ferences between the secondary structures of wild-type and mutant 
proteins. The wild-type UT-B1 protein was estimated to contain 46.79% 
alpha helix (182 residues), 13.79% extended strand (52 residues), 
4.11% beta-turn (16 residues), and 35.73% random coil (139 residues). 
On the contrary, the D280Y variant protein had 49.61% alpha helix, 
12.85% extended strand, 4.88% beta-turn, and 32.65% random coil, and 
D280N had 50.13% alpha helix, 12.34% extended strand, 4.37% beta- 
sheet and 33.16% random coil (Table 2). 

3.9. 3D structure modeling and evaluation 

I-TASSER provided the top five models for each of the native and 
mutant proteins. The best models having the highest C-score were 
refined using the GalaxyRefine server. The server again resulted in 5 
refined models for corresponding proteins, which were then submitted 
to SAVESv.6 for quality check. Models with higher quality were chosen 
and further evaluated by PROCHEK, ERRAT, Swiss-model structure 
assessment, and ProSA (Fig. 5). Most of the residues (>90%) of the three 
predicted models fell in the Ramachandran favored region having very 
little (0.0%, 3.3% and 0.3%) in the disallowed region. The evaluation 
scores predicted by these tools are depicted in Table 3. The high ERRAT 
scores of 98.82%, 88.14%, and 92.93% for the wild-type, D280Y, and 
D280N variant proteins respectively indicated higher quality for non- 
bonded atomic interactions for three of the structures where the 
acceptable range is >50% [58]. Again, PROSA, a quality measure tool, 
assesses the divergence of the total energy of the structure with regard to 
an energy distribution produced from random conformations. The 
Z-scores below − 6.00 predicted by ProSA for all three structures are 
indicative of the model’s high quality as more negative Z-scores indicate 
better protein models [59]. Moreover, Molprobity does a comprehensive 
examination of all-atom contacts, resulting in a quality score for the 
structure. The quality of the structure increases as the score gets closer to 
zero [60]. The “degree of nativeness” of a particular structure can be 
quantified using the QMEAN Z-score which compares the protein 
models to reference structures determined via X-ray crystallography. 
Low-quality models have QMEAN Z-scores below − 4.0 [61]. The Mol
Probity scores of around 2 and QMEAN Z score of > -4.0 indicated 
overall good quality of the proteins. 

The structure models for two variants, D280Y and D280N, were 
superimposed separately with the wild-type model and visualized in 
PyMol. Alignment in PyMol and TM-align estimated that the D280Y 
variant slightly deviated from the predicted native structure with a 
PyMol RMSD score of 0.458 and TM-align score of 0.90745 whereas the 
D280N deviation was of PyMol RMSD score of 0.395 and TM-align score 
0.91084. 

3.10. Ligand binding property analysis 

The impact of single nucleotide polymorphism on the ligand binding 
feature of protein was determined by docking using the PyRx-embedded 
AutoDock Vina tool. When the wild-type and variant models were 
docked with four ligands (cholesteryl hemisuccinate (Y01), octyl beta-D- 
glucopyranoside (BOG), tetraethylene glycol (PG4), and urea), an in
crease in the binding free energy was observed for each ligand binding 
with the variant models compared to the wild-type protein. Lower 
binding energy indicates strong binding affinity and with increasing 
binding energy, the affinity towards the ligand becomes weaker [62]. 

Cholesteryl hemisuccinate (Y01) displayed the highest affinity 
among the tested compounds. Interactions between Y01 and the wild- 
type UT-B1 protein involve multiple amino acids leading to the bind
ing energy of − 9.1, which rose to − 8.0 and − 7.7 for D280Y and D280N 
variants respectively. Similarly, other ligands such as octyl beta-D-glu
copyranoside (BOG), tetraethylene glycol (PG4), and urea exhibited 
distinct binding patterns and affinities, with the mutations generally 
reducing binding affinity (higher binding free energy) across all ligands 
(Table 4). Binding free energy for Protein-BOG interaction was − 6.8 for 
UT-B1 (wild-type) and − 6.4 for both variants. For Protein-PG4 binding, 
it was − 4.4, − 4.1, and − 3.5 for native UT-B1, D280Y, and D280N 
variants respectively. Again Protein-Urea interaction had binding free 
energy of − 3.8 for wild-type UT-B1 and -3.3 for both variants. 

