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ABSTRACT

Accumulating evidence indicates that transcription
factor (TF) binding sites, or cis-regulatory elements
(CREs), and their clusters termed cis-regulatory
modules (CRMs) play a more important role than do
gene-coding sequences in specifying complex traits
in humans, including the susceptibility to common
complex diseases. To fully characterize their roles
in deriving the complex traits/diseases, it is neces-
sary to annotate all CREs and CRMs encoded in the
human genome. However, the current annotations
of CREs and CRMs in the human genome are still
very limited and mostly coarse-grained, as they of-
ten lack the detailed information of CREs in CRMs.
Here, we integrated 620 TF ChIP-seq datasets pro-
duced by the ENCODE project for 168 TFs in 79 dif-
ferent cell/tissue types and predicted an unprece-
dentedly completely map of CREs in CRMs in the
human genome at single nucleotide resolution. The
map includes 305 912 CRMs containing a total of 1
178 913 CREs belonging to 736 unique TF binding
motifs. The predicted CREs and CRMs tend to be sub-
ject to either purifying selection or positive selection,
thus are likely to be functional. Based on the results,
we also examined the status of available ChIP-seq
datasets for predicting the entire regulatory genome
of humans.

INTRODUCTION

Since the Human Genome Project was completed 16 years
ago (1,2), researchers have used powerful computational
and experimental methods (3) to gain a good understand-
ing of coding sequences in the human reference genome. In
contrast, although cis-regulatory sequences are as impor-
tant as coding sequences in specifying various phenotypes
of organisms (4–6), only recently have we begun to deci-
pher them systematically due to difficulties in characteriz-

ing them using traditional method (7). These cis-regulatory
sequences (i.e. promoters, enhancers, silencers and insula-
tors) are also called cis-regulatory modules (CRMs) (8), be-
cause they are made of clusters of short cis-regulatory ele-
ments (CREs) recognized by specific transcription factors
(TFs) (9). Thus, CREs are also called TF binding sites. A
TF can bind tens of thousands of similar, yet degenerate,
CREs in the genome to regulate many genes (thereafter, we
refer to a set of CREs recognized by the same TF as a mo-
tif). A growing body of evidence indicates that it is mainly
CRMs, rather than coding sequences, that account for inter-
species divergence and intra-species diversity (10–30). Fur-
ther, recent genome-wide association studies (GWAS) have
found that most complex trait-associated single nucleotide
variations (SNVs) do not reside in coding sequences, but
rather lie in non-coding regions (NCRs, including introns
and intergenic regions) (31,32) and often overlap with or
are in linkage disequilibrium (LD) with CREs (33). Com-
plex trait-associated variants have also been shown to sys-
tematically disrupt CREs of TFs related to the traits (33),
and variation in CREs affects DNA binding, chromatin
modification, transcription of genes (34–38), and complex
traits/diseases (22,39–43). More recently, it was reported
that CREs determine chromatin modification and gene ex-
pression patterns (34–36,44–46). Therefore, a better under-
standing of CREs and CRMs encoded in the human refer-
ence genome is necessary for personalized medicine to pre-
vent and treat complex diseases (18,41–43,45–52).

Although it is time consuming to identify CREs and
CRMs using traditional methods, the development of a
plethora of next-generation sequencing (NGS)-based tech-
niques has allowed genome-wide characterization of CREs
and CRMs. These methods include 1) ChIP-seq for locat-
ing the CREs of a TF (53–55) and for various histone
markers (56); 2) DNase-seq (57–59), ATAC-seq (60) and
FAIRE-seq (58) for locating free nucleosome regions; 3)
Hi-C for measuring the physical proximity of linearly dis-
tal DNA segments (61,62); and 4) RNA-seq for profiling
the transcriptomes in cells or tissues (63). As a result, enor-
mous data including TF ChIP-seq data are being produced
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in human cells or tissues by individual labs world-wide
and large consortia such as the ENCODE (64–66), NIH
Roadmap Epigenomics (67,68), Genotype-Tissue Expres-
sion (GTEx) (69,70), FANTOM (71–74), all are aimed to
identify all functional elements in the human genome (64–
66). Although highly challenging, it is now possible to pre-
dict at least most of CREs and CRMs in the human genome
by integrating these enormous data, particularly TF ChIP-
seq data collected for different TFs in various cells/tissues
and developmental stages.

Ren’s group was the first to use hidden Markov models
(HMMs) to predict CRMs based on multiple histone mod-
ification markers (75,76). Ernst et al. (77,78) extended the
idea and developed ChromHMM to segment the genome
into different functional types according to histone modi-
fication profiles in a cell/tissue type. Hoffman et al. (79,80)
developed Segway using dynamic Bayesian networks for the
same purpose. Other machine-learning methods have been
proposed to predict enhancers in a cell/tissue type based
on histone modification profiles. For example, Firpi et al.
(81) developed CSI-ANN using time-delay neural networks
(NNs), Rajagonal et al. (82) developed RFECS using a ran-
dom forest, and Villanrroel et al. (83) developed Chroma-
GenSVM and Kleftogiannis et al. (84) developed DEEP
using support vector machines (SVMs). Primary sequence
features have also been used to predict tissue-specific en-
hancers using SVM (84,85). Although these methods can
predict CRMs with cell/tissue type specificity, their ac-
curacy is quite low (86). Even the best-performing tools
(DEEP and CSI-ANN) have only 49.8% and 45.2%, respec-
tively, of their predicted CRMs overlapping with the DNase
I hypersensitivity sites (DHSs) in Hela cells (84). Moreover,
none of these methods can pin down the exact locations of
CRMs and their constituent CREs, thus the predictions are
only coarse-grained, lacking specifics about CRE in CRMs,
such as their numbers and locations, and importance of
each position for TF binding. Surprisingly, although TF
ChIP-seq data can provide the most accurate information of
CREs of ChIP-ed TFs (87) and their possible combinatory
patterns in CRMs, to the best of our knowledge, no exist-
ing algorithm is able to mine a large number of TF ChIP-seq
datasets to more accurately predict CREs and CRMs in the
human genome.

