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Abstract

An increasing number of single cell transcriptome and epigenome technologies, including

single cell ATAC-seq (scATAC-seq), have been recently developed as powerful tools to

analyze the features of many individual cells simultaneously. However, the methods and

software were designed for one certain data type and only for single cell transcriptome data.

A systematic approach for epigenome data and multiple types of transcriptome data is

needed to control data quality and to perform cell-to-cell heterogeneity analysis on these

ultra-high-dimensional transcriptome and epigenome datasets. Here we developed Dr.

seq2, a Quality Control (QC) and analysis pipeline for multiple types of single cell transcrip-

tome and epigenome data, including scATAC-seq and Drop-ChIP data. Application of this

pipeline provides four groups of QC measurements and different analyses, including cell

heterogeneity analysis. Dr.seq2 produced reliable results on published single cell transcrip-

tome and epigenome datasets. Overall, Dr.seq2 is a systematic and comprehensive QC

and analysis pipeline designed for parallel single cell transcriptome and epigenome data.

Dr.seq2 is freely available at: http://www.tongji.edu.cn/~zhanglab/drseq2/ and https://

github.com/ChengchenZhao/DrSeq2.

Introduction

To better understand cell-to-cell variability, an increasing number of transcriptome technolo-

gies, such as Drop-seq [1, 2], Cyto-seq [3], 10x genomics [4], MARS-seq [5], and epigenome

technologies, such as Drop-ChIP [6], single cell ATAC-seq (scATAC-seq) [7], have been devel-

oped in recent years. These technologies can easily provide a large amount of single cell tran-

scriptome information or epigenome information at minimal cost, which makes it possible to

perform analysis of cell heterogeneity on the transcriptome and epigenome levels, deconstruc-

tion of a cell population, and detection of rare cell populations. However, different single cell

transcriptome technologies have their own features given their specific experimental design,

such as cell sorting methods, RNA capture rates, and sequencing depths. But the methods and

software such as Dr.seq [8] were developed for one single cell data type with certain functions
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(S1 File). Furthermore, the quality control step of single cell epigenome data is more challeng-

ing than for transcriptome data given the amplification noise caused by the limit number of

DNA copy in single cell epigenome experiments. But few quality control and analysis method

was developed specific for single cell epigenome data. Thus a comprehensive QC pipeline suit-

able for multiple types of single cell transcriptome data and epigenome data is urgently needed.

Here, we provide Dr.seq2, a QC and analysis pipeline for multiple types of parallel single cell

transcriptome and epigenome data, including recently published scATAC-seq data. Dr.seq2

can systematically generate specific QC, analyze, and visualize unsupervised cell clustering for

multiple types of single cell data. For single cell transcriptome data, the QC steps of Dr.seq2

are primarily derived from Dr.seq [8] and the output of Dr.seq2 on these data will not be

described in details in this paper.

Materials and methods

Drop-seq data

The Drop-seq samples were obtained from NCBI Gene Expression Omnibus (GEO) database

under accession GSM1626793.

MARS-seq data

The MARS-seq samples were obtained from NCBI Gene Expression Omnibus (GEO) database

under accession GSE54006. These samples were combined as a MARS-seq dataset and ana-

lyzed by Dr.seq2 using three different dimension reduction methods.

10x genomics data

The 10x genomics datasets were obtained from 10x genomic data support (https://support.

10xgenomics.com/single-cell/datasets). The sample named “50%: 50% Jurkat: 293T Cell Mix-

ture” was analyzed by Dr.seq2 using three different dimension reduction methods.

scATAC-seq data

The scATAC-seq datasets were obtained from NCBI Gene Expression Omnibus (GEO) data-

base under accession GSE65360. We combined 288 scATAC datasets (GSM1596255 ~

GSM1596350, GSM1596735 ~ GSM1596830, GSM1597119 ~ GSM1597214) from three cell

types and analyzed by Dr.seq2. Cell clustering was conducted for the combined scATAC-seq

dataset. We also plotted the cell type labels using different colors on the clustering plot and

found consistent classifications with the clustering results.