Following the protein-ligand docking, the complexes were visualized 
in Discovery Studio for their interaction investigation. Due to the 
introduction of single nucleotide variation in the native structure, al
terations in the interacting residues, as well as a binding site for a 
particular ligand, were observed (Figs. 6 and 7). In comparison with the 
wild-type UT-B1, both of the variants exhibited either a different or 
decreasing number of amino acid residues involved in protein-ligand 
interaction, yielding varying degrees of hydrogen bonds and other 
bonds (Table 4). The change in bonding pattern and number ultimately 
caused the declining affinity of the variant proteins. The lower binding 
affinity (higher binding free energy) of the variant proteins underscores 
the importance of residue 280 in UT-B1 protein-ligand interactions and 
provides valuable insights into the molecular mechanisms underlying 
ligand recognition and binding. 

3.11. Molecular dynamic simulation 

The physical basis of the structure and biological function of mac
romolecules can be better understood with the help of molecular dy
namics (MD) simulations. For this reason, MD simulation was performed 
for the wild UT-B1 protein and its variants (D280Y and D280N) and 
compared the outcome. 

The Root Mean Square Deviation (RMSD) was calculated to assess 
the systems’ stability. A higher RMSD value indicates that the protein is 
more unstable [63]. After 25 ns, the RMSD for the wild-type UT-B1 
stabilized fairly soon. Its value has stayed constant at 0.35–0.4 nm since 
then. In contrast, the RMSD values for both UT-B1 variants (D280Y and 
D280N) were higher (around 0.45 nm and above) reflecting the insta
bility of the variant protein structure compared to the wild-type protein 
(Fig. 8A). 

The regional flexibility of the protein was evaluated using the Room 
Mean Square Fluctuation (RMSF) method. Regions with higher RMSF 

Table 2 
Secondary conformation prediction of the wild-type and variant UT-B1 proteins using SOPMA.   

Wild Type D280Y D280N 

Motif Residue Percentage Residue Percentage Residue Percentage 

Alpha helix 182 46.79% 193 49.61% 195 50.13% 
Extended Strand 52 13.37% 50 12.85% 48 12.34% 
Beta Turn 16 4.11% 19 4.88% 17 4.37% 
Random Coil 139 35.73% 127 32.65% 129 33.16%  
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values typically correspond to flexible regions within secondary struc
tures such as coils or loops, whereas regions with lower RMSF values 
generally align with more rigid secondary structures like alpha helices or 
beta sheets. In comparison to the natural protein, the variations of UT- 
B1 were less flexible around the 250th and 300–350th residues as 
their RMSF value was relatively lower [63] (Fig. 8B). 

The degree of compactness was measured using the radius of gyra
tion. Protein folding is stable when the radius of gyration is generally 
constant. The radius of gyration fluctuation indicates protein unfolding 
[63]. The wild-type UT-B1 reached a stable value immediately after 20 
ns indicating stable folding or compactness of the protein. On the other 
hand, the higher and fluctuated radius of gyration represented the 

unfolded structure of the variants (Fig. 8C). 
SASA was employed in MD simulations to forecast the protein hy

drophobic core stability. The likelihood of protein instability due to 
solvent accessibility increases with increasing SASA score [63]. When 
compared to the wild UT-B1, the variations showed higher SASA levels 
(Fig. 8D). 

3.12. Non-coding SNPs of SLC14A1 gene analysis 

A total number of 179 non-coding SNPs of SLC14A1 transcript ID 
ENST00000321925.9 was filtered from the ENSEMBL genome browser 
that had a global MAF range of 0.05–0.5. These SNPs include ten 3′UTR 
variants, two 5′UTR variants, and 167 intron variants (Supplementary 
Table 2). 