To fill these gaps, we have recently developed an algo-
rithm called DePCRM (88) for predicting CREs and CRMs
in eukaryotic genomes by integrating a large number of TF
ChIP datasets, and have successfully used it to predict an
unprecedentedly complete map of CREs and CRMs in the
Drosophila melanogaster genome. However, compared with
the D. melanogaster genome (139.5 Mb), the human genome
(3.2 Gb), is 22.9 times larger, encoding more genes (21 000
versus 13 600), more TFs (2886 versus 1030), and more
complex gene regulatory networks for more complex phe-
notypes. ChIP-seq datasets obtained from human tissues or
cells can be 10 times larger than those from D. melanogaster
cells/tissues, making their analysis and integration more
challenging. Moreover, given the great efforts that have been
made world-wide to generate a large number of ChIP-seq
datasets from various human cell/tissue types, it is inter-
esting to see how the way that these data were generated

is effective, and how much additional data we may need to
predict a complete map of CREs and CRMs in the genome.

To address the questions, we predicted a map of CREs
and CRMs in the human genome at single-nucleotide res-
olution using our algorithm by integrating a total of 620
ChIP-seq datasets for 168 TFs in 79 different cell/tissue
types. The map includes 305 912 CRMs containing 736
unique CRE motifs. The predicted CRMs recovered 51.3%
of known enhances in the datasets, and 14.8% of our pre-
dicted CRMs overlaps with DNase I hypersensitive sites
(DHSs). Moreover, both the predicted CRMs and CREs
tend to be more conserved than corresponding randomly
selected sequences, thus, they are likely to be functional. Us-
ing these datasets, we also analyzed the saturation trend of
TF binding motif predictions in three different scenarios to
address questions such as what the most effective ways are
to generate TF ChIP-seq data, and how many datasets we
may need to predict a complete map of CREs and CRMs
in the human genome.

MATERIALS AND METHODS

Datasets and processing

A total of 620 ChIP-seq binding peaks datasets for
168 TFs in 79 different cell/tissue types were down-
loaded from the UCSC Genome Browser database
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeRegTfbsClustered/). The bind-
ing peaks were identified by the peak-calling and refinery
procedure designed by Kundaje and colleagues (89). A total
of 897 experimentally verified the sequences containing
enhancers in the human genome (version hg19) were
downloaded from the VISTA Enhancer Browser database
(90). These human enhancer fragments have an average
length of 1,950 bp. Coordinates of a total of 1 281 988 non-
overlapping DHSs in 125 tissue/cell types produced by EN-
CODE were downloaded from the UCSC Genome Browser
database (http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeRegDnaseClustered/). To
predict CRMs around the summits of binding peaks, we
extended the binding peaks shorter than 3 kb to up to 3
kb by padding equal length of flanking genomic sequences
to the two ends, as most of the known human enhancer
segments from VISTA are shorter than 3 kb.

Measurement of the overlap of binding peaks in two datasets

We define the overlapping level of extended binding peaks
in two datasets di and dj as,

So
(
di , d j

) = o(di , d j )/|di | + o(di , d j )/|d j | (1)

where |di| and |dj| are the number of binding peaks in di and
dj, respectively, and o(di , d j ) the number of overlapping se-
quences between di and dj.

Finding motifs in binding peak datasets

We used DREME (91) to identify all possible motifs in
each of the extended binding peak dataset for its compu-
tational efficiency and ability to return enough number of

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/
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over-represented motifs in a dataset. As DREME requires
a negative dataset for more accurate prediction, we gen-
erated a random sequence set for each input dataset us-
ing a third order Markov chain model based on the tran-
sition probabilities of the sequences in the dataset. As the
size of a dataset becomes large, even a fast algorithm such
as DREME cannot finish in a practical time, thus we split
a dataset with a size over 10,000 peaks into multiple sub-
datasets with similar number of peaks smaller than 10 000,
i.e. the size of sub-datasets is equal to N/ (mod(N/10 000)
+1), where N > 10 000 is the number of binding peaks in
the original dataset.

Prediction of CREs and CRMs

We used our DePCRM program developed earlier (88) to
predict CRE and CRMs in the genome based on the motifs
found in all datasets or sub-datasets with minor modifica-
tions. Briefly, for each pair of motifs Md(i) and Md(j) found
in the same dataset d, we compute a motif co-occurring
score Sc defined as,

Sc (Md (i ) , Md ( j )) = o (Md (i ) , Md ( j ))
max (|Md (i ) |, |Md ( j )|) (2)

where |Md(i)| and |Md (j)| are the number of binding peaks
containing CREs of motifs Md(i) and Md (j), respectively;
and o(Md (i ), Md ( j )) the number of binding peaks contain-
ing CREs of both the motifs in the dataset. We select mo-
tif pairs with an Sc ≥ � as co-occurring motif pairs (CPs)
for further analysis. The cutoff � is chosen such that the
predicted motifs are maximally excluded, and at the same
time, those in known CRMs are maximally included. Then
for each pair of datasets a and b, we compute a similarity
score Ss between each pair of CPs P[Ma(i), Ma(j)] from a
and P[Mb (m), Mb (n)] from b, defined as,

Ss{P[Ma(i ), Ma( j )], P[Mb(m), Mb(n)]}
= maxk∈{i, j}, l∈{m,n}{Sim[Ma(k), Mb(l)]}
+Sim[Ma(r ), Mb(s)], r ∈ {i, j}, r �= k; s ∈ {m, n}, s �= l

(3)

where Sim(M, N) is the similarity score between motifs M
and N using a metric called SPIC (92–94). Note that the
maximization operation is only on the first Sim(M, N) score,
because we want to reward the scenario that two motifs each
from P[Ma(i), Ma(j)] and P[Mb (m), Mb (n)], respectively,
are highly similar to each other, but the two other remain-
ing motifs may not be so. Next, we construct a CP similar-
ity graph using the CPs as the nodes, connecting two CPs
with an edge with their score Ss being the weight if Ss ≥
β, and removing isolated nodes. We choose a β value such
that the density (defined as the number of edges divided by
the number of nodes) of resulting graph is as low as pos-
sible, meanwhile the graph contains as many as possible
connected nodes/CPs. We use the Markov Chain Cluster-
ing algorithm (MCL) (95) to cut the graph into dense sub-
graphs, each corresponding to a cluster of repetitively oc-
curring CPs across multiple datasets. We discard the clusters
containing fewer than τ CPs (τ = 2 in this study, i.e. we only
discard singleton CPs). Presumably, the remaining clusters
contain highly similar CPs for two certain TFs. We call these
clusters CP clusters (CPCs). To identify co-occurring pat-
terns containing more than two motifs, we calculate a co-
occurring score Scpc for each pair of CPCs, Ci and Cj over

all the datasets defined as

SCPC(Ci , Cj )

