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coordinated analysis of exon 
and intron data reveals novel 
differential gene expression 
changes
Hamid R. Eghbalnia1,2*, William W. Wilfinger3, Karol Mackey3 & Piotr Chomczynski3

RNA-Seq expression analysis currently relies primarily upon exon expression data. The recognized 
role of introns during translation, and the presence of substantial RNA-Seq counts attributable to 
introns, provide the rationale for the simultaneous consideration of both exon and intron data. We 
describe here a method for the coordinated analysis of exon and intron data by investigating their 
relationship within individual genes and across samples, while taking into account changes in both 
variability and expression level. This coordinated analysis of exon and intron data offers strong 
evidence for significant differences that distinguish the profiles of the exon-only expression data from 
the combined exon and intron data. One advantage of our proposed method, called matched change 
characterization for exons and introns (MEI), is its straightforward applicability to existing archived 
data using small modifications to standard RNA-Seq pipelines. Using MEI, we demonstrate that when 
data are examined for changes in variability across control and case conditions, novel differential 
changes can be detected. Notably, when MEI criteria were employed in the analysis of an archived 
data set involving polyarthritic subjects, the number of differentially expressed genes was expanded 
by sevenfold. More importantly, the observed changes in exon and intron variability with statistically 
significant false discovery rates could be traced to specific immune pathway gene networks. The 
application of MEI analysis provides a strategy for incorporating the significance of exon and intron 
variability and further developing the role of using both exons and intron sequencing counts in studies 
of gene regulatory processes.

High-throughput RNA sequencing (RNA-Seq) has rapidly become a default standard for profiling the composi-
tion of the transcriptome. The starting material for RNA-seq is usually total RNA consisting of a heterogeneous 
pool of RNA molecules at different levels of gene transcript  processing1. Profiling and subsequent differential 
analysis is routinely performed by measuring exon expression levels for the coding sections of an RNA transcript. 
A range of statistical and computational approaches have been developed to perform differential  analysis2–11. 
However, RNA-Seq data also contains information about the intronic part of a protein-coding gene  transcript12. 
While cells are known to contain substantial amounts of intronic RNA originating from unprocessed (pri-
mary) gene  transcripts13, routine expression analysis does not study this data. As a result, an estimated 20–40% 
of sequenced RNA that is mapped to functionally relevant introns remains relatively  unexplored14–19. Several 
approaches for identifying and profiling introns have been developed, but the topic of how to use the information 
remains the focus of intense  research20–25. Characterization of intronic read data appears to be central to further 
 progress26–28 (see also the guidelines of the Roadmap at https ://www.roadm apepi genom ics.org/).

The proportion of exons to introns in an unprocessed transcript is approximately 1–1 because both exons and 
introns are transcribed at approximately 1–1 ratio. Fundamental degradation kinetics suggests that free introns 
degrade according to the exponential decay law. Thus, the exon to intron relationship for each gene within and 
across samples might indicate comparative degradation rates across the genome. More broadly, evaluating the 
data regarding a gene’s joint exon–intron relationship may reveal how degradation rates in some genes are rel-
evant to regulation. Related ideas have motivated the recent work on exon–intron relationship in RNA-Seq. Along 
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these lines, investigators have estimated the change in mRNA half-life by using the difference of the logarithm 
of fold-change of exonic and intronic reads (ΔLog(exon)–ΔLog(intron)), and have suggested corrections for 
cases where the rate of transcription is too fast or  slow20,29,30. Incorporation of intronic read data has also been 
used to determine RNA Velocity—the time derivative of gene  expression31. These recent studies, performed in a 
variety of organisms, have delineated a new model in which for a subset of genes the most important regulatory 
sequences are located within introns.

When read counts are lower, as is the case for most introns, variability is a bigger barrier to attaining statistical 
significance. In addition to physiological variability, RNA purification, library amplification and the processing 
of RNA-Seq samples are among several factors that can introduce technical  variability32–34. Other factors that 
introduce unwanted variability should also be mitigated to the extent possible. For example, blood-derived RNA 
is frequently used in studies of gene expression in humans, but in healthy individuals RNA content varies over a 
three to fourfold  range35, and there is broad heterogeneity between individuals in the number and composition 
of blood cells which further contributes to biological  variability36–38. When studying exon–intron relationships, 
each distinct experimental protocol carries with it a different set of trade-offs and variability profiles. For exam-
ple, using poly-adenylated RNA for analysis can improve signals from mature RNA, but this may come at the 
expense of missing functionally important non-coding RNA fragments present in the nucleus and cytoplasm.

Computational tools play a key role in the analysis of RNA sequencing data, and standardization of com-
putational workflows can mitigate the amplification of experimental variability. Currently, a variety of software 
platforms and workflow protocols are available for quantifying expression  levels2,4,5,8,10,11,39–45. Quantification can 
be achieved by counting the number of RNA fragments 50–100 nucleotides in length (reads) that overlap with 
a sequence in the reference genome. Quantitation by counting the number of reads (Read number) provides an 
estimate of expression for complete mRNAs, individual exons and introns, and intervening lncRNA junctions. A 
significant number of these reads (> 20%) include counts of non-uniquely mapped reads that are multi-mapped 
to more than one sequence. Computational methods have been devised to distribute the multi-mapped reads 
between the various assignment locations in accordance with various statistical models. Assignment of multi-
mapped reads, and general software assumptions can introduce consequential bias in both exon and intron 
 reads44–48. Therefore, minimizing assumptions and simplifying computation is expected to mitigate the potential 
for bias in results.