3.12.1. Analysis by RegulomeDB and GTEx portal 
All of these variants were submitted to RegulomeDB for the analysis 

of their effect on the regulatory mechanism of the gene. Out of 179 
variants, about 103 variants were ranked by the server, which included 
2c (1 SNP), 3a (8 SNPs), 4 (25 SNPs), 5 (45 SNPs), 6 (7 SNPs), and 7 (17 
SNPs) (Fig. 9). The likelihood that a mutation is located in a functional 
region increases with lower ranks and with higher ranks, there is less or 

Fig. 5. Three-dimensional model assessment of the predicted protein structures. Ramachandran plot of the wild type (A) as well as its D280Y (B) and D280N (C) 
variants displaying Rama-favored region in red, the additionally allowed region in yellow, the generously allowed region in faint yellow, and the disallowed region in 
white color. The ProSA plot is showing the Z-score (black point) of the three proteins: wild-type (D), D280Y variant (E), and D280N (F). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Evaluation scoring of the refined models by ERRAT, PROCHEK, ProSA, and 
Swiss model assessment tools.  

3D 
Model 

Ramachandran 
favored region 

ERRAT 
score 

MolProbity 
score 

ProSA Z 
score 

Qmean Z 
score 

Wild 
Type 

96.70% 98.8166 1.12 − 6.99 − 1.75 

D280Y 90.10% 88.1402 2.32 − 6.76 − 3.79 
D280N 94.90% 92.9348 1.44 − 7.19 − 2.41  
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no evidence of the transcription factor binding [54]. 
Nine SNPs having a rank of 2c and 3a provided by RegulomeDB were 

further analyzed by the GTEx portal for their impact on tissue-specific 
gene expression and eQTL (Expression quantitative trait loci). All of 
the nine SNPs had multiple tissue eQTL, including skeletal muscle, 
esophagus, nerve, lung, thyroid, pituitary, heart, adipose tissue, and 
others. Among these, the two tissue sites with the highest impact on 
SLC14A1 gene expression for each SNP were listed in Table 5, along with 
the P-value and normalized effect size (NES). 

3.12.2. Analysis by polymiRTS 
A total of 179 filtered ncSNPs were screened through the PolymiRTS 

tool to determine whether or not any of the selected ncSNPs were in the 
miRNA seed region or miRNA binding site. It was found that two SNPs, 
rs1135979 (T > C) and rs1135980 (C > T), affect the miRNA binding site 
with a conservation score of 2. Both SNPs had known ancestral alleles, 
and the functional class ‘C’ denotes that they both create new miRNA 
sites without any support of experimental data denoted by N (Table 6). 
The conservation score represents the presence of the miRNA site in 
other vertebrate genomes, in addition to the genome being analyzed. 
According to the PolymiRTS database, the miRNA sites created by these 
two ncSNPs (rs1135979 and rs1135980) were also present in Rhesus and 
Chimp along with the human genome. 

4. Discussion 

Urea transporter type B (UT-B), encoded by the SLC14A1 gene, is 
implicated as a significant protein involved in the urinary concentrating 
mechanism and maintenance of cellular homeostasis. GWAS studies 
identified SLC14A1 as a bladder cancer susceptibility gene and reported 
several associated loci [2–4]. Deficiency of UT-B1 leads to high urea and 
NO concentration in urothelial cells, suggesting a possible mechanism of 
bladder carcinogenesis [5,7,8]. Reportedly, genetic variations of the 
SLC14A1 gene seem to impact the abundance of UT-B1 protein in the 
plasma membrane of urothelial cells and other tissues [64]. This is 
highly likely to affect the normal functioning of cells. Consequently, 
they hold significant implications for further investigation of SLC14A1 
variants to reveal the involvement of UT-B1 in human diseases, partic
ularly different types of malignancies. 

Screening through dbSNP and ENSEMBL genome browser identified 
rs1058396 as the most common genetic missense variant of the 
SLC14A1 gene with a global minor allele frequency of 41.1%. rs1058396 
is defined as ancestral allele G and altered allele A (D280N), C (D280H) 
and T (D280Y). Characterization of these variants for their probable 
structural and functional effect on UT-B1 protein involved a number of 
web-based tools and predicted D280Y (rs1058396; T allele) as delete
rious by maximum prediction tools, while D280N (rs1058396; A allele), 
the common variant of the same SNP ID, as neutral. Since the level of 

accuracy and prediction methods or algorithms of these tools differ from 
each other, and their web servers are being updated from time to time, 
the prediction results can vary from each other or the previously 
attained result using the same tool for the same SNP [65]. 