= 1
D

D∑
k = 1

1
N[�dk (Ci ,Cj )]

∑
(Ps ∈Ci ,Pt∈Cj )⊂�dk (Ci ,Cj )

[
o(Ps ,Pt )

|Ps | + o(Ps ,Pt )
|Pt |

] (4)

where D is the number of datasets containing CPs of both
Ci and Cj; �dk(Ci, Cj) the set of the CPs in Ci and Cj from the
same dataset dk; N[�dk(Ci, Cj)] the number of unique com-
parisons among the CPs in �dk(Ci, Cj); Ps and Pt two CPs
from Ci and Cj, respectively; o(Ps, Pt) the number of bind-
ing peaks in which Ps and Pt co-occur; and |P| the size of
P. We construct a CPC co-occurring graph using each CPC
as a node, and connecting two CPCs Ci and Cj by an edge
with the Scpc being the weight if SCPC (Ci , Cj ) ≥ γ.The cut-
off γ is chosen based on the bimodal distribution of the Scpc
sores. We apply MCL to cut the CPC co-occurring graph
into dense sub-graphs. Each of these sub-graphs is assumed
to correspond to a possible combination of their motifs to
form a CRM based on the datasets used. For this reason, we
refer to these CPC clusters as CRM components (CRMCs).
Some motifs in the CRMCs may have overlapping CREs
and can be highly similar to one another. They are likely
the same or similar CREs of the same TF or closely related
ones of the same family. Thus, we combine such highly simi-
lar and possibly redundant motifs into unique ones. We call
each of these combined motifs a unique motif or U-motif.
We then represent each motif in the identified CRMCs by
the U-motif that it belongs. We project the predicted CREs
of all the CRMCs back to their locations in the genome, and
if the projected CREs overlap with one another, we merge
them in one. We then connect two adjacent CREs if their
distance is shorter than a preset value δ (δ = 150 bp in this
study), but the connection cannot span over an exon unless
it contains at least a CRE. We predict each segment of the
sequences connected by the CREs as a CRM.

Prediction saturation analysis

We analyzed the saturation trends of predicted U-motifs in
the following three scenarios: (i) changes in the number of
predicted U-motifs with increasing number of datasets for
different TFs from the same cell/tissue type; (ii) changes
in the number of predicted U-motifs with increasing num-
ber of datasets in different cell/tissue types for the same TF
and (iii) changes in the number of predicted U-motifs with
increasing number of randomly selected datasets. Specifi-
cally, for the first two scenarios, we used the U-motifs pre-
dicted using the 620 datasets as the standard set and count
the number of the U-motifs whose biding sites are located
in the randomly selected datasets. For the third scenario, we
randomly selected different numbers (n = 100, 200, 250, 300
and 350) of datasets from the 620 datasets and applied the
algorithm to each of the randomly selected datasets with the
same parameter settings. For randomly selected datasets,
we repeated the process five times for difference choice of
datasets and present the averaged results to minimize the ef-
fect caused by different combinations of datasets used. We
fitted the results to a sigmoid function,

f (n) = α + δ ×
(

1 − 1
1 + n

β

)
(5)
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Figure 1. Features of the ChIP-seq datasets. (A). Number of binding peaks
in the 620 ChIP-seq datasets sorted by their sizes in the ascending order.
(B) Distribution of binding peak lengths in the 620 datasets. Vast major-
ity (99.9%) of them are shorter than 800 bp. (C) Coverage of CDRs and
NCRs in the genome by the extended peaks (datasets), predicted CREs
and CRMs. The numbers above the lines are the proportions of CDRs
and NCRs in the corresponding sequence categories; the numbers below
the lines are the proportions of CDRs and NCRs with respect to the entire
CDRs and NCRs in the genome, respectively.

where α, β and δ are constants, and n the number of datasets
used for the predictions.

RESULTS

Extended binding peaks of different datasets for cooperative
TFs have large overlaps

Although the 620 datasets were collected from 79 cell/tissue
types for 168 TFs, they were sampled highly unevenly, as
few cell/tissue types such K526 and Gm12878 (Supplemen-
tary Figures S1A and B) and TFs such as CTCF and POL2
(Supplementary Figures S1C and D) have a large number of
datasets, while the vast majority of other cell/tissue types
and TFs have only one or two datasets. Each dataset also
contains a highly varying number (1–92 358) of binding
peaks (Figure 1A) with 366 of them containing >10 000

peaks. The 620 datasets contain a total of 10,894,581 peaks.
The vast majority (99.9%) of them have a length shorter
than 800 bp (Figure 1B). After the length extension, the
datasets have a total length of 32 677 939 091 bp, which are
10.42 times the human genome (3 137 161 264 bp). However,
they only cover 48.5% (1 522 974 911) of the genome (Fig-
ure 1C), indicating that these extended sequences have sig-
nificant overlaps. Of the 1 522 974 911 bp genome sequence
covered by the datasets, 1 470 721 860 bp (96.6%) are NCRs,
consisting of 48.1% of NCRs (3 059 588 382 bp) in the
genome (Figure 1C). The remaining 52 253 051 pb (3.4%)
extended sequences are in the coding regions (CDRs), con-
sisting of 67.4% of CDRs (77 572 882 bp) in the genome
(Figure 1C). In addition, 789 (88%) of the 897 enhancers
from VISTA are located in our extended peaks.