Drop-ChIP data

The Drop-ChIP datasets were obtained from NCBI Gene Expression Omnibus (GEO) data-

base under accession GSE70253.

Implementation of Dr.seq2

Dr.seq2 was implemented using Python and R. Linux or MacOS environment with Python

(version = 2.7) and R (version> = 2.14.1) was suitable for Dr.seq2. It was distributed under the

GNU General Public License version 3 (GPLv3). A detailed tutorial was provided on the Dr.

seq2 webpage (http://www.tongji.edu.cn/~zhanglab/drseq2) and source code of Dr.seq2 was

available on github (https://github.com/ChengchenZhao/DrSeq2).
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Quality control components

Dr.seq2 conducted four groups of QC measurements on single cell epigenome data: (i) reads

level QC; (ii) bulk-cell level QC; (iii) individual-cell level QC; and (iv) cell-clustering level QC.

Reads level QC and bulk-cell level QC. We used a published package called RseQC [9]

for reads level QC of Drop-ChIP data and scATAC-seq data to measure the general sequence

quality. In bulk-cell level QC, a Drop-ChIP dataset (or scATAC-seq datasets combined from

several scATAC-seq samples) was regarded as a bulk-cell ChIP-seq (or bulk-cell ATAC-seq)

data. Next, “combined peaks” were detected with total reads from the “bulk-cell” data using

MACS[10] for output and the following steps. Different MACS parameters were applied to

Drop-ChIP and scATAC-seq data. We used the published package CEAS to measure the per-

formance of ChIP for ChIP-seq data (or Tn5 digestion for scATAC-seq data) [11].

Individual-cell level QC. The reads number distribution was calculated by counting the

number of reads assigned to each single cell. A single cell referred to a unique cell barcode in

Drop-ChIP data. For scATAC-seq data, the peak number in each cell was defined as the num-

ber of “combined peaks” occupied by the reads in the cell. The distribution of different peak

numbers in each cell indicated the different amount of information the cell contains.

Cell-clustering level QC. Cells were first clustered based on their occupancy of “com-

bined peaks” using hierarchical clustering. Next, cells in each cluster were regarded as the

same cell type (or same cell sub-type), and reads from the same cell type were merged. For

each cell type, unique peaks from other cell types were defined as specific peaks in this cell

type. Specific peaks in different cell types were displayed with different colors according to

genomic locations. Silhouette method is used to interpret and validate the consistency within

clusters defined in previous steps.

Note that reads with no overlap with “combined peaks” were discarded in this step and the

following steps. Clusters containing less than 3 single cells were also discarded.

Simulation of scATAC-seq datasets

To measure the tolerance of Dr.seq2 for low sequencing depth and small numbers of cells of a

certain cell type, we simulated datasets from 3 cell types with different cell proportions and

sequencing depths using scATAC-seq data (Table 1). To test the effect of low sequencing

depth, we sampled the reads count from 10,000 reads to 100,000 reads for each cell and com-

pared these results with the Goodman-Kruskal’s lambda index [12] of clustering results using

cells with a certain number of reads.

To test the effect of low cell numbers of a certain cell type (defined as a target cell type) on

cell clustering, we defined 1 of the 3 cell types as the “target cell type”, whereas the other cell

types were defined as the “regular cell type”, and sampled cells with following compositions:

10:70:70 (10 for target cell type, 70 for the two regular cell types), 15:67:67, 20:65:65, 25:62:62,

30:60:60, 35:57:57, 40:55:55, 45:52:52 and 50:50:50. Then, we called “combined peaks” and

clustered cells on the simulated dataset. The Goodman-Kruskal’s lambda index [12] was

Table 1. Meta data and accession ID for the scATAC-seq data used in simulation for pipeline tolerance evaluation.

Accession ID Cell line Cell type Target/regular cell

GSM1596255~GSM1596350 H1 human embryonic stem cell line Target

GSM1596735~GSM1596830 GM12878 lymphoblastoid cells Regular

GSM1597119~GSM1597214 K562 chronic myeloid leukemia cells Regular

We defined the 1 out of 3 cell types as “target cell type”, while the other cell types were defined as “regular cell type”.

https://doi.org/10.1371/journal.pone.0180583.t001
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calculated to evaluate the cell clustering performance. The average Goodman-Kruskal’s

lambda index and 95% confidence intervals were calculated from 20 simulations.