In some studies, quantifiable changes in variability attributable to physiological conditions in control vs. 
disease have been identified as important  predictors49,50. For example, differences in exonic expression entropy 
(after correction for technical variability) between control and case conditions, has been used as a differential 
measure for detecting  change51. However, the broader use of measures that capture physiological variability of 
expression as a differential between disease and control has been otherwise rare and limited to exonic expres-
sions. The recently established role of introns in regulation supports a more comprehensive approach towards 
investigating physiological changes by: (a) considering the joint characterization of exon and intron data in 
expression analysis, and (b) including changes in both expression level and expression variability. Genes with 
altered exon or intron expression, or altered exon or intron variability, can then be used to identify significantly 
altered gene expression pathways.

To this end, we introduce the Matched change characterization for Exons and Introns (MEI) methodology 
for examining simultaneous changes in the exon and intron counts, and their variabilities for all genes in one 
individual as well as one gene across individuals. Genes selected through MEI analysis can be used to identify 
significantly altered gene circuitry, which can in turn guide the development of new differential tests. The MEI 
methodology can reveal unique information not previously identified by current methods, and is applicable 
to a wealth of existing data in databases with relatively small computational overhead. To further improve the 
robustness and reproducibility of MEI, we employ a strict counting technique that is applicable to other RNA-
Seq studies.

Our study uses genes with high-quality mapped reads exclusively—reads with high MAPQ  values40—which 
makes the counts obtained for both introns and exons effectively “unique” counts. We refer to these counts as 
“singular counts” because they are effectively singularly aligned to only one gene. To improve the robustness 
of expression data, our in-house study employed ERCC spike-in controls for read calibration by implementing 
a proportional adjustment method that compensated for amplification and pipetting  errors52. In addition, we 
introduce the rescaled exon to intron reads ratio for visualizing the differences between exons-only and exon/
intron ratio data. The analytical MEI approach provides persuasive experimental evidence for the involvement 
of intra-gene intronic regions in the regulation of differential gene expression, and it also uncovered additional 
genes reaching statistical significance in the differential analysis of the two groups considered.

Materials and methods
RNA samples. This study was approved by the Chesapeake Institutional Review Board (CIRBI Proto-
col Pro00009509). All methods were performed according to applicable regulations and guidelines approved 
by the Chesapeake IRB committee. A total of 24 women ranging in age from 50–82 years of age (mean ± SD: 
62.71 ± 9.37  years) and 11 men of age 52–89  years (64.27 ± 10.29  years) provided informed consent prior to 
participating in the study. Participants were interviewed by a medical professional and eligibility was based on 
a questionnaire containing 53 health-related questions approved by Chesapeake IRB. All participants were in 
good health at the time of blood collection and after an overnight fast, 8–10 ml blood samples were collected 
into two 10 ml BD Vacutainers (EDTA) by New Horizons Clinical Research, Cincinnati, OH. The blood from 
one Vacutainer was transferred into a pre-weighed bottle containing 16 ml of RNAzol-BD and the blood was 
thoroughly mixed with the reagent prior to storage at – 20 C. The second tube of blood was processed for Com-
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plete Blood Cell (CBC) analysis by LabCorp, Dublin, OH. A complete summary of the CBC data is available in 
a previous  report35.

RNA was processed according to the manufacturer’s directions (RB-192; Molecular Research Center, Inc., 
Cincinnati, OH) and details were previously  reported35,53. The solubilized RNA was analyzed with a Bioanalyzer 
(RIN = 7.43 ± 0.31, n = 35), and stored at – 80 C until the samples were thawed for library preparation. Prior to 
RNA-Seq analysis, samples were DNase-treated. Absence of gDNA contamination was verified through negative 
control PCR experiments. Additional details are provided in the supplementary material (Supplement S1). The 
DNase-treated samples were submitted to the University of Cincinnati Genomics, Epigenomics and Sequenc-
ing Core Facility for RNA sequencing. After the samples passed quality control analysis, an aliquot of ERCC 
ExFold RNA spike-in mix (Ambion, 4456739; Foster City, CA) was added to 1 µg of large RNA prior to rRNA 
and globin mRNA depletion with the Globin-Zero Gold Kit (Illumina GZG1206; San Diego, CA). The cDNA 
libraries were processed according to standardized Illumina protocols prior to sequencing on the Illumina HiSeq 
2000 platform (see Supplement S8).

Additional RNA-Seq data from peripheral blood were obtained from the Sequence Read Archives (SRA) 
public repository (https ://www.ncbi.nlm.nih.gov/sra). The data were part of the study by Mo et al.54 (https ://www.
ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE11 2057). We used the data for the 12 control and 46 polyarthritic 
samples provided in the case study to illustrate the use of MEI analysis.

Workflow. Our workflow for RNA-Seq quantification (Supplement Fig. 1s) followed standard  procedures39,40. 
As a first step, we evaluated the quality of raw data for adapter contamination, average base quality score per 
read, GC content distribution, and other relevant parameters. All samples were evaluated using  FastQC55 soft-
ware. Fastq files contained 53.9 to 77.1 million reads, and the initial QC result for the 35 samples was a 97.6% at 
Q score ≥ Q30 (probability of correct base assignment 999/1,000 times). The files were trimmed and processed 
in preparation for subsequent data analysis. Reads were aligned to the reference genome by using the BowTie2 
aligner, which supports gapped alignments in the latest  release56. FastQC software was also used to verify the 
quality of aligned data in files generated by Bowtie2. All of the sequencing data in this report were processed as 
single-end read counts. For the 35 control samples, ERCC spike-in counts were identified in the alignment step 
by augmenting the reference genome GRCh37.p13 [hg19] with ERCC spike-in57 sequencing data (provided by 
the manufacturer).

