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Abstract

Background: Gene duplication has been identified as a key process driving functional change in many genomes.
Several biological models exist for the evolution of a pair of duplicates after a duplication event, and it is believed that
gene duplicates can evolve in different ways, according to one process, or a mix of processes. Subfunctionalization is
one such process, under which the two duplicates can be preserved by dividing up the function of the original gene
between them. Analysis of genomic data using subfunctionalization and related processes has thus far been relatively
coarse-grained, with mathematical treatments usually focusing on the phenomenological features of gene duplicate
evolution.

Results: Here, we develop and analyze a mathematical model using the mechanics of subfunctionalization and the
assumption of Poisson rates of mutation. By making use of the results from the literature on the Phase-Type
distribution, we are able to derive exact analytical results for the model.

The main advantage of the mechanistic model is that it leads to testable predictions of the phenomenological
behavior (instead of building this behavior into the model a priori), and allows for the estimation of biologically
meaningful parameters. We fit the survival function implied by this model to real genome data (Homo sapiens, Mus
musculus, Rattus norvegicus and Canis familiaris), and compare the fit against commonly used phenomenological
survival functions. We estimate the number of regulatory regions, and rates of mutation (relative to silent site
mutation) in the coding and regulatory regions.

We find that for the four genomes tested the subfunctionalization model predicts that duplicates most-likely have just
a few regulatory regions, and the rate of mutation in the coding region is around 5-10 times greater than the rate in
the regulatory regions. This is the first model-based estimate of the number of regulatory regions in duplicates.

Conclusions: Strong agreement between empirical results and the predictions of our model suggest that
subfunctionalization provides a consistent explanation for the evolution of many gene duplicates.
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Background

In this paper, we consider the evolution of a pair of
gene duplicates following a duplication event which
gives rise to two perfect copies of the original gene.
Gene duplication was first presented as an important
process by Ohno [1], who postulated that the emer-
gence of new functions in genomes was enabled by
gene duplication. Ohno [1] claimed that duplication
relaxed selective pressures on proteins and enabled
mutations to accumulate, leading to the eventual pro-
cess of neofunctionalization. Gene duplication has since
been identified as a common occurrence in sequenced
genomes [2], and as an important contributor to genome
diversification [3, 4].

Subfunctionalization was first analyzed in a series of
papers by Force and Lynch [5-7]. It is a process of sub-
dividing functions from the ancestral state between the
duplicated gene copies, which allows for both copies of
the gene to be preserved by selective pressure without
the need to invoke positive selection (as in the neo-
functionalization process). To model the evolution of
gene duplicates, subfunctionalization is taken together
with pseudogenization, a process in which genes lose
all functionality, and are effectively lost to the genome.
These competing processes describe the ultimate fate
of duplicates under subfunctionalization; the copies will
either subfunctionalize, in which case both are pre-
served by selective pressure, or one of the copies will
eventually pseudogenize, and the other copy will be
preserved.

Hughes and Liberles [8] sought to build upon the work
in Force and Lynch [6] and Lynch and Conery [2, 9] to gen-
erate models for neofunctionalization and subfunctional-
ization. In these works [2, 6, 8, 9], the expected behaviour
of duplicates evolving under sub/neofunctionalization
is characterized by inspection of the mechanisms of
both processes. Survival/hazard functions were chosen
for their conformity to the predictions implied by the
characterization and used for subsequent analysis. How-
ever, the parameters in these survival/hazard functions
do not uniquely characterize processes in the mecha-
nistic framework. Here we perform a complete mecha-
nistic analysis of subfunctionalization. The mechanistic
approach has two main advantages in comparison to fit-
ting phenomenological functions (a) it leads to testable
predictions about the shape of the survival function
under the subfunctionalization model (b) it allows esti-
mation of biologically meaningful parameters such as
null mutation rates and the number of functions that
can be partitioned. The main contributions of this work
are:

e Development of a continuous-time Markov chain
model for the subfunctionalization process.
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e Analysis of the shape properties, long and short-term
behaviour of pseudogenization rate, and
interpretation of what this means in terms of
biological predictions of the subfunctionalization
process.

e Fitting the model to genome data for four
mammalian species.

e The first subfunctionalization-model-based estimates
of the relative rate of fixation of null mutations both in
the coding and regulatory regions of gene duplicates.

e The first model-based estimates of the likely numbers
of regulatory regions to exist in gene duplicates.