Results and discussion

Dr.seq2 overview

The Dr.seq2 QC and analysis pipeline is suitable for both single cell transcriptome data and

epigenome data. Multiple types of single cell transcriptome data (including scRNA-seq, Drop-

seq, inDrop, MARS-seq and 10x genomics data) and epigenome data (including scATAC-seq

and Drop-ChIP) are acceptable for Dr.seq2 with relevant functions (S1 Fig).

Recently many methods and software were developed for single cell RNA-seq data. How-

ever most of them were suitable for certain data types with limited functions. We compared

the major function of Dr.seq2 to existing state-of-the-art methods (Table 2). Dr.seq2 provides

two advantages: 1) Dr.seq2 supports different types of single cell transcriptome data and single

cell epigenome data. 2) Dr.seq2 provides both multifaceted QC reports and cell clustering

Table 2. Comparison of functions between Dr.seq2 and other software developed for single cell transcriptome data.

Name Supporting

single cell

epigenome

data (e.g.

scATAC and

Drop-ChIP)

Reads

level

QC

Individual

cell level

QC

Highly

variable

gene

detection

Noise

reduction

Informative

cell

selection

Cell clustering

(sub cell type

identification)

Differential

expressed

gene

detection

Pseudo-

temporal

ordering

Reference

Dr.seq2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ -

Dr.seq ✔ ✔ ✔ ✔ ✔ ✔ [8]

BASiCS ✔ ✔ ✔ [13]

scLVM ✔ ✔ ✔ ✔ [14]

SINCERA ✔ ✔ ✔ ✔ ✔ ✔ [15]

OEFinder ✔ ✔ [16]

ZIFA ✔ ✔ [17]

Destiny ✔ ✔ [18]

SNN-Cliq ✔ ✔ [19]

RaceID ✔ ✔ ✔ [20]

SCUBA ✔ ✔ ✔ ✔ [21]

BackSPIN ✔ ✔ [22]

PAGODA ✔ ✔ ✔ [23]

MAST ✔ [24]

SCDE ✔ ✔ [25]

scDD ✔ [26]

Monocle ✔ ✔ [27]

Waterfall ✔ ✔ [28]

Sincell ✔ ✔ [29]

Oscope ✔ ✔ [30]

Wanderlust ✔ ✔ [31]

CellTree ✔ ✔ [32]

SinQC ✔ ✔ ✔ [33]

ASAP ✔ ✔ ✔ [34]

We compare the major function of Dr.seq2 to existing state-of-the-art methods. Each column shows different functions of these methods and software.

https://doi.org/10.1371/journal.pone.0180583.t002
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results. Then We used the simulated single cell RNA-seq data from seven RNA-seq datasets

from ENCODE (S2 File) to estimate the performance of our Dr.seq2 pipeline (using different

dimensional reduction methods: SIMLR and t-SNE) in cell clustering comparing to three

existing methods (SINCERA, SNN-Cliq, BackSPIN). We applied these five methods on ten

datasets with different numbers of reads per cell range from 100 to 10,000 to measure the accu-

racy and time cost of each method on different sequencing depth. SIMLR shows more accurate

clustering results than t-SNE on the datasets with small number of reads per cell and compara-

ble clustering results on the datasets with large number of reads per cell. And Dr.seq2 (using

either SIMLR or t-SNE) shows better clustering accuracy than SNN-Cliq, and comparable

clustering accuracy with BackSPIN and SINCERA on the datasets with large number of reads

per cell. On the datasets with small number of reads per cell, SINCERA clustering result shows

better accuracy than Dr.seq2 (using either SIMLR or t-SNE) and SNN-Cliq. However SIN-

CERA takes a great mount of time on all these datasets comparing with Dr.seq2. As for Back-

SPIN, it does not support for these datasets with small number of reads per cell. Overall, Dr.

seq2 (using either SIMLR or t-SNE) provides reliable cell clustering results with acceptable

time cost (S2 Fig).