Keeping in mind the significant role of the conserved region for a 
protein’s structure and function [66], an evolutionary conservation 
profile was generated for UT-B1 protein using ConSurf which revealed 
the D280 residue was located within the variable region while being 
exposed on the protein surface. The RSA (relative surface accessibility) 
of 50% and disease association level of 2% assigned by NetSurfP-3.0 to 
the D280 position indicated that the D280Y and D280N variants were 
likely to result in detrimental consequences. Exposed residues are more 
likely to be involved in interaction with other components within the 
cellular environment and alteration of solvent-accessible residues can 
cause significant changes in protein stability and interaction [57]. 
I-Mutant and MUpro servers calculated Gibbs free energy (ΔΔG) of less 
than zero for both variants implying a reduction in the stability of the 
UT-B1 variant structures [57]. 

Moreover, the HOPE server analyzed the nsSNP to identify the gen
eral physiological and functional changes caused by the point mutation. 
In the case of the D280Y variant, the mutant residue (Tyr) resulted in 
increased size and hydrophobicity compared to wild-type Asp, while 
D280N causes no change in these properties. However, the negative 
charge of Asp is lost in both cases as Tyr and Asn are both uncharged 
amino acids. These changes unveil a possible effector mechanism of the 
variants because of the significant influence of amino acid characteris
tics in protein folding, stability, spatiotemporal dynamics of protein- 
protein interactions, and function of the protein, but they are not ab
solute and occasionally may be deceptive [57,67]. 

Besides UT-B1 protein, SLC14A1 also encodes JK antigen (Kidd 
glycoprotein) and serves as the basis of the Kidd blood group system. 
The primary allelic variants, JkA (D280) and JkB (N280) result from a 
substitution at amino acid position 280, which constitutes a significant 
focus of the present study [68]. To have a deeper understanding of the 
importance of the SLC14A1 gene, its interacting network was forecasted 
by the STRING server. SLC14A1 (UT-B1) was found to interact with ten 
other proteins involved in some significant cellular systems, such as 
transportation across the cell membrane (Solute carrier proteins 
SLC28A1 and SLC4A1; Aquaporins AQP1, AQP2, and AQP3) and blood 
group system (RHCE, RHBG, and KEL). Gene ontology characterized the 
molecular function, cellular components, and biological processes of 
UT-B1 protein, supporting SLC14A1’s role in these important physio
logical processes. Interaction of membrane-embedded UT-B1 protein 
with other proteins may play a crucial role in maintaining their normal 
physiological functions and transporter activity. This network disrup
tion or reduced protein stability due to D280Y and D280N variations can 
cause impairment in cellular homeostasis leading to cell death or other 
complications. 

Table 4 
Ligand interactions and binding affinity of the predicted models for the four selected ligands.  

Ligand UT-B1 
Protein 

Binding 
Affinity 

Interacting Amino Acids (AA) Conventional H-bonded AA Carbon H-bonded 
AA 

Cholesteryl Hemisuccinate Wild Type − 9.1 K43, R64, L116, S119, L121, P174, V175, L364 R64 K43, S119 
D280Y − 8 L132, F136 V203, I204, I206, T208, L285, F288, 

C338 
T208 – 

D280N − 7.7 A46, Q68, N73, T368 Q68, N73, T368 – 
Octyl beta-D- 

glucopyranoside 
Wild Type − 6.8 Q68, N73, L116, L121, Y122, P174, V175, L364 N73 – 
D280Y − 6.4 Q68, F71, N73, L121, P174, V175, L364, V367 N73 V367 
D280N − 6.4 L121, S169, P174, L364, V367 – S169 

Tetraethylene Glycol Wild Type − 4.4 W286, N289, A230, G323, A337 W286, N289, A337 A320, G323 
D280Y − 4.1 Q232, Y280, N289, G323 Q232, N289, G323 Y280 
D280N − 3.5 N73, S119, V367 N73, V367 S119 

Urea Wild Type − 3.8 S137, F198 S137, F198 – 
D280Y − 3.3 L285, N289 L285, N289 – 
D280N − 3.3 T39, D41, M42, K43, Y369, E372 T39, D41, M42, K43, Y369, 

E372 
–  
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Furthermore, the structural effect of D280Y and D280N variants on 
the UT-B1 function can also be observed by their secondary and tertiary 
structure. Assessment via SOPMA unveiled changes in the relative sec
ondary conformations between the native and variant structures. 
Compared to the wild-type structure, the variants exhibited a rise in 
alpha helix and beta-turn structures, accompanied by a decrease in the 
extended strand and random coil structures. These structural modifica
tions suggest a potential influence of the variants at the D280 position on 
the protein’s stability, flexibility, and functional and binding properties. 