To see the overlapping patterns in the datasets, we com-
puted a pair-wise overlapping score So among the 620
datasets using formula (1), and clustered the datasets based
on the scores. As shown in Figure 2A, there are clearly nu-
merous clusters formed by some datasets, indicating that
their sequences highly overlap with one another. Interest-
ingly, datasets of TFs that are known to work cooperatively
in regulating genes form a cluster. For example, the small
cluster highlighted in Figure 2B is formed by the datasets
of TFs ZNF274, KAP1 and SETDB1. It has been shown
that knockdown of ZNF274 with siRNAs reduced the lev-
els of KAP1 and SETDB1 binding to the ZNF274 binding
regions, suggesting that ZNF274 is involved in the recruit-
ment of KAP1 and SETDB1 to specific regions of the hu-
man genome (96). Another cluster highlighted in Figure 2C
for is formed by datasets of TFs RAD21, CTCF and SMC3.
It is well known that RAD21 and SMC3 are the members
of the cohesin complex, and that cohesin co-localizes with
CTCF at more than 80% of CTCF binding locations (97).
Therefore, these results indicate that the 620 datasets con-
tain sufficient information to predict at least a portion of
CREs and CRMs in the human genome by exploring re-
peated co-occurring motif patterns.

Identification of motifs

Our goal is to find all possible binding motifs of the ChIP-ed
TF and of its cooperators in each dataset. To facilitate motif
finding in the 366 large datasets containing >10 000 binding
peaks, we split them into a total 1,150 datasets, ending up
with a total of 1433 datasets, each contains <10 000 binding
peaks. We found a varying number (0–121) of motifs in each
dataset, depending on the quality and size of the dataset
(Figure 3A). There are 14 datasets containing 1∼355 peaks,
in which DREME was not able to find any motif, so they
were filtered out at this step. To see the effects of splitting a
large dataset in smaller ones on the motif finding results, we
randomly split three datasets with 22 314 (S1), 30 924 (S2)
and 40 670 (S3) peaks in three, four and five sub-datasets,
respectively, so each sub-dataset contained <10 000 peaks,
and found motifs in each of the resulting sub-datasets. We
repeated this process by 10 times. As shown in Figure 3B, in
all the three cases, the number of motifs identified in each
subset are quite similar and are similar to the number of mo-
tifs identified by the way of splitting used in the algorithm.
The identified motifs in each subset for the same dataset are
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Figure 2. Overlaps of extended binding peaks. (A) Hierarchical clustering of the 620 datasets for 168 TFs based on the pair-wise overlapping scores So of
the extended peaks. (B) Blow-up of a cluster of datasets for functionally related TFs ZNF274, KAP1 and SETDB1. C. Blow-up of a cluster of datasets for
functionally related TFs RAD21, CTCF, SMC3 and ZNF143, etc.

also very similar (data not shown). Therefore, the way to
splitting a large dataset does not significantly affect motifs
identified in the dataset. The returned motifs generally have
high information content (Figure 3C). Overall, we identi-
fied 50 856 putative motifs in the datasets, containing a total
of 78 456 541 putative CREs. Interestingly, putative CREs
were found in all the 789 VISTA enhancers that are located
in the extended peaks.

Prediction of CREs and CRMs in the human genome

We applied DePCRM to these 50 856 putative motifs to pre-
dict CRMs and CREs in the genome. Since these input mo-
tifs may contain a large number spurious ones due to the
high false positive rate of motif-finders including DREME,
DePCRM identifies overrepresented co-occurring motif
patterns as possible CRMs by gradually filtering out spu-
rious motifs based on the assumption that truth motifs in
CRMs are more likely than do spurious ones to co-occur
in the same sequence. DePCRM first identifies highly co-
occurring motif pairs (CPs) in each dataset using the mo-
tif co-occurring scores Sc (formula 2) for pairs of putative
motifs found in each dataset. As shown in Figure 3D, the
distribution of Sc is strongly skewed toward right, indicat-
ing that the low-scoring Gaussian-like component is likely
due to spurious motif pairs that occur by chance. To find a
proper cutoff α for Sc such that most spurious motif-pairs
are filtered out, while at least most the true motif pairs are
kept, we plotted the percentage of total putative motif pairs
with Sc>α and percentage of VISTA enhancers containing
putative CREs of motif pairs with Sc>� as functions α. As
shown in Figure 3E, when α = 0.34, 28 581 (56.2%) of the 50
856 input motifs were filtered out, while only 74 (9.38%) of

the 789 VISTA enhancers were lost. Thus, we chose Sc>α =
0.34 as the cutoff, resulting in 22 265 (43.8%) motifs form-
ing 76 764 CPs.

To further enrich true motif pairs, DePCRM next iden-
tifies repeatedly occurring CPs in multiple datasets by clus-
tering highly similar CPs in different datasets. To this end,
DePCRM constructs a CP similarity graph using the CPs as
the nodes, and Ss scores > β (formula 3) as the weights on
the edges (see Materials and Methods). To find the optimal
vale of β, we plotted the density of the graph as a function of
β. As shown in Figure 3F, with the increase in β, the density
of the graph drops rapidly, but the dropping stops around β
= 1.8, while the number of nodes (CPs) in the graph starts
decreasing rapidly (Figure 3G). Thus, we set β = 1.8 to con-
struct the CP similarity graph. Applying the Markov chain
clustering (MCL) algorithm (95) to the graph resulted in 13
364 CP clusters (CPCs) containing 53 278 CPs involving 20
640 motifs.