QC and analysis workflow

Dr.seq2 uses raw sequencing files in FASTQ format or alignment results in SAM/BAM format

as input with relevant commands and generates four steps of QC measurements and analysis

results (Fig 1).

For transcriptome data, the QC steps of Dr.seq2 are primarily derived from Dr.seq [8].

However, almost all data types are now supported, and more dimension reduction methods,

including PCA, t-SNE and SIMLR[35], are supported. For single cell epigenome data, technol-

ogies like scATAC-seq and Drop-ChIP are increasingly common. However few quality control

and analysis approaches have been developed for these data. Dr.seq2 conducts QC measure-

ments on single cell epigenome data from four aspects: (i) reads level QC, including sequence

quality, nucleotide composition and GC content of reads inherited from previous work; (ii)

bulk-cell level QC, including genomic distribution of “combined peaks” and average profile on

regulatory regions; (iii) individual-cell level QC, including the distribution of the number of

reads and the peak number distribution; and (iv) cell-clustering level QC, including Silhouette

score[36] and cell type-specific peak detection.

Cell clustering for different single cell transcriptome data types using

different dimension reduction methods

We applied our pipeline to three different types of single cell transcriptome data (Drop-seq,

MARS-seq and 10x genomics data) using three different dimension reduction methods

(PCA, t-SNE and SIMLR[35]) to evaluate the performance of Dr.seq2 on different types of

single cell transcriptome data (Fig 2). Due to the different distance calculation method

and kernel function the method used, Dr.seq2 represented cluster results from different

dimensions.

Bulk-cell level QC of scATAC-seq data to measure the performance of

Tn5 digestion

To evaluate the performance of Dr.seq2 on single cell epigenome data, we combined 288 scA-

TAC datasets (GSM1596255 ~ GSM1596350, GSM1596735 ~ GSM1596830, GSM1597119 ~

GSM1597214) from three cell types and applied Dr.seq2 to it. “Combined peaks” were detected

Dr.seq2: A quality control and analysis pipeline for single cell data
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with total reads from the combined dataset using MACS for output and the following steps.

We measured the scATAC data quality in bulk-cell level from 4 aspects (Fig 3): 1) Peak distri-

bution on each chromosome; 2) Open regions distributed over the genome along with their

scores; 3) Average profiling on different genomic features; 4) Fragment length distribution.

The peak distribution on each chromosome and the open region distributed over the genome

showed the general quality of Tn5 digestion. The average profiling on different genomic fea-

tures represented the quality of Tn5 digestion around specific regions. And the periodicity

fragment length distribution indicated factor occupancy and nucleosome positions due to dif-

ferent Tn5 digestion degrees.

Fig 1. Flowchart illustrating the Dr.seq2 pipeline with default parameters. The workflow of the Dr.seq2 pipeline includes QC and analysis

components for parallel single cell transcriptome and epigenome data. The QC component contains reads level, bulk-cell level, individual-cell level and

cell-clustering level QC.

https://doi.org/10.1371/journal.pone.0180583.g001
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Cell clustering for scATAC-seq datasets with three clusters that were

consistent with the cell type labels

To measure the cell clustering performance of Dr.seq2 on epigenome data, cells from the com-

bined scATAC-seq dataset were firstly clustered based on their occupancy of “combined

peaks” using hierarchical clustering. Then cell type labels were marked by different colors

according to the original cell type information (red stand for H1 cells, yellow stand for

GM12878 cells and blue stand for K562 cells). Cells were clearly separated into different groups

that were consistent with the cell type labels by Dr.seq2 (Fig 4A).

Fig 2. Dimensional reduction results for different single cell transcriptome data types. (A-I) Cell clustering results using dimensional reduction

methods (PCA, t-SNE and SIMLR) on different types of single cell transcriptome data (Drop-seq, 10x genomics and MARS-seq).

https://doi.org/10.1371/journal.pone.0180583.g002
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Fig 3. Bulk-cell level QC for scATAC-seq datasets. A) Peak region number distribution on each chromosome. The blue bars represent the percentages

of the whole tiled or mappable regions in the chromosomes (genome background) and the red bars showed the percentages of the whole open region.