Further analysis is typically necessary to understand the specific effects 
of these changes on the protein’s structure-function relationship. 

The tertiary structure of the human urea channel SLC14A1 (UT-B1 
protein) available in PDB is incomplete, as some residues are missing in 
the structure. However, the variant structures needed to be predicted. 
When comparing the predicted variant structure to the empirically 
confirmed wild-type structure, there might be more divergence, which 
could possibly result in less accuracy than comparing two predicted 
structures. That’s why the protein structure was modeled, instead of 

Fig. 6. Visualization of the protein-ligand complexes exploring the ligand binding sites, amino acid residues involved in the interaction, and their positions. (A) Wild- 
type + Y01, (B) D280Y + Y01, (C) D280N + Y01, (D) Wild-type + BOG, (E) D280Y + BOG, (F) D280N + BOG, (G) Wild-type + PG4, (H) D280Y + PG4, (I) D280N +
PG4, (J) Wild-type + Urea, (K) D280Y + urea and (L) D280N + urea. 
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using the one from PDB. Nevertheless, several online tools are available 
such as I-TASSER [39] and AlphaFold [69] for 3D structural modeling. 
According to the assessment by the TM-align server (https://zhangg 
roup.org/TM-align/), the I-TASSER generated structure was slightly 
more similar (TM value 0.99873 and RMSD value 0.24) to the estab
lished structure than the one from the Alpha fold (TM-align value 
0.99853 and RMSD value 0.26). Therefore, I-TASSER was considered in 

this study which was also employed in previous research to forecast the 
three-dimensional configuration of proteins [12,15]. 

The success of in silico research relies heavily on the reliability of 3D 
projected models. In some cases, the protein structure predicted from its 
sequence through template-based modeling may have less accurate side 
chains even with high sequence identity [70]. Therefore, energy mini
mization of the predicted models and fixing local and global 

Fig. 7. Visualization of the protein-ligand complexes exploring the ligand binding sites, amino acid residues involved in the interaction, and their positions. (A) Wild- 
type + Y01, (B) D280Y + Y01, (C) D280N + Y01, (D) Wild-type + BOG, (E) D280Y + BOG, (F) D280N + BOG, (G) Wild-type + PG4, (H) D280Y + PG4, (I) D280N +
PG4, (J) Wild-type + Urea, (K) D280Y + urea and (L) D280N + urea. 
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inaccuracies to obtain a more precise structure requires refining the 3D 
models, which was achieved by GalaxyRefine [41]. The quality of the 
refined protein structures was assessed to ensure high-quality structure 
to proceed with further analysis such as molecular docking which re
quires a high-resolution structure for more accuracy [71]. As the pref
erence for a good quality model is about 90% residues in the most 
favored region of the Ramachandran plot [72], the 3D models of the 
UT-B1 proteins (>90% Rama favored region for wild-type and two 
variants) were of good quality. The overall quality of the refined models 
was additionally checked based on the ERRAT score (>85%), 

Molprobity score (around 2), Prosa Z score (below − 6), and Qmean Z 
score (above − 4) generated by ERRAT, ProSA and Swiss model assess
ment, all of which referred to the models as of overall good quality. 

Structural alignment of the native protein and variant structures 
using TM-align and PyMOL estimated structural deviation based on the 
TM-score and RMSD values consecutively, though it was very insignif
icant. TM-score of 0.90745 for D280Y and 0.91084 for D280N variants 
indicated that they are not identical, but are in about the same fold with 
the wild-type protein [46]. On the contrary, the RMSD score is 0 for 
identical proteins and an increased score of 0.458 (D280Y) and 0.395 