To identify larger combinatorial motif patterns, De-
PCRM then identifies CPCs whose CPs tend to co-occur
in the same sequence by constructing a CPC co-occurring
graph based on a Scpc (formula 4) cutoff scores γ (see Ma-
terials and Methods). Interestingly, the distribution of Scpc
displays a well-separated bimodal distribution (Figure 3H);
the low-scoring peak is likely mainly due to motif patterns
occurring by chance, while the high-scoring one is likely at-
tributable to truly cooperative motifs in CRMs. Thus, we
set γ = 0.37 (the value at the valley between the two peaks).
Applying the MCL algorithm to the resulting CPC co-
occurring graph resulted in a total of 846 CRMCs involving
12 022 putative motifs, each containing 2∼184 CPCs (Sup-
plementary Figure S2). Therefore, the algorithm eventually
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Figure 3. Results from the key steps of the prediction pipeline. (A) Number of motifs found as a function of the size of the 1433 sub-/datasets. (B) Average
(n = 10) numbers of motifs found in the sub-datasets for datasets S1, S2 and S3, randomly split in three, four and five sub-datasets, respectively (black bars),
and the number of motifs found by the way of splitting used in this study (hatched bars). (C) Distribution of the information contents of the identified
motifs. (D) Distribution of motif co-occurring scores Sc. (E) Proportions of the motifs (solid line) and the VISTA enhancers (dashed line) that are remained
as a function of Sc score cutoff α. We choose α = 0.34 (the vertical line) to exclude as many as possible predicted motifs, and at the same time, to include
as many as possible predicted motifs in known CRMs. (F, G) Density of the CP similarity graph and number of CRMs in the graph as a function of the
Ss cutoff β. We choose β = 1.8 (the vertical lines) so that the density of the graph is largely minimized, and at the same time, the number of nodes/CPs
in the graph is largely maximized. (H) Distribution of CPC co-occurring scores SCPC. The vertical line indicates the SCPC cutoff γ = 0.37 at the deepest
valley between the two peaks, for constructing the CPC co-occurring graph.
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filtered a total of 38 826 (76.4%) of the 50,848 input motifs,
which are likely spurious predictions.

However, some of the 12,022 identified motifs are highly
similar to one another, they may share the same CREs given
the fact that sequences of some datasets may have signifi-
cant overlaps (Figure 2). By combing highly similar and/or
overlapping motifs via clustering (see Material and Meth-
ods), we identified 736 U-motifs (Supplementary Figure
S2B), each containing 1–608 highly similar motifs, and 46–
204 896 unique CREs. As examples, Figures 4A and 5B
shows U-motif 367 and U-motif 389 and their respective
four and three motif members. When compared with the
known motifs from Jolma et al. (98) and JASPAR CORE
vertebrate (99), 370 (50.3%) of the U-motifs are highly sim-
ilar to known motifs in Human at P < 0.001 using TOM-
TOM (100), suggesting that they are likely to be true motifs.
For example, U-motif 367 and U-motif 389 are very similar
to the JASPER motifs HSFY2 (Figure 4A) and ZIC3 (Fig-
ure 4B), respectively. We replaced the motifs in the CRMCs
with the U-motifs that they belong to and represented each
CRMC by their constituent U-motifs.

Projecting the CREs in these 846 CRMCs back to the hu-
man genome (Materials and Methods) resulted in a total of
1 178 913 non-overlapping CREs with 1 140 005 (96.7%) be-
ing in NCR and the remaining 38 908 (3.3%) being in CDRs.
These 1 178 913 CREs cover 11 772 217 bp (0.4%) genome
sequence, of which 11 313 594 bp (96.1%) are in NCRs con-
sisting 0.4% of NCRs, and the remaining 458 623 bp (3.9%)
are in CDRs, consisting of 0.4% of CDRs (Figure 1C). By
connecting these putative CREs, we predicted a total of 305
912 non-overlapping CRMs, 264 035 (86.3%) of which are
entirely located in NCRs, and the remaining 41 877 (13.7%)
are at least partially located in CDRs. These 305 912 CRMs
cover 55 605 307 bp (1.8%) of genome sequence, of which
534 919 752 bp (96.2%) are in NCRs, consisting 1.7% of
NCRs, and the remaining 2 113 332 bp (3.8%) are in CDRs,
consisting of 2.7% of CDRs (Figure 1C). These putative
CRMs tend to have shorter lengths than those of the known
CRMs (Figure 5A). Furthermore, the putative CRMs har-
bor 2–89 CREs with a median of 2, and only a small por-
tion of the putative CRMs tends to have a short distance
between adjacent two putative CREs (Figure 5B). These re-
sults suggest that we might have missed certain CREs in
the predicted CRMs, particularly at the two ends, presum-
ably due to insufficient information in the limited number of
ChIP datasets used in this study. In other words, some of our
predicted CRMs might consist of only a part of otherwise
longer real CRMs, possibly missing CREs at the two ends
of CRMs. Clearly, in order to make more accurate and com-
plete predictions, more and highly diverse ChIP datasets are
needed.

Predicted CREs in NCRs are more likely to be evolutionarily
constrained than randomly selected sequences

It is widely recognized that functional elements such as
protein-coding exons and regulatory sequences are usually
under negative (purifying) or positive selection while non-
functional sequences are often selectively neutral or nearly
so. Therefore, we compared the conservation levels of nu-
cleotides in putative CREs in the 264 035 predicted CRMs

located in NCRs with those of the same number and length
of sequences randomly selected from NCRs. We quantified
the conservation level of each nucleotide using GERP++
(101), which estimates the substitution rate at each position
in the human genome based on multiple alignments of 34
mammalian genomes. GERP++ computes a rejected sub-
stitution (RS) score for each position relative to selectively
neutral sequences. Thus, a positive RS score indicates puri-
fying selection at the position, thus it is conserved; a neg-
ative RS score might indicate positive selection at the po-
sition; and a RS score around 0 suggest that the position
is selectively neutral or nearly so. As shown in Figure 5C,
the average RS scores of a putative CRE and of a randomly
selected NCR sequence (50 repeats) have remarkably differ-
ent distributions (P < 2.2 × 10−302, Kolmogorov–Smirnov
test). More specifically, the distribution for randomly se-
lected NCR sequences is narrower with a high peak at score
= 0 (areas in the window (–0.6, 0.2) is 44.35%); by contrast,
that of putative CREs in NCRs is broader with only a small
peak at 0 (areas in the window (–0.6, 0.2) is 32.40%), indicat-
ing that randomly selected NCR sequences are more likely
to be selectively neutral or nearly so as expected. Moreover,
compared with the randomly selected sequences, the pre-
dicted CREs in NCRs are either more likely to be negatively
selected with a RS score ≥ 0.2 (30.86% versus 20.90%), or
more likely to be moderately positively selected with a RS
score within [–2, –0.6] (32.37% versus 28.92%). Similar re-
sults were obtained for the average score of all nucleotides
in a CRM (Figure 5D). Therefore, our predicted CREs and
CRMs in NCRs are likely to be functional and thus au-
thentic. The evaluation of the predicted CREs and CRMs
in CDRs will be addressed in a separate manuscript.