In the section “A continuous-time Markov chain
model for Subfunctionalization” we contstruct the
model, justify the various transition rates by analyz-
ing the mechanics of the subfunctionalization process,
and note some important structural features of the
model.

In the section “The pseudogenization cause-specific
hazard rate” we introduce the pseudogenization (and sub-
functionalization) cause-specific hazard rates. This gives
the instantaneous rate of pseudogenization (or subfunc-
tionalization) under the assumption that neither subfunc-
tionalization, nor pseudogenization has occurred so-far.
We offer a minor correction to the approximation applied
by Hughes and Liberles [8].

In the section “Pseudogenization rates” we define and
derive results for what we call the pseudogenization
rate. This gives the instantaneous rate of pseudoge-
nization without the assumption that subfunctionaliza-
tion has not yet occurred (as in the standard hazard
rate analysis). We argue that this rate is more use-
ful in the context of subfunctionalization than the
pseudogenization cause-specific hazard rate. We ana-
lyze the shape properties of this function, showing
that subfunctionalization predicts qualitative behaviour
which is consistent with the empirically observed
curve [8].

In the section “Subfunctionalization survival func- tion
and Poisson duplication” we introduce a simple model
for the underlying duplication process. We apply this,
together with the survival function implied by our sub-
functionalization model, to derive an equation for the
likelihood of observing some count of duplicates at a
particular time. By taking the product of these like-
lihoods over each of the time points represented in
a data set, it is possible to estimate parameters for
both the subfunctionalization model, and the duplication
model.

In the section “Shape properties of the pseudoge-
nization rate functions” we examine the shape prop-
erties of the pseudogenization rate functions under
some different parameterizations. We find that the
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rate function is sigmoidally shaped, but under cer-
tain parameterizations can appear exponential-like in
shape.

In the section “Fitting the model to genome data” we
fit the model to the genomic data set analyzed in Hughes
and Liberles [8], and derive some relevant results. The
mechanistic nature of our model means that this fitting
provides direct estimates of the rates of mutation in the
genome relative to synonymous site mutation, as well as
the number of regulatory regions that duplicate genes are
likely to have.

In the “Discussion” we consider some biological impli-
cations of this analysis. By analyzing the shape proper-
ties of the pseudogenization rate function, we rethink
the predictions on gene duplicate survival implied by
the subfunctionalization process. While our analysis
agrees in part with previous characterizations, particu-
larly due to Hughes and Liberles [8], we highlight sev-
eral points of difference. Most notably, we discuss the
finding that our model does not necessarily lead to
the broadly concave decline in pseudogenization rate
thought to characterize subfunctionalization [8, 10-12].
We see that, under certain parameter sets, the model can
lead to rapid convex decline in the hazard rate which
would be associated with rapid subfunctionalization
and a low risk of nonfunctionalization; and we suggest
some possible candidate genes which might exhibit this
behaviour.

In the “Conclusions” we discuss the results of the math-
ematical and empirical analysis, and what this means for
the biological process of subfunctionalization. We sum-
marize our goals for modeling gene duplication with ref-
erence to the development of an overall mathematical
model for gene duplication, incorporating all of the major
biological processes.

Much of the mathematical detail is omitted from the
main text, and is included in Additional file 1: Section A
of Additional file 1: makes use of the embedded discrete-
time Markov chain to derive various probabilities of inter-
est, including the probability of absorption by the time of
the n™ mutation.

In Section B of Additional file 1 we consider the cause-
specific hazard rates, and derive various measures of inter-
est including the probability of absorption before time ¢,
mean time to absorption and the k" moments of time to
absorption.

Section C of Additional file 1 contains the derivation
of the main rate of interest in this work, the pseudoge-
nization rate, as well as the average pseudogenization rate
where the number of regulatory regions is treated as a
random variable.