The aligned data files were used to obtain high-quality count data which represented singular gene counts 
(see Supplement S2). Bowtie2 quality flags were used to establish a threshold for singular counts. Genes quali-
fied for singular counts satisfied two conditions: (a) we required a MAPQ ≥ 40, which meant that sequences 
were mapped with high probability to one location in the genome, and (b) if lower quality counts for the same 
gene or sequence were reported, we required the alternative counts not to exceed 1% of the total gene counts. 
The procedure detailing this selection criteria and its impact is provided in the supplementary material. Counts 
provided by two common software tools (Cufflinks and  HTSeq58) were used as a quality check for the singular 
counts obtained with our in-house scripts. The validity of intron reads was further confirmed with quantitative 
PCR for a selected set of transcripts displaying different levels of gene expression (Supplement S1). PCR results 
confirmed the presence of intron sequences as measured by RNA-Seq results. For the set of 35 healthy subjects, 
we obtained singular counts for 4,865 genes. The NCBI data set yielded singular counts for 4,292 genes. We 
note that the singular count values do not directly address duplicated genes (genes that map to more than one 
location); of which there were 17 in our data set. We used counts for duplicated genes only if they had singular 
counts. Additional information is outlined in the supplementary material (Supplement S2).

The data for the 35 controls prepared for this study utilized external spike-in controls. A library of 96 external 
RNA spike-in controls, developed by the External RNA Controls Consortium (ERCC), was designed to act as a 
technology-independent control for differential expression  experiments52,57. In order to evaluate and compensate 
for the effect of technical errors on the sequencing results, our computation incorporated ERCC spike-ins to build 
an iterative calibration model using the known ratios among ERCC concentrations in the original commercial 
mix (see Supplement S3 for additional discussion). The calibration step provided size factor correction, which 
was omitted in favor of correction to  median62 when ERCC data was not available (see Supplement S1, Fig. 1s 
and discussion). The above protocols were chosen to minimize sequencing and mapping bias. The public data 
set did not yield any data for external spike-in controls.

Computational analysis. We used GINI coefficients for evaluating  variability59. The GINI coefficient, 
sometimes referred to as GINI, is a number between 0 and 1 with lower values indicating less variability. More 
accurately, GINI is a measure of heterogeneity or dispersion of data, and is related to entropy and higher sta-
tistical moments of data. GINI is obtained by normalizing the absolute value of the sum of differences between 
all expression values for any given gene sample. GINI is not impacted by the upper and lower range of data, it 
is not sensitive to data heteroscedasticity (overdispersion problem) or normalization effects, it works well even 
when the data is not normally distributed, and it is robust to outliers. For example, GINI for a set of gene-length-
normalized counts is the same as the raw expression counts (not length-normalized). We use the unbiased 
formulation of GINI and note that differences in the number of samples, or read depth have minimal impact on 
GINI. GINI and Coefficient of variation (CV) are follow the same trends for normally distributed data without 
outliers. Since RNA-Seq expression data is not normally distributed and can contain outliers, GINI facilitate the 
measurement of statistics, including higher moments, for both exon and intron variability across a wide range 
of expression values. We measure differential GINI change between treatment groups by calculating the relative 
delta GINI change ( δGINI/GINI) . The statistical basis for significant δGINI level is explained in the supplementary 
section S9.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112057
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112057
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Tests for significance (p-value) were performed according to the negative binomial distribution (NBD). 
Expression values have been shown to be more consistent with the negative binomial distribution than lognor-
mal or normal  distribution6,8,11,58,60–63. In particular, modeling the RNA-Seq counts using NBD and linking the 
variance to the mean of counts, provides the strategy to account for overdispersion in data. Significance levels 
were adjusted for false discovery by using the Benjamini–Hochberg procedure. A false discovery rate (FDR) of 
0.1 that would hold for both exon and intron data translated to a p-value of 0.0011—therefore, a p-value of 0.001 
was used (see the supplementary material for further discussion).

Change in correlation p-values were calculated by using Fisher’s formula. We used “exon:intron” throughout 
this work to refer to the joint (Matched) relationship between exon and intron counts for a gene within and across 
samples and define the specific relationship in the context of the analysis. For correlation analysis between exon 
and intron counts, we used the standard Pearson correlation coefficient either with or without transforming the 
values to log2 scale. We also used Spearman’s rank correlation to evaluate potentially non-linear relationships. 
Both Pearson correlation and rank correlation measure the degree to which two vectors (exons and intron read 
counts) are related—independent of the absolute scale of exon and intron values. Pearson correlation was used 
since there were no noticeable nonlinearities (see supplementary material for a comparison). We used robust 
regression to establish the overall exon:intron relationship between rescaled exon and intron counts. Rescaling 
was performed to reduce the impact of heteroscedasticity. It was accomplished by dividing the counts by the 
respective lowest count value for each gene. Slope analysis was used to rigorously assess the statistical significance 
of exon and intron changes at the aggregate level. We obtained a robust estimate of the regression slope for the 
correlation relationship between adjusted relative exon and intron gene expression across samples and evalu-
ated the significance of these differences in the slope of exon/intron correlations. The significance test provided 
a p-value for difference in  slopes64.