Functional elements revealed by independent studies are
highly enriched in our predicted CRMs

DHSs are the regions in the genome that have less condense
structure in certain cells or tissues, and thus are highly sen-
sitive to cleavage by DNase I enzyme. They are also likely
bound by TFs in these cells or tissues, working as CRMs.
A large number of DHSs in 125 human cell or tissue types
have been recently determined by the ENCODE consor-
tium, hence we used them as additional line of independent
evidence to further validate our predicted CRMs. We con-
sider a DHS is recovered by a predicted CRM if the DHS
overlaps with predicted CRM by at least a single nucleotide.
Of the 1 281 988 non-overlapping DHSs (total length: 388
420 483 bp, 12.38% of the genome) from the ENCODE con-
sortium, 1 059 387 (82.64%, total length: 330 454 362 bp,
10.53% of the genome) are located in the extended peaks,
indicating that they are also highly enriched in the datasets.
As shown in Figure 5E, 156 153 (14.76%) of the DHSs in
the extended peaks are recovered by our predicted CRMs;
by contrast, the same number and length of sequences ran-
domly selected from the genome covered by the extended
peaks can only recover 77 711 (7.35%) of the DHSs. This
number is close to the expected recovery rate by chance
(7.67%). Thus, our predicted CRMs recovered twice more
DHSs than did randomly selected sequences, although the
DHSs were derived from far more (125) cell/tissue types
than the 79 cell/tissue types from which the datasets we used
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Figure 4. Examples of U-motifs and their member motifs. (A) U-motif 367, its matched known motif for TF HSFY2 and its four motif members. (B)
U-motif 389, its matched known motif for TF ZIC3 and its three motif members.

were derived, and the DHSs may include all active CRMs
in these 125 cell/tissue types, while our predicted CRMs are
largely limited by the used datasets for a small number of
TFs.

Additionally, we validated our predicted CRMs with the
789 experimentally verified enhancer segments from VISTA
(90), which are located in the extended peaks. Although we
used them to help set the Sc cutoff in the very early step of
the algorithm, if our algorithm does not work, they can still
be lost as vast majority of the input motifs are dropped out
by the algorithm. However, our predicted CRMs recover
405 (51.3%) of the 789 enhancers. By contrast, the same
number and length of sequence randomly selected from the
extended peaks only recover an average of 202 (25.5%) of
the 789 enhancers (50 repeats, Figure 5F). This number
is close to the expected recovery rate by chance (25.75%).
Thus, our predicted CRMs recovered twice more known
enhancers than did randomly selected sequences. Taken to-
gether, all these three lines of independent evidence indicate
that our predicted CREs and CRMs are likely to be authen-
tic.

Comparison with existing methods for predicting TF binding
motifs

Since no similar method for predicting CREs and CRMs
at a genome scale by integrating a large number of TF
ChIP-seq datasets has been seen in the literature to our

best knowledge, we compared our predicted motifs with
those reported by the ENCODE consortium who attempted
to identify all possible TF motifs using the ENCODE TF
ChIP-seq datasets (102,103). These studies performed inde-
pendent motif finding in each dataset using only the top 500
representative binding peaks with a length of 100bp using
MEME-ChIP (104). As a result, they were only able to iden-
tify 79 unique motifs (clustered from 1092 motifs) in 457
ChIP-seq datasets for 119 TFs (102,103). Thus, we identi-
fied 8.3 times more U-motifs (736 clustered from 12,022 mo-
tifs) using only 163 more datasets (620 versus 457). In addi-
tion, Kheradpour and Kellis (105) developed a pipeline that
combined five motif-finders (AlignACE (106), MDscan,
MEME (107), Weeder (108,109) and Trawler (110,111)) to
systematically predict TF motifs in 427 ENCODE ChIP-
seq datasets for 123 TFs belonging to 84 protein families.
Again, they used only the top 250 representative binding
peaks in one of two partitions of each dataset for motif find-
ing, identifying a total of 468 motifs matching known motifs
of the target TFs and 293 new motifs that did not match any
known motifs. As the former 468 motifs are very similar to
each other, presumably recognized by different TFs of the
same family (105), we clustered them to avoid redundancy,
resulting in 56 unique motifs. Therefore this study identi-
fied a total of 349 (56 + 293) unique motifs, which is less
than half we identified. More importantly, as we stated ear-
lier, more than 50% of our 736 predicted U-motifs match
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Figure 5. Validation of the predicted CREs and CRMs. (A) Distributions of the lengths of the known Vista enhancers and predicted CRMs. (B) Distribution
of the distances (bp) between two adjacent CREs in a CRM. (C) Distributions of average RS scores of single predicted CREs in NCRs and the same number
and length of sequences randomly selected from NCRs. (D) Distributions of average RS scores of a predicted CRM in NCRs and the same number and
length of sequences randomly selected from NCRs. (E) Enrichment of DNase I hypersensitive sites in the predicted CRMs. (F) Enrichment of VISTA
enhancers in the predicted CRMs.

known motifs, hence at least the vast majority of them are
likely to be authentic.

Saturation analysis of predicted U-motifs

Next, we analyzed the trends of changes in the numbers of
U-motifs predicted using an increasing number of datasets
in three scenarios (Materials and Methods). In the first sce-
nario, we used as examples cell lines in which enough num-
ber of datasets for different TFs are available, including
K562 (the first human immortalized myelogenous leukemia
cell line, 144 datasets), GM12878 (a lymphoblastoid cell
line, 88 datasets) and Helas3 (a sub-clone of the HeLa cell
line, 59 datasets). We plotted the number of recovered U-
motifs as a function of the number of selected datasets.
However, as some of these datasets did not contribute to the
prediction in the cell lines (often for lightly sampled TFs,
see below), we excluded them from this analysis. The re-
sults in the K562 cells based on 113 datasets (31 were ex-
cluded) show a saturation trend for the predicted U-motifs,
as indicated by the decreasing slopes of the trend lines from