In Additional file 1: Section E we compare the
qualitative features of the model detailed in this work to
two existing phenomenological approximations. We also
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outline a method for retro-fitting our model to the model
of Teufel et al. [11].

Sections F and G of Additional file 1: contain proofs
of two important results which are used in the main
body of the text. We consider the general case of an
absorbing Continuous-time Markov chain (CTMC) with
finite state space, and derive limits of the cause-specific
hazard rate (Additional file 1: Section F), and an ana-
logue of the pseudogenization rate discussed through-
out the main body of this work (Additional file 1:
Section G).

Methods

A continuous-time Markov chain model for
Subfunctionalization

In this section, we define the model which is central
to this paper. The model is a continuous-time Markov
chain (CTMC), with a structure which is very simi-
lar to the phase-type distribution, [13] which has been
widely studied in the probability modeling literature, but
has so-far seen little or no use in evolutionary biology.
In later sections, we will exploit this structural similarity
in the derivation of hazard rates and other measures. In
Additional file 1: Section A, we also perform an analy-
sis of the embedded discrete-time Markov chain [14] to
derive results pertaining to the probability of subfunction-
alizing/pseudogenizing at (or before) the time of the i
mutation.

The model which we define below is motivated by
the mechanics of regulatory subfunctionalization. Broadly
speaking, subfunctionalization can occur as a non-
regulatory process, however the assumptions of this
model have been chosen to match the biology of regu-
latory subfunctionalization as closely as possible, while
allowing for analysis. There is potential application of
this model to other modes of subfunctionalization where
the underlying mechanics are essentially similar to the
mechanics of regulatory subfunctionalization. The fol-
lowing key assumptions should be carefully considered
when applying the model to processes besides regulatory
subfunctionalization:

e the process is assumed to be neutral,

¢ null mutations are assumed to occur independently,
and at a constant rate,

e it is assumed that, due to selection pressure, an
unmutated copy of each subfunction is always
retained in at least one duplicate

Consider the situation described in the duplication—
degeneration—complementation (DDC) process of Force
et al. [5]. Immediately after some duplication event, we
have two identical genes, each with z mutable regulatory
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regions. Assume the notation of Hughes and Liberles
[8], taking the (Poisson) rate at which null mutations
are fixed in each of the z mutable regulatory regions
for each gene to be u,, and the (Poisson) rate at which
null mutations fix in the coding regions for each to
be u..

For a fixed number z of the regulatory regions in
the duplicate pair of genes, consider a continuous-time
Markov chain {X(¢), t > 0}, with state space

A=1{0,1,...,z—1}U{S, P}, (1)

where state i € {0,1,...,z — 1} represents the num-
ber of fixed null mutations to have occurred in the
case that neither subfunctionalization nor pseudogeniza-
tion have happened yet, and the states S and P are
introduced to represent subfunctionalization and pseu-
dogenization respectively. S and P are both absorbing
states - that is, once subfunctionalization or pseudo-
genization occurs, the process stops and remains in
state S or P, which represent the preservation of both
copies, or one copy respectively. Under the subfunc-
tionalization process, a duplicate pair is preserved if
it undergoes subfunctionalization, otherwise one gene
is lost (pseudogenization) and the remaining gene is
preserved.

Note that we can significantly simplify the problem by
modeling the number of null mutations to have occurred
in the system as whole, rather than trying to track
mutations in each gene separately. As soon as a null
mutation has occurred in both genes, either subfunc-
tionalization or pseudogenization must have occurred,
so we need only count the total number of muta-
tions until one of these two possible outcomes is
realized.

We define the generator for our Markov chain to be
matrix Q = [g;] where the non-zero off-diagonals are
given by

2u, ifi=0,j=P
2zu,  ifi=0,j=1
e ifl<i<z—2,j=P
W= z—du ifl<i<z—2j=i+lorj=S$
up+u, ifi=z—-1,j=r
Uy ifi=z—-1,j=S.

2)

Below, we show that the rates g; in (2) are indeed
the relevant transition rates by considering the evolution
immediately after duplication.