Cluster analysis was used to identify and visualize the relationship between exon expression values before 
and after normalization by the corresponding intron counts. This ratio provided per-sample information, and 
its use was justified because the ratio relationship line had zero intercept. Data for exons were normalized for 
each gene by dividing all expressions levels with the lowest corresponding expression level. Data for introns 
were treated similarly. For the exon only clustering, the normalized values were subsequently transformed by 
 log2. Exon–intron clustering was performed after taking the ratio of the normalized count values (exon/intron) 
and performing a  log2 transformation. To mitigate divide-by-0 in cases where the lowest expression level was 
equal to zero we added one to all normalized intron values. The Pearson correlation coefficient was used as the 
distance measure in the K-means  algorithm65. Clustering results were evaluated by calculating the frequency of 
co-clustered pairs—referred to as the Adjusted Rand Index (ARI)49. An ARI value close to zero indicates that 
the clustering models were dissimilar, while perfect similarity was indicated by an ARI value of 1. (see additional 
information in Supplement S4).

The rich content of RNA-Seq data continues to foster the development of several methodologies and algorithms. 
Each software package provides tunable parameters and comes with assumptions appropriate to the methodology. 
To carry out our comparison, we have focused on one of the most commonly used workflows in differential gene 
analysis. Our comparison set of genes is obtained by normalizing for library size, performing a significance test 
using NBD (to account for overdispersion), correcting for FDR, and selecting for genes with 2 × expression change 
(see supplementary material for further information). Our extended set of genes is obtained by merely amending 
the final step and including genes that show distributional or relationship (exon–intron) changes.

Results
The results of our investigation are organized into three sections. In the first section, we demonstrate that when 
exons counts are normalized by the corresponding intron counts, the resulting co-expression profile  (log2 scale) 
in a control population is markedly different from the profile of exon-only counts. In the second section, we 
investigate the three quantities, exon:intron correlation, exon GINI, and intron GINI (MEI), and establish that 
each of these quantities can vary independently. These results demonstrate that relationships between exon 
and intron counts, and the variability of counts as measure by GINI should be considered to be parameters of 
interest. In the third section, we use MEI analysis to establish an expanded differential gene expression profile 
and use it for the selection of an enlarged set of differentially expressed genes. The additional genes identified 
by employing MEI analysis are associated with functionally significant immune pathway networks that could 
be contributing to the health status of the population under study. We contrast the expanded set of genes with 
the significantly smaller set of genes that were not associated with any pathway based on standard measures of 
statistical significance. In particular, we compare the significance of gene pathways highlighted by the network of 
genes from MEI results with those obtained from the standard analysis. Based on these observations, we propose 
that the application of matched exon:intron GINI scores should be considered as a means to further amplify the 
power of the standard analysis criterion for differential gene expression analysis.

Marked difference in the co-expression profile of exon-only and exon:intron ratio data. Gene 
co-expression network analysis has been used extensively to infer gene function and gene–disease associations 
from genome-wide gene  expression66–75. The idea is to construct networks of genes with a propensity to co-
activate across a group of samples and subsequently probe this network using additional information. For exam-
ple, differential co-expression analysis can be used to identify genes with varying co-expression partners under 
different conditions, such as disease states, tissue types and developmental stages. Differential co-expression 
analysis is premised on the idea that the pattern of co-expressed gene partnerships is more likely to provide 
information about the regulators that underlie phenotypic differences. Based on the exponential decay model of 
free fragments, the value of  log2(exon/intron) can be viewed as an aggregate decay time constant. Therefore, co-
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expression profile differences exist between exon-only expression data and exon:intron expression data provides 
important clues about the nature of information provided by each. Clustering, a well-established method for 
investigating correlation structures, was therefore used here.

For exon-only data, we clustered genes first based on exon  log2 transformed data. In order to incorporate the 
intron data for clustering, we used the matched exon:intron ratios on  log2 scale; this ratio was calculated for each 
gene and for each sample and used as the clustering variable. Prior to  log2 transform, we relativized exon expres-
sions by dividing exon counts by the lowest exon expression for the selected gene. An identical computation was 
performed for introns using the lowest intron count. This procedure created two feature vectors of length 35 for 
each gene (n = 35)—one feature vector for the exon-only data, and another for the exon:intron data. We used the 
K-means data clustering technique with Pearson correlation as the distance measure. The number of clusters was 
automatically determined by a statistical optimization procedure (AIC)76. Because we intended to use the public 
NCBI data set later, we included 3,943 genes from the in-house control data set (81%) that were also found to be 
in the NCBI “singular count” data set in our analysis (the intersection of the two sets of genes). The clustering 
algorithm identified three clusters for the exon-only data, and four clusters for the exon/intron data (Fig. 1).

The three-cluster grouping identified for the exon-only data (Fig. 1A) were qualitatively and quantitatively 
different from the four exon/intron clusters in panel B. In addition to the presence of different number of clusters 
in panels A and B, significant quantitative differences were observed between the two clustered data sets. To 
demonstrate quantitative differences, we calculated the frequency of co-clustered gene pairs adjusted for random 
chance (Adjusted Rand Index or ARI). The calculated ARI of 0.12 indicated that the two clustering models are 
highly dissimilar (perfect similarity is indicated by ARI = 1 and numbers close to 0 are indications of significant 
dissimilarity). The color patterns observed in the control data set used red to indicate a positive z-score (> 1) 
and blue to indicate a negative z-score (< 0). The color patterns could be read in the vertical or horizontal direc-
tion similar to a barcode. Each vertical slice (column) represents the barcode profile for one gene across the 35 
samples, whereas the horizontal barcode patterns may represent the global regulatory state of the entire genome 
for one individual. In one interpretation of the barcodes, we considered a lower or higher relative abundance 
of intron reads as a proxy for the signaling of regulatory events. For example, the blue-red-blue-red pattern is 
common to several control individuals near the bottom of panel B (horizontal slices) while individuals in the 
middle of panel B are more likely to follow a blue-blue-red-blue pattern (see also Supplement S4).