the first quarter to the fourth quarter of the plot (Figure
6A). The trend of saturation is notable when as few as ∼10
datasets were selected for the prediction (Figure 6A). The
saturation trend can be well fitted to a sigmoid function
(formula 5, Figure 6B). Extrapolation of the fitting func-
tion suggests that up to ∼580 U-motifs (Figure 6B) could
be predicted if ∼1200 such datasets in the K562 cells would
be used. Therefore, the 113 datasets in the K562 cells pre-
dict 62.07% (360) of the saturation prediction. However, as
indicated by the fitting curve (Figure 6B), the number of
predicted U-motifs increases slowly when more than 200
datasets would be used, suggesting that generation of more
than 200 such datasets in this cell line by the same strat-
egy as currently used would not be cost-effective for pre-
dicting U-motifs. Interestingly, very similar results were ob-
tained using the datasets from the GM12878 (Supplemen-
tary Figures S3A and B) and HeLaS3 (Supplementary Fig-
ures S3C and D) cells for different TFs. In both cases, the
number of predicted U-motifs also decreases rapidly when
>200 datasets would be used.
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Figure 6. Trends of predicted U-motifs using an increasing number of datasets in three scenarios. (A) Number of predicted U-motifs as a function of the
number of datasets used, collected from the K562 cells for different TFs. Trend lines are plotted for the first, second, third and fourth quarters of the
datasets used. The data points are presented using box-plot based on 50 repeats. (B) Fitting the numbers to a sigmoid function of predicted U-motifs using
varying numbers of datasets collected from the K562 cells, and extrapolation of the saturation trend. (C) Number of predicted U-motifs as a function of
the number of datasets used, generated for TF CTCF in different cell/tissue types. Trend lines are plotted for the first, second, third and fourth quarters of
the datasets used. The data points are presented using box-plot based on 50 repeats. (D) Fitting the numbers to a sigmoid function of predicted U-motifs
using varying numbers of datasets generated for CTCF, and extrapolation of the saturation trend. (E) Number of predicted U-motifs as a function of the
number of randomly selected datasets used. The data points are average of five repeats, and the curve is the fitting of the results to a sigmoid function and
its extrapolation.

In the second scenario, we used well studied TFs for
which a relatively large number of datasets from different
cell/tissue types are available, including CTCF (64 datasets)
that is involved in insulator activity (112), V(D)J recom-
bination (113), and regulation of chromatin architecture
(114); NRSF (12 datasets) that is involved in the repres-
sion of neural genes in non-neuronal cells (115); and NF-kB
(10 datasets) that is involved in the immune and inflamma-
tory responses, developmental processes, cellular growth,
and apoptosis. The results for the 64 datasets for CTCF
display a trend of saturation when as few as ∼10 datasets
were selected for the prediction (Figure 6C). The result can
be well fitted to a sigmoid function, and extrapolation of
the fitting suggests that up to 480 U-motifs (Figure 6D)
could be predicted if ∼380 such datasets for CTCF would be

used. Therefore, the 64 datasets available for CTCF predict
72% (346) of the saturation prediction of U-motifs (480)
for datasets for CTCF. However, as indicated by the fitting
curve (Figure 6D), the number of predicted U-motifs in-
creases slowly when >100 datasets are used, suggesting that
generation of >100 datasets for this TF by the same strategy
as currently used would not be cost-effective for predicting
U-motifs. Similar results were obtained for NRSF (Supple-
mentary Figures S4A and B) and NFKB (Supplementary
Figures S4C and D).

In the third scenario, we calculated the number of pre-
dicted U-motifs using a varying number (100, 200, 250 300,
350) of randomly selected datasets as well as the entire
620 datasets. As shown in Figure 6E, the number of pre-
dicted U-motifs increased with the increase in the number of
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datasets used, but it rapidly enters a saturation phase when
∼350 datasets were used. Extrapolation of the fitting func-
tion suggests that we could predict 796 U-motifs using a
sufficiently large number of datasets produced by the cur-
rent strategy. Thus, we have predicted vast majority (736,
92.46%) of the 796 U-motifs using the 620 datasets. Leaving
out all the 199 datasets from cell/tissue types and for TFs
that were lightly sampled (with at most two datasets) had
little effect on the of saturation pattern (data not shown).
Therefore, the rapid saturation of the number of predicted
U-motifs when only 350 datasets were used might be due to
the fact that the datasets used in the prediction are heav-
ily biased to a few cell/tissue types and TFs, while most
cell/tissue types and TFs were under sampled (Supplemen-
tary Figure S1). This result suggests that it would not be
very cost effective to generate even more than ∼350 such
biased datasets for predicting U-motifs.

Applications of the predicted CREs and CRMs

To facilitate the utilization of these predicted CREs and
CRMs by the research community, we have developed
a webserver (http://bioinfo.uncc.edu/pcrms) for queries
and visualization of the predictions and their genomic
contexts. For example, a user can search for predicted
CREs and CRMs surrounding a gene of interest. Figure
7A shows the results of querying the server with gene
name CASZ1, which is involved in blood vessel assem-
bly and morphogenesis (116). The result shows that a
predicted CRM c31586754 (chr1:10781329–10781587)
with a length of 259bp is located in the first intron of
CASZ1. This putative CRM completely overlaps with the
VISTA enhancer element 389 (chr1:10781239–10781744)
with a length of 506 bp (90), thus c31586754 is authen-
tic. We predicted that this CRM contains six putative
CREs chr1:10781329–10781337, chr1:10781401–10781409,
chr1:10781425–10781433, chr1:10781443–10781451,
chr1:10781493–10781501 and chr1:10781579–10781587 for
U-motifs U-motif 0, U-motif 1, U-motif 8, U-motif 31,
U-motif 92 and U-motif 254, which match known motifs
of TFs KLF1, SOX6, FOXP1, RARA, ETV6 and ZFX,
respectively. Thus, it is interesting to experimentally test
whether CASZ1 is co-regulated by these six TFs. Figure 7B
shows another example, where a predicted CRM c31828239
(chr6: 41570097–41570164) with a length of 73bp is located
in the second intron of FOXP4 that plays a crucial role
in brain development and autism (117,118). This putative
CRM contains three CREs chr6:41570097–41570105,
chr6:41570130–41570139 and chr6:41570156–41570164 for
U-motifs U-motif 24, U-motif 132 and U-motif 476, which
match known motifs of TFs KLF16, HINFP and GLIS2,
respectively. Hence, it is interesting to investigate whether
these three TFs co-regulate the expression of FOXP4 via
this putative CRM.