These percentages are also marked right next to the bars. P-values for the significance of the relative enrichment of open regions with respect to the

gnome background are shown in parentheses next to the percentages of the red bars. B) Open region distribution over the genome along with their scores

or peak heights. The line graph on the top left corner illustrates the distribution of peak score. The x-axis of the main plot represents the actual

chromosome sizes. C) Average profiling on different genomic features. The panels on the first row display the average enrichment signals around TSS

and TTS of genes, respectively. The bottom panel represents the average signals on the meta-gene of 5 kb. D) Red line shows number distribution of

different fragment length.

https://doi.org/10.1371/journal.pone.0180583.g003
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Fig 4. Cell-clustering level QC and single-cell level QC for scATAC-seq data. A) Upper panel shows cell-

clustering results for combined scATAC samples generated from 3 different cell types. Bottom panel shows

corresponding cell type labels of each cell marked by different colors (red stand for H1 cells, yellow stand for

GM12878 cells and blue stand for K562 cells). The clustering step of Dr.seq2 clearly separated the scATAC-

seq samples from three different cell types into different groups that were consistent with the cell type labels.

B) Distribution of peak number for each single cell. C) Cell Clustering tree and peak region in each cell. The

Dr.seq2: A quality control and analysis pipeline for single cell data
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Single-cell level QC and post analysis of scATAC-seq data

In the single-cell level QC of Dr.seq2 on scATAC-seq data, the peak number of in each cell was

defined as the number of “combined peaks” occupied by the reads in the cell. The distribution

of different peak numbers in each cell indicated the different amount of information the cell

contains (Fig 4B). Cell clustering was conducted based on the peak information in each cell

using hierarchical clustering and open region was shown in the order of genomic location (Fig

4C). And Silhouette score [36] validated the consistency of each cluster (Fig 4D). Then cells in

the same clusters were considered as cells in the same cell type and combined for the detection

of cell type specific regions, which were defined as the peak regions that only covered in this

cell type. Specific regions for different cell clusters were marked by different colors and

ordered according to genomic loci (Fig 4E).

upper panel represents the hieratical clustering results based on each single cell. The second panel with

different colors represents decision of cell clustering. The bottom two panels (heatmap and color bar)

represent the “combined peaks” occupancy of each single cell. D) Barplot shows Silhouette score of each

cluster. Silhouette method is used to interpret and validate the consistency within clusters defined in previous

steps. E) Cluster specific regions in each chromosome. Specific regions for different cell clusters are marked

by different colors and ordered according to genomic loci.

https://doi.org/10.1371/journal.pone.0180583.g004

Fig 5. Cell clustering stability on simulated scATAC-seq data. A) Clustering stability of Dr.seq2 on simulated data with different numbers of reads

per cell. The lambda index (y-axis) is plotted as a function of the number of reads per cell (x-axis). Error bars represent 95% confidence intervals

calculated from 20 simulations. B) Clustering stability of Dr.seq2 on simulated data with different cell proportion depths. The lambda index (y-axis) is

plotted as a function of the target cell number (x-axis). Error bars represent 95% confidence intervals calculated from 20 simulations.

https://doi.org/10.1371/journal.pone.0180583.g005
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Cell clustering stability on simulated scATAC-seq data

To measure the tolerance of Dr.seq2 for low sequencing depth and small numbers of cells of a

certain cell type, we simulated datasets with different cell proportions and sequencing depths

by using scATAC-seq datasets from three cell types (Table 1).

We selected cells in different proportion with 100,000 reads per cell and then performed

cell clustering using Dr.seq2. The performance of cell clustering methods was evaluated by

Goodman-Kruskal’s lambda index. And the average Goodman-Kruskal’s lambda index calcu-

lated from 20 simulations indicated that Dr.seq2 was suitable for cell clustering with different

cell proportions (Fig 5A). We also selected fifty cells from each cell type with the reads count

range from 10,000 reads to 100,000 reads for each cell to measure the tolerance of Dr.seq2 on

low sequence depth. Dr.seq2 produced stable clustering results with greater than 40,000 reads

per cell (Fig 5B).