In summary, the co-expression profile of the 35 members of the control group identified four unique motifs 
of exon:intron ratio expression. The observed pattern was readily differentiated from the exon co-expression 
profile for exon-only data (panel A). These observations demonstrate that the incorporation of intron data 
(exon:intron ratio) significantly alters the correlation structure of the gene expression data. Additionally, the 
pattern of exon and intron changes across samples and within one individual are noteworthy; these patterns are 
discussed further in supplement S4 and Fig. 3s.

Matched exon:intron relationships and changes in variability of exon or intron counts provide 
additional information. Observations in the previous section guided our search for additional quantita-
tive measures that could elucidate the regulatory role of introns. We considered changes in the variability of 
exon expression, intron expression, and the relationship between exon and intron expressions as the most direct 

Figure 1.  Clustering profiles of exon counts and exon/intron ratio data. The profile of each individual in the 
control group (n = 35) is depicted as horizontal slice (rows) of the heatmap. All values were transformed using 
 log2 and range-normalized by using the z-score function (mean = 0). The normalized values for A and B are 
represented by the scale color bar on the right side of the heat map, with warmer colors (red or r) indicating a 
positive z-score and cooler colors (blue of b) indicating a negative z-score; z-score values near 0 are highlighted 
with black. Identical color scale is used for both heatmaps. In A and B, each vertical slice (column) represents 
the z-score profile of one gene across the 35 samples. Samples (horizontal rows) are organized according to 
correlation with highest correlated rows closer to each other. In A, three distinct clusters were formed for the 
exon-only data and more than 70% of genes were observed in the largest cluster. In B, the transformation and 
normalization of values was performed on exon/intron ratios. Four distinct clusters emerged in B (separated 
by black lines in the heat map). For example, the profile (row) of an individual near the bottom of B can be 
summarized as brbr (left to right dominant colors). The blue color scale in the last 7 rows of A (bbb) indicate 
below zero mean z-score values for all genes in these 7 individuals. No rows in B have a bbbb (or rrrr) pattern. 
Similar observations can be made for z-score values above zero in rows 20 and 22 of A. The horizontal dotted 
white lines in B are used as a visual aid to indicate the transition boundary. Note that the width of each cluster in 
B is adjusted for best presentation and also for comparison to the NCBI control data in the supplementary data 
(Supplement S4) and it is not strictly proportional to the number of genes in the cluster.
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candidates for consideration. We used GINI for the measure of variability, and the slope of exon:intron correla-
tion as the measure for the relationship between exon and intron expression levels. We utilized all 4,865 genes 
identified as having singular counts in the 35 in-house control subjects.

We revisited the exon/intron ratio relationship described in Fig. 1, by considering the linear correlation 
relationship between exon and intron counts. Initially we used both the Pearson correlation coefficient and the 
rank correlation coefficient to ensure that both linear and potentially non-linear relationships were evaluated. 
Because there was no significant difference in the results, Pearson correlation coefficient analysis was used (Sup-
plementary S5, Fig. 4s). According to standard statistical theory, a low correlation or anti-correlation relation-
ship between exon and intron expression levels would indicate that simultaneous use of both intron and exon 
data could provide information beyond either exon or intron data alone. The control results demonstrated that 
more than 1/3 of the genes surveyed had low correlation values (r < 0.5), thus the expression level of one (exon 
or intron) could not be accurately inferred from the other (Fig. 2).

Next, we compared the variability of exons and introns, for each of the 4,865 genes in the control data set, 
by calculating the GINI coefficient for exon and intron expression levels. We created two lists by rank ordering 
genes according to exon variability (low to high) and by intron variability (low to high). The two lists had sig-
nificantly different rank ordering of genes. For example, among the first 500 genes in both lists only 250 genes 
were common to both lists; this corresponds to an ARI value ≤ 0.3 (see Supplement S6). The absence of rank 
order correspondence further supported our view that exons and introns had significantly different expression 
variability profiles.

The simultaneous consideration of exon:intron correlations, exon variability, and intron variability, is illus-
trated in Fig. 2. The figure summarizes and visually confirms that the global profile of gene expression data 
exhibited a range of complex interrelationships. In particular, some parameters showed correlations, while other 
parameters were uncorrelated, indicating that all three measure should be considered. For example, although 
LYPD6B and CASC21 genes showed highly correlated exon and intron relationships, the LYPD6B gene showed 
high exon and intron variability while the CASC21 gene exhibited lower exon variability and moderate intron 
variability (Fig. 2). In contrast, PARP2 exhibited low intron and exon variability, but its exon and intron expres-
sion were effectively anti-correlated. Changes in these three parameters may be indicative of different regulatory 
events, and all three parameters were considered during differential gene expression analysis.

Summarizing the results so far, we note that co-expression profiles for exon:intron ratios were shown to be 
distinctly different from the profile for exons alone (Fig. 1), thus strengthening the hypothesis that the exon:intron 
pairs present new information as compared to exon expression values alone. Moreover, computational experi-
ments suggest that the formation of the four tightly related groups in the exon:intron data was not a fixed 
parameter resulting from random gene degradation alone (see Supplement S9). We also noted that each of the 
three parameters presented in Fig. 2 may carry independent information. Next, we determined that all three 
measures provided independent information useful for MEI analysis.

MEI analysis identifies additional differentially expressed genes. We used MEI to further exam-
ine differential global changes in gene expression in an archived NCBI data set (Control (n = 12) vs. polyarthritic 
Case data (46)). MEI analysis was performed on 4,294 genes for which the data contained singular counts (see 
Methods section). As noted previously, approximately 90% of these genes were also identified in our in-house 
controls despite differences in the method of RNA extraction and sample preparation. A commonly used ana-

Figure 2.  The global relationship between exon and intron read levels. Circles depict quantities derived from 
matched exon and intron counts for 4,865 genes in a control sample of 35 individuals (n = 35). The x-axis shows 
the relationship between exon and intron read levels based on the computed Pearson correlation coefficient 
“r” obtained by robust regression of matched exon and intron counts across the 35 samples. The left y-axis 
shows exon dispersion as measured by GINI coefficient. The intron GINI coefficient is depicted by the size and 
color of the circles as defined on the right y-axis (for clarity, both color and size encode the intron dispersion 
level). Several relationships can be observed. Correlations between exon and intron counts range from highly 
correlated (1 > r > 0.95) to anti-correlated (− 0.4 > r > − 1). Exon read levels do not provide a consistent report on 
intron counts; there are numerous genes in the low correlation area, (0.4 > r > − 0.4), where both exon and intron 
read levels have low dispersion. Three genes exhibiting markedly different correlation and dispersion levels are 
identified in the figure with a “ + ” symbol.
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lytical approach is to select a threshold p-value for exon expression changes  (Ep), and additionally require a 
twofold change in the mean expression change  (Em). For the MEI analysis of the Control and Case NCBI data, 
in addition to  Ep and  Em (Table 1), we used the following MEI measures in the differential analysis: (1) intron 
p-value  (Ip), (2) the p-value for exon:intron correlation coefficients change between the two data sets  (Cd), , and 
(3) relative exon GINI change  (Ge), and (4) relative intron GINI change  (Gi). Changes in correlation between 
matched exon:intron counts were used as a more rigorous proxy for comparing the clustering patterns of genes.

The following thresholds were used to establish a baseline for identifying genes that exhibit significant change 
between the two groups. For the standard statistical criterion, we used  Ep < 0.001 p-value as the significance level 
(negative binomial test), which yielded a set of 346 genes. In the identified data set of 346 genes, 25 genes were 
found to have at least a twofold change. The set of 25 genes with  Ep < 0.001, and twofold expression change did not 
identify a significant enrichment for gene ontologies based on the String-db enrichment  analysis77. Two genes, 
ARG1 and TBX1, involved in negative regulation of T-helper 2 cell cytokine production, with a calculated false 
discovery rate (FDR) = 0.0172 (GO:200052) were identified (see Supplement S7). The choice of p-value < 0.001 
as the more stringent criteria was used throughout our analysis to guard against false positive selections due to 
numerical computation differences, or assumptions related to the underlying distribution of  data78.

In order to explore additional prospective genes, we used MEI calculations and applied the following quantita-
tive criteria for selection. We required a minimum of two significant differential changes as a criterion for inclu-
sion in the list of genes of interest. For criterion 1, as in the standard analysis, we required that all genes satisfy 
a differential exon expression change (control vs. case) at the significance level of  Ep < 0.001 (NBD). As noted 
above, the application of  Ep < 0.001 yielded 346 genes. For the second criterion, we required that all candidate 
genes satisfy one of the following criteria: intron p-value significance of  Ip < 0.001 (NBD), more than twofold 
change in either exon or intron GINI value between case over control, or significant correlation differential value 
of  Cd < 0.005 (Fisher test). The designated GINI change threshold was selected to identify genes that displayed a 
significant change in variability between control and case populations. The Fisher test threshold was set consist-
ent with the strictness criterion for testing a change in correlation.

The addition of the complementary selection criteria reduced the list of 346 genes to 186 genes (slightly more 
than sevenfold increase in the number of gene candidates as compared to the standard method). The contribution 
of each criterion to the selection criteria is shown in Fig. 3. It is important to note that the list 186 genes identified 
with our expanded selection criterion were simultaneously detected by 1–5 of these parameters thereby indicat-
ing that complex coordinated changes appear to be occurring among these genes. We examined several genes 
from this list and plotted the exon:intron relationship in Case and Control populations for three specific genes 
(Fig. 3). These prototypical genes elucidated in more detail the changes in exon:intron relationships between the 
Control (blue circles) and Case (red circles) (Fig. 3, COL6A2, IL13RA1, and GZMK genes).

The gene COL6A2, which has been associated with early onset arthritis is the single gene that exhibits 
significant changes for all of the measures proposed in Table 1. In addition to the reduced range of expression 
observed in the figure, both exons and introns exhibit reduced variability  (Ge and  Gi) as shown (Fig. 3, COL6A2). 
ARG1 has a scatter profile similar to COL6A2 (not shown). It is an anti-inflammatory gene with associations 
to  arthritis79, and exhibits changes in all measures except  Cd. It is interesting to note that all genes differentially 
identified based on the additional criterion of twofold change can also be identified independently by using one 
or more of the three other criteria identified in Table 1.

While the expression level changes for IL13RA1 do not meet the twofold threshold, GINI calculations show 
significant changes in exon variability. Visual inspection of the scatter plot for this gene suggest differential 
changes (Fig. 3, IL13A1). Interestingly, this gene has been implicated as a circulating biomarker for  arthritis79. 
GZMK, a serine-protease member of cytotoxic lymphocytes capable of recognizing, binding, and subsequently 
lysing target cells, has been shown to play a role in inflammatory  response79. While GZMK has a statistically 
significant differential change between case and control, it does not meet the twofold criteria; however, intron 
GINI differential change of larger than twofold supports the inclusion of this gene. RNF11 gene is ring finger 
 protein79 with a scatter plot profile (not shown) similar to GZMK. It is involved in the modulation of inflam-
matory signaling pathways. Similar to GZMK, the fold change calculations do not reach the twofold threshold, 
but in this case the exon GINI score changes by more than twofold between control and case samples. Another 
example where twofold change threshold is not reached is the NCR1 gene. The data exhibits significant intron 

Table 1.  Parameters for differential expression analysis. The parameters considered are: p-value for exon 
expression change  (Ep), mean-fold change  (Em), p-value for intron changes  (Ip), p-value for correlation changes 
 (Cd), and exon and intron differential GINI changes  (Ge and  Gi). The combination of Ep and Em (first two 
rows), is commonly used for the detection of expression change. Our analysis expands the parameters to 
include the combination of  Ep with one of  Em,  Ip,  Cd,  Ge,  Gi.

Differential measures Symbol

Exon p-value Ep

Mean-fold change Em

Intron p-value Ip

Correlation differential Cd

Exon GINI differential Ge

Intron GINI differential Gi
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and exon changes (p < 0.001), while correlation between exon and intron values is maintained in both the control 
and the case groups (figure not shown). NCR1 is a cytotoxicity activating receptor that may contribute to the 
efficiency of natural killer  cells79.

Additional criterion for identifying genes of interest was based on significant changes in exon:intron correla-
tion  (Cd < 0.005 using Fisher’s test). OAS1, a protein that is known for antiviral and possibly apoptotic  activity76 
provides an example for differential change in correlation profiles (figure not shown) between the Control and 
Case samples. The control data for matched exon and intron values is correlated (r = 0.89), the case data exhibits a 
loss of correlation (r = 0.33). However, for the NCBI data set examined here, all genes with significant correlation 
structure changes can also be selected by using either exon GINI or intron GINI changes. This behavior may be 
unique to this data set because our earlier observations indicated that exon and intron GINI and correlations were 
not always linked (Fig. 2). Therefore, it may be useful to retain  Cd as a selection criterion for further evaluation.

Differential changes in the identified parameters distinguished 186 individual genes relevant to polyarthritic 
condition in the study. The list included the initial list of 25 genes identified earlier by the standard approach. 
More importantly, String-db  analysis76 of the expanded list of genes revealed a significantly enriched interaction 
(PPI enrichment < 1E-16) that identified key immune-related networks (Fig. 4). The addition of approximately 
150 new gene candidates resulted in a significantly enriched network which placed the smaller set of 25 genes in 
the larger context of the immune network. For example, associations between ARG1 and TXB25 were completed 
to form a circuitry. The immune response, defense response, and innate immune response pathways (Biological 
Process GO) identified by enrichment analysis are congruent with the expected involvement of an immune inter-
relationship in the polyarthritic group. Moreover, the enrichment of an additional 178 annotated genes was not 
caused by an “immune enrichment bias”, because the complete set of 4,294 genes was not enriched for immune 
response pathways according to Strings-db77 and Panther  db78.

Discussion
In this report we introduced MEI analysis as a complementary approach for the study of exon and intron relation-
ships and the identification of differential changes in the gene expression circuitry. Our proposed approach to 
differential analysis contributes to the ongoing research on differential measures by expanding the opportunity 
to identify gene targets of interest. Our consideration of changes in expression variability and the relationship 
between exon and intron counts build on previous observations. Variability of expression in exon levels, con-
sidered to be important in certain  conditions50, has been incorporated into MEI by using the GINI coefficients. 
Intronic RNA reads are a significant fraction of data from RNA-Seq experiments, and we have shown that the 
application of MEI analysis to standard RNA sequencing results and the use of GINI coefficients provides a new 

Figure 3.  Contribution to the expanded gene list and example gene profiles. The heatmap identifies each 
parameter with significant change (Table 1) between control (n = 12) and case (n = 46) for each of the 186 
genes (Ep < 0.001). The map is organized by sorting each row in priority order (top to bottom). Em is based 
on the standard twofold change value. Scatter plot of three genes corresponding to specific parameter change 
conditions is linked with an arrow to their location on the heatmap. For example, COL6A2 is the first entry 
and it has significant changes for all 5 parameters, while IL13RA1 has a significant change for  Ge only (exon 
GINI). Note that significant changes in  Ge or  Gi (2 × change corresponding to p < 0.001) account for all selected 
genes except FAM118A (last column). In the case of FAM18A, the significant differential change is in intron 
expression. The mnemonic EC stands for exon counts (x-axis; IC stands for intron counts (y-axis).
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approach for analyzing differential changes. We identified the additional patterns of exon:intron correlation and 
its changes as a complementary measure for differential analysis. Although exon:inton correlation changes did 
not identify genes that had not been identified by the other proposed measures (Fig. 3), we noted many anticor-
related genes with changes at a lower threshold (Fig. 2). Therefore, we consider this measure to be a valuable 
adjunct that may depict more dynamic changes in future studies.