Fig. 8. RMSD (A), RMSF (B), Radius of gyration (C), and SASA (D) analysis of wild type UT-B1 (Green), D280Y variant UT-B1 (Red) and D280N UT-B1 (Yellow) 
proteins following molecular dynamic simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 9. Lollipop plot disclosing the number of various types of ncSNPs, categorized into different RegulomeDB ranks.  
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(D280N) indicated slight deviation from the native structure [45]. 
As structural alteration has a profound influence on a protein’s 

interaction feature, protein-ligand docking assessed how the variants 
altered the UT-B1 protein’s molecular interaction. It has been demon
strated in a few studies that mutant protein has an altered binding af
finity score than the wild-type protein. In most cases, a larger negative 
binding energy indicates a more favorable ligand orientation within the 
binding site [15,16]. When docked with ligands (cholesteryl hemi
succinate, octyl beta-D-glucopyranoside, tetraethylene glycol, and urea) 
using PyRx embedded AutoDock Vina tool, both the D280Y and D280N 
variants exhibited increased free binding energy for all four ligands, 
implicating weaker binding affinity. This may be due to deviated ligand 
orientation due to amino acid alteration and can lead to the decreased 
functional activity of the UT-B1 transporter protein and increased risk of 
disease pathogenesis. The interacting amino acid residues and their 
bonding patterns were also changed as a result of variations in the 
structure. 

The behaviors of proteins and other biomolecules can be mimicked 
with atomic precision and with high temporal resolution using molec
ular dynamic (MD) simulations. The primary aim of this study was to 
evaluate intrinsic structural disparities between variant and wild-type 
proteins, thus concentrating solely on unbound proteins facilitated a 
direct contrast of inherent structural dynamics, free from the interfer
ence of ligand binding. This approach was also used in earlier studies to 
analyze the alteration of the dynamic nature of proteins owing to 
missense SNPs [16,63]. It has been proven useful in interpreting the 
functioning mechanisms of proteins and other biomolecules, as well as 
discovering the structural foundation for disease [73]. Through MD 
simulation (100 ns), four parameters, such as RMSD, RMSF, the radius of 
gyration (Rg), and SASA, were assessed to observe the physical basis of 
the structure-to-function relationship of variant proteins compared to 
the wild-type protein. Increasing RMSD scores for D280Y and D280N 
variants indicated protein instability, with D280N showing the highest 
instability. Reductions in RMSF values in specific regions suggest 
decreased flexibility in altered structures which justified the increased 
alpha helix and decreased coils motifs in the variant structures. Proteins 
require flexibility for proper function and interaction with other pro
teins or molecules [74] and alterations in flexibility can compromise 

this. Fluctuations in the radius of gyration resemble unfolding in mutant 
structures, contrasting with the stable folding of the wild type. Desta
bilization of hydrophobic cores increases solvent accessibility, as 
measured by SASA. Molecular dynamics simulations reveal overall 
destabilization by mutations, likely disrupting protein function. 

Along with the missense variants, several non-coding variants of the 
SLC14A1 gene play a critical role in the expression of a gene at the 
transcriptional level or post-transcriptionally. To date, a plethora of 
approaches that center on regulatory areas of the genome have been 
created to focus on to emphasize disease-associated non-coding varia
tions [75]. Screening through RegulomeDB website revealed nine 
non-coding SNPs (rs7234310, rs10432193, rs9304322, rs2170974, 
rs9967412, rs10460035, rs8099449, rs12454680, and rs568418) which 
are more likely to occur at the regulatory site, modulate transcription 
factor (TF) binding and might be associated with altered SLC14A1 gene 
expression in different tissues [76]. GTEx portal showed the tissue lo
cations where the SLC14A1 gene expression might be significantly 
altered due to these specific polymorphisms. Two such tissue sites 
having the highest effect on SLC14A1 expression were reported in this 
study which will support future investigations studying these genetic 
alterations and gene expression analysis of SLC14A1 gene in those 
tissues. 

Gene expression is also influenced by a different type of post- 
transcriptional control which is accomplished through the binding of 
miRNA to the 3’ UTR region of the targeted mRNA [77]. With the use of 
the PolymiRTS server, two SNPs (rs1135979 and rs1135980) were 
discovered, both of which produce new seed regions. Seed areas are 
evolutionarily preserved and essential for mRNA complementarity 
which means miRNAs that were shown to have a connection with these 
two SNPs will lead to suppression of SLC14A1 mRNA. In the recent past, 
numerous instances of these functional miRNA-binding site SNPs have 
been recognized for their potential use as cancer biomarkers [78]. 