DISCUSSION

The DePCRM algorithm predicts CREs and CRMs largely
based on the fact that similar TF combinatorial patterns are
often repeatedly used to regulate multiple the same or dif-
ferent regulons in different cell/tissue types, developmental

stages or physiologically conditions. As the predicted motifs
by motif-finders in large datasets may contain a large por-
tion of spurious ones, and number of possible combinations
of TFs is extremely large, DePCRM predicts CREs and
CRMs by rapidly filtering out spurious motifs and combi-
nations using a branch and bound approach. More specifi-
cally, it identifies possible real motif combinatorial patterns
in a large number of ChIP datasets through iteratively fil-
tering out randomly occurring spurious motifs, thereby ef-
fectively reducing the searching space in each step. Having
successfully demonstrated that DePCRM works for the D.
Melanogaster genome (88), we applied the algorithm to the
much larger human genome with more and bigger ChIP
datasets. In order to make it work more efficiently on large
human datasets, we modified the algorithm by splitting the
large datasets into smaller ones. Such splitting has little ef-
fect on the motif-finding results, due probably to the infor-
mation redundancy in large ChIP datasets (Figure 3B). Use
all the 620 TF ChIP-seq datasets from ENCODE available
to us, we have predicted an unprecedentedly complete map
of 305,912 CRMs containing 1 178 913 CREs in the human
genome at single nucleotide resolution.

Three lines of independent evidence indicate that our pre-
dicted CREs and CRMs are likely to be authentic. First,
our predicted CREs and CRMs in NCRs are more likely
to have gone either strongly negative selection, or moder-
ately positive selection (Figure 6C and D), indicating that
they are highly likely to be functional. This observation is
in excellent agreement with the consensus that regulatory
sequences tend to be more conserved due to negative se-
lection, or to undergo rapid turnover by degrading exist-
ing CREs (death), or gaining new CREs (birth) due to pos-
itive selection, a process called CRE turnover (119). CRE
turnover plays a more pivotal role in evolutionary diver-
gence of organisms than previously thought (13,120), in-
cluding the evolution for human-specific functions includ-
ing intelligence. Second, our predicted CRMs recovered
twice more DHSs in the extended peaks than expected by
chance. Finally, our predicted CRMs recovered twice more
Vista enhancers in the extended peaks than expected by
chance.

In principle, to predict all CREs and CRMs in the hu-
man genome, we need a sufficiently large number of diverse
and less biasedly sampled ChIP-seq datasets from various
cell/tissue types and for various TFs, so that information
about all possible combinatory regulations among all TFs
would be included. Therefore, it is interesting to evaluate
the status of the available datasets and the strategy that have
been used to generate them to reach the goal. To this end, we
analyzed the saturation trends of the numbers of predicted
U-motifs under three scenarios based on the 620 ENCODE
datasets. When a large number of datasets for different TFs
are available in a cell/tissue type (Figure 6A and B), and a
larger number of datasets in different cell/tissue types are
available for a TF (Figure 6C and D), the trends of satura-
tion develop rapidly with the increasing number of datasets
used, presumably due to the facts that these datasets are bi-
ased to well-studied cooperative TFs in relevant cell types.
Thus, this strategy is highly effective for revealing functional
CREs for cooperative TFs in relevant cell lines. On the other
hand, when all the datasets were considered (Figure 6E),

http://bioinfo.uncc.edu/pcrms
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Figure 7. Examples of predicted CRMs and constituent CREs in genomic contexts. (A) A predicted CRMs c31586754 located in the first intron of the
CASZ1 gene overlaps entirely with the VISTA enhancer 389. c31586754 contains six CREs of U-motifs U-motif 0, U-motif 1, U-motif 8, U-motif 31,
U-motif 92 and U-motif 254, which match known motifs of TFs KLF1, SOX6, FOXP1, RARA, ETV6, and ZFX, respectively. (B) A predicted CRM
c31828239 is located in the second intron of the FOXP4 gene. c31828239 contains three CREs of U-motifs U-motif 24, U-motif 132 and U-motif 476,
which match known motifs of TFs KLF16, HINFP and GLIS2, respectively.

our analysis suggests that using only 620 datasets we were
able to predict 92.46% (736) of the saturation number (796)
of U-motifs that would be predicted if >1000 such datasets
were used. In fact, using more than 350 such datasets are
no longer cost-effective for predicting as many as possible
U-motifs. This might be due to the fact that the highly bi-
ased sampling of the datasets led to biased predictions of
CREs and CRMs working in few cell/tissue types or for few
TFs that were heavily sampled (Supplementary Figure S1),
while missing those working in the majority of cell/tissue
types or for the majority of TFs that were lightly sampled.
Therefore, more diverse and less biased datasets for various
TFs and from various cell/tissue types are urgently needed
for more cost-effective prediction of U-motifs and CRMs
in the human genome.

In addition, our results allow us to estimate the lower
bound of the size or proportion of the human genome
that are involved in transcriptional regulation. With the
620 datasets covering about half of (48.5%) the genome,
we predicted 736 U-motifs and 305 912 CRMs. Extrapo-
lating these results, we estimate that there are at least 1518
U-motifs and 630 746 CRMs in the human genome. This es-
timate of U-motif number is consistent with the number of
TFs encoded in the human genome which is 2,000∼3,000 as
estimated by early studies (121,122), considering the possi-
bility that a U-motif may include several highly similar mo-
tifs of multiple TFs in the same protein family. Additionally,

using these 620 datasets, our predicted CREs and CRMs
covers 0.4% and 1.8% of the human genome, respectively
(Figure 1C). Assuming that these results are extendable to
the other part of the genome that are not covered by the
datasets, we estimate that at least 0.83% and 3.71% of the
genome might code for CREs and CRMs, respectively. We
anticipate that when more less biased datasets are available
in the future, more accurate predictions and estimates can
be made. As 2.5% of the genome are CDRs (Figure 1C), we
estimate that at least 6.21% (2.5 + 3.71) of human genome
are functional, which is in agreement with the estimate that
that ∼7% of the human genome are conserved and thus are
functional (101).
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