Figure 4.  MEI expression analysis identifies significant immune-related interactions . Image from String  db77 
analysis of the 186 genes candidates highlights a significant immune related network involving 178 annotated 
genes. To increase clarity, isolated genes not showing associations with other proteins were not included. The 13 
genes marked with the red arrow symbol are genes that were identified in the smaller set of 25 genes based on 
the standard analysis (see Supplement S7). The enrichment results highlight immunity, which is consistent with 
the expected differential activation in the polyarthritic case vs. control population in the study. The legend in the 
figure provides the color codes identifying the biological processes and the associated pathways.
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MEI analysis captures shifts in gene co-expression patterns that may contain information relating to regula-
tory events. These shifts are difficult to discern through the use of standard expression analysis because changes to 
individual exon expression levels may be comparatively small when measured against the landscape of variability 
occurring across multiple genes. In addition, exon–intron expression is affected by time-dependent processes and 
further clarification of MEI results may be possible by studying these changes over time. The characterization of 
additional modes of analysis highlight the fundamental importance of devoting future studies to determine the 
extent to which changes in the pattern of intron expression may contribute to the modulation of physiological 
processes. For example, MEI changes in  Gi without changes in  Ge suggests a change in the distribution of values of 
introns but not exons. For genes with significant change in  Ep (the genes we consider), this result reflects changes 
in the relationship between exon and intron levels—for example, the emergence or disruption of correlations 
between exon and intron levels. The combined impact would suggest a regulatory change in the role of introns.

A less strict cutoff value for  Ep and  Em provides an alternative for recovering more differentially expressed 
genes. However, a less strict  Ep or  Em will also yield many genes that are potentially false positives (increase in 
the FDR). For example, in order to recover all MEI significant genes by relaxing the  Ep or  Em criteria, we had to 
consider a large number of additional genes (a minimum of ~ 385 additional genes). Since there were a total of 
373 genes at our FDR threshold, many of the additional genes are likely false positives. A more comprehensive 
assessment of blood transcript levels with tight computational controls over model assumptions, and the use of 
both intron and exon expressions, may improve the clinical usefulness of the data and the predictive value of 
these studies in various disease states. The complementary strategy outlined here presents new opportunities 
for analysis of the massive trove of data in existing databases.

In addition to its potential to provide complementary information in differential expression analysis, MEI 
analysis may be useful for other applications. For example, select genes that are known to fall within a defined 
range of exon–intron correlations, may be useful for identifying cases for further within-group validation, quality 
checking, or detection of technical issues with sample and/or data processing. Moreover, additional MEI analysis 
of public data sets may make it possible to construct a careful and detailed catalog of intronic region decay rates 
for specific genes in specific tissues. Such a study would require a great deal of computational resources, but the 
resulting catalog of data may be highly informative in the interpretation of new experiments in the same tissues.

The richness and complexity of RNA-Seq data has led to the development of a host of software tools and 
computational pipelines. In turn, new software tools with additional internal validation criterion may help set a 
gold standard to evaluate and compare sequencing outcomes when different pipeline employed by laboratories 
arrive at disparate results. As an additional source of information, MEI analysis may also motivate the develop-
ment of richer software tools for RNA-Seq analysis.

Our use of “singular”, high quality counts places more emphasis on the genes that yield counts that are not 
multimapped; only ~ 50% of the total reported genes register unique exon and intron counts. Using high-quality 
reads which are effectively unique as the basis of our expression study has the distinct advantage of simplicity—
in essence, the count assignments are model-free. Because model-free counts are likely to be more stable and 
computationally reproducible, they provide more robust results and can be used as an initial probe of biological 
events. In this context, the cutoff criteria for filtering matches (MAPQ) can be relaxed in order to capture more 
genes. The use of model-free counts can then be followed by incorporating model-based algorithms with greater 
coverage to extend the information across the genome. Additionally, genes without intron counts can also be 
included. The initial application of a more stringent analysis of RNA sequencing data may provide the basis for 
a more comprehensive analysis of the complete gene pool and would require the development of additional 
software.

The reduction of technical noise and variability at the sample processing stage can further aid in curtailing 
information loss. Many RNA sequencing processing pipelines routinely employ data transforms to mitigate 
noise and variability, but the application of these transforms may be counterproductive if this variability contains 
important biological information. ERCC spike-in controls can provide reliable data for sample-to-sample calibra-
tion by referencing to a proportional (or relative) value, as done here, as opposed to referencing to an absolute 
concentration. Efforts to improve the precision of read quantification and reduce sources of experimental vari-
ability will be pivotal in identifying tightly regulated gene expression patterns within a group of genes. For exam-
ple, if genes within a regulatory cluster begin to display large changes in exon:intron expression, these changes 
may identify altered states of gene regulation as previously illustrated by the genes identified in Figs. 3 and 4.

The investigation into introns and intron variability was motivated by our interest to further understand the 
relationship between exon and intron counts and its role in elucidating regulation. Although existing approaches 
to differential expression are important, expanding these methods in order to include intron expression as well as 
exon and intron variability enriches the analysis by considering the potential regulatory information in RNA-Seq 
data. For example, the consideration of differential changes in the MEI measures expanded the initial group of 
25 genes to a more comprehensive list of 186 genes that play a prominent role in the immune circuitry relevant 
to the condition under study. While the MEI approach may pose a small additional computational burden, it has 
the potential to provide significant insight into potentially important regulatory pathways. In turn, an improved 
understanding of the global nature of these regulatory changes may contribute to alternative treatment strategies 
and potential new arenas for pharmaceutical intervention as well as personalized medical treatments.
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