Transitions from 0 — P Clearly, the process starts in
state 0, since no null mutations have fixed at the instant
of duplication. Null mutations fix in the coding region for
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each gene at a rate u,, and this leads to pseudogenization.
Therefore transitions from 0 — P occurs at rate 2u,.

Transitions from 0 — 1 Null mutations fix in each of
the 2z regulatory regions at a rate u,, and hence transition
0 — 1 occurs at a rate 2zu,..

After the first mutation, either a null mutation fixed
in one of the coding regions, and the process has been
absorbed into state P, or a null mutation has fixed in one of
the regulatory regions of one of the genes, and the process
is now in state 1.

As described in [2], null mutation in the regulatory
region results in the loss of some particular function for
that gene, and the total loss of a function is selected
against. Hence the duplicate pair must retain at least
one unmutated copy of each regulatory region between
them - this is the fundamental concept of subfunction-
alization. It follows then that the remaining unaffected
gene must be preserved, and so too must its copy of
the regulatory region which has mutated in the other
duplicate.

Transitions from 1 — P Since the unaffected gene now
has a unique function which is protected by selective
pressure, this gene is no longer susceptible to pseudoge-
nization under the subfunctionalization process. As such,
only one copy may now undergo null mutation in the cod-
ing region, which it does at a rate #.. Hence the rate of
transitions from 1 — P is u,.

Transitions from 1 — S Also, since one regulatory
region in the unaffected gene is protected by selective
pressure, and one region has already undergone null
mutation for the other gene, each gene has z — 1 regula-
tory regions which are now susceptible to null mutation. If
such a mutation occurs in the previously unaffected copy,
then both copies will have a unique function, and both will
be protected by selective pressure. This is subfunctional-
ization, and hence the process transitions from 1 — Sata
rate (z — 1)u,.

Transitions from 1 — 2 On the other hand, if a null
mutation fixes in one of the z — 1 susceptible regulatory
regions of the same copy in which the previous mutation
fixed then the process transitions to state 2 - as two muta-
tions have now fixed, but the process has not yet been
absorbed. Hence the process transitions from 1 — 2 at a
rate (z — 1)u,.

Transitions from i € {1,2,..,z — 2} - j We note that
for the process to reach state i € 1,2,...,z—2 all
mutations must have occurred in the regulatory regions
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Fig. 1 The (biological) transition diagram for z = 4. Regions hit by null mutation are coloured red, and regions which are protected by selective

of the same copy, since subfunctionalization (and hence
absorption to S) occurs as soon as both copies have a
unique function. Therefore, a similar argument is used to
show that for all i € {1, 2, ..,z — 2} transitions

e from i — P occur at rate u,,
e from i — S occur at rate (z — i)u,,
e fromi— i+ 1occuratrate (z — i)u,.

Transitions fromz — 1 — § When the process is in state
z — 1 there is only one regulatory region for each copy
susceptible to null mutation, which occurs at a rate u, for
each copy. If such a mutation occurs in the so-far unaf-
fected gene then the process transitions to state S, hence
the rate of transition from z — 1 — Sis u,.

rate u.. The other way is for a null mutation to fix in
the last remaining regulatory region of this same gene,
which occurs at a rate u,. Hence the rate of transition from
z—1— Pisu, + uc.

The full set of possible transitions for the case where z =
4 is illustrated in Fig. 1.

Block matrix form of Q

Now, we define Q* to be the block matrix of Q which
records the transition rates between the non-absorbing
states in {0,1,...,z — 1}, and V = [vg,Vp] to be a z x 2
matrix where (column) vectors vg and v, record the rates
of transition from the non-absorbing states in {0, 1, ..., z—
1} into the absorbing states S and P, respectively. We
have, with O denoting zero matrices of appropriate

sizes,
Transitions from z — 1 — P There are two distinct ways Q*|V
in which the process can transition from z — 1 — P. The Q= [ o O] , (3)
first is similar to the previous cases, with a null muta-
tion occurring in the coding region of the copy in which
all of the previous mutations have fixed, which occurs at ~ where
0 