Computational cost of Dr.seq2

We also measured the computational time cost of Dr.seq2 by applied Dr.seq2 on combined

scATAC-seq datasets (Table 3). The running time of each step was calculated using a single

CPU (Intel1 Xeon1 CPU E5-2640 v2 @ 2.00 GHz).

Conclusions

In summary, Dr.seq2 is designed for QC and analysis components of parallel single cell tran-

scriptome and epigenome data. Parallel single cell transcriptome data generated by different

technologies can be transformed to the standard input for Dr.seq2 with contained functions.

Using relevant commands, Dr.seq2 can also be used to report quality measurements based on

four aspects and generate detailed analysis results for scATAC-seq and Drop-ChIP datasets.

Supporting information

S1 Fig. Workflow displays the software structure and detailed QC steps of Dr.seq2. A) Dr.

seq2 provides QC and analysis for three major data types: single cell transcriptome data

(DrSeq part), Drop-ChIP data (DrChIP part) and scATAC-seq data (ATAC part). For single

cell RNA-seq data, two additional step-by-step functions are included: 1. Expression matrix

generation for amounts of single cell RNA-seq datasets (GeMa step) and 2. Cell clustering and

analysis for the single cell expression matrix (comCluster step). For different parallel single cell

RNA-seq technologies, input data are standardized for DrSeq part. B) Four groups of QC mea-

surements are conducted on single cell transcriptome data and epigenome data: 1.Reads level

QC including reads quality, reads nucleotide composition and reads GC content 2.Bulk-cell

level QC including reads alignment summary and gene body coverage for transcriptome data;

Table 3. Running time of each QC and analysis step for scATAC datasets.

Steps Time (s/CPU) Percentage (%)

Merge Cells 1507 39.72

Bulk-cell level QC 1654 43.60

Individual-cell level QC and cell-clustering QC 626 16.50

Post-analysis 5 0.13

Summary Report 2 0.05

288 scATAC datasets from three cell types were used to evaluate the runtime of Dr.seq2. The running time

for each step was calculated using a single CPU (Intel® Xeon® CPU E5-2640 v2 @ 2.00 GHz).

https://doi.org/10.1371/journal.pone.0180583.t003
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peak distribution; average profile on regulatory region and the distribution of different num-

bers of fragment length for epigenome data. 3. Individual-cell level QC including duplicate

rate distribution, covered gene number and intron rate distribution and intron rate distribu-

tion for transcriptome data; peak number distribution and fragment length distribution for

epigenome data. 4. Cell-clustering level QC including Gap statistics score and Silhouette score

for transcriptome data, h-clustering and cluster specific peaks for epigenome data.

(TIF)

S2 Fig. Comparing the performance of Dr.seq2 and three existing state-of-the art methods

on cell clustering. A) Clustering accuracy measured by the Goodman-Kruskal’s lambda index

of Dr.seq2 t-SNE, Dr.seq2 SIMLR methods and three published methods on simulated data

with different numbers of reads per cell. The lambda index (y-axis) is plotted as a function of

the number of reads per cell (x-axis). B) Running time of Dr.seq2 t-SNE, Dr.seq2 SIMLR

methods and three published methods on simulated data with different numbers of reads per

cell. The running time (y-axis) is plotted as a function of the number of reads per cell (x-axis).

The running time for each method was calculated using a single CPU (Intel1 Xeon1 CPU E5-

2640 v2 @ 2.00 GHz).

(TIF)

S1 File. Comparison of functions between Dr.seq2 and other software developed for single

cell transcriptome data.

(XLSX)

S2 File. Meta data and accession ID for the bulk-cell RNA-seq data used in simulation.

(XLSX)

S3 File. Dr.seq2 QC and analysis output report for the scATAC-seq dataset.

(PDF)

S4 File. Dr.seq2 QC and analysis output report for the Drop-ChIP dataset.

(PDF)

S5 File. Dr.seq2 QC and analysis output report for the 10x genomics dataset.

(PDF)
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