Altogether, the data from several in silico analyses, molecular 
docking, and molecular dynamics simulations point to the negative 
consequences of D280Y and D280N variations of UT-B1 transporter 
protein. Protein instability and reduced flexibility leading to altered 
interaction properties implicated by the variants reveal the molecular 
mechanism of UT-B1 dysfunction in carcinogenesis [3] and other health 

Table 5 
Top two tissue eQTL for the SCL14A1 gene variants of Regulome rank 2c and 3a analyzed by GTEx portal.  

Variant Id ncSNP P-Value NES Tissue 

chr18_45726828_G_A_b38 rs7234310 7.3E-11 − 0.24 Muscle - Skeletal 
0.00000067 − 0.23 Esophagus - Muscularis 

chr18_45727107_T_C_b38 rs10432193 7.3E-11 − 0.24 Muscle - Skeletal 
0.00000067 − 0.23 Esophagus - Muscularis 

chr18_45728233_G_T_b38 rs9304322 0.00000067 − 0.23 Esophagus - Muscularis 
0.0000016 − 0.17 Nerve - Tibial 

chr18_45728845_A_T_b38 rs2170974 7.3E-11 − 0.24 Muscle - Skeletal 
0.00000067 − 0.23 Esophagus - Muscularis 

chr18_45728924_C_G_b38 rs9967412 7.3E-11 − 0.24 Muscle - Skeletal 
0.00000067 − 0.23 Esophagus - Muscularis 

chr18_45731518_G_A_b38 rs10460035 0.000000015 0.41 Adipose - Visceral (Omentum) 
0.000024 0.34 Adipose - Subcutaneous 

chr18_45731731_T_C_b38 rs8099449 1.2E-10 − 0.23 Muscle - Skeletal 
0.00000085 − 0.23 Esophagus - Muscularis 

chr18_45741452_T_C_b38 rs12454680 1E-10 − 0.23 Muscle - Skeletal 
0.00000057 − 0.18 Lung 

chr18_45744907_A_G_b38 rs568418 0.000000047 0.42 Adipose - Visceral (Omentum) 
0.000014 0.32 Lung  

Table 6 
Non-coding SNPs that affect the miRNA-based gene regulation detected by PolymiRTS.  

ncSNP Ancestral Allele Altered Allele miRSite Function class Conservation score Experiment support 

rs1135979 T C agctaCCTGGGAg C 2 N 
rs1135980 C T cCTGGGTGAcaag C 2 N  
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complications [8,11]. Additionally, several non-coding SNPs related to 
regulatory effect and miRNA-based gene suppression have been identi
fied which needs further experimental validation. 

4.1. Strengths and limitations 

The strength of this study lies in the extensive investigations of these 
SNPs using multiple computational techniques and analyses that work 
based on different algorithms. Their collective interpretation provided a 
thorough understanding of the implications of these single nucleotide 
polymorphisms on disease susceptibility and dysfunctionality of protein. 
Therefore, this study can provide strong background support to further 
laboratory-based research such as mRNA level and protein level 
expression profiling of UT-B1 protein and functional assay to validate 
the association of UT-B1 protein variations with various diseases, spe
cifically urothelial carcinoma. 

However, there are certain limitations of our study. This study only 
addressed germline missense and non-coding (intronic, 3′UTR, and 
5′UTR) variants of the SLC14A1 gene (UT-B1 protein), solely depending 
on various computational tools and algorithms without any laboratory- 
based experiments. Again, additional mutations such as somatic SNVs 
and indels, previously linked to illnesses, are not examined in this in- 
silico analysis. For example, an in-frame deletion of exon 4 in UT-B1 
has been identified as a significant factor in bladder cancer [79]. As 
understanding the relationship between a molecular and disease 
phenotype is very intricate, a thorough biological analysis at the mo
lecular level is crucial for validating and reinforcing the study. 

5. Conclusion 

The D280N and D280Y variants of rs1058396 of the SLC14A1 gene 
were characterized in this study by deciphering its functional implica
tions, structural alterations, molecular interactions, dynamics features, 
and other attributes using an exhaustive in silico approach. This 
extensive analysis and characterization of rs1058396 can be helpful in 
the continuation of research pertaining to UT-B1 protein in clinical 
samples. It opens the door to the prospect of investigating the role of this 
SNP in disease pathogenesis and establishing a molecular biomarker for 
disease diagnosis and personalized treatment opportunities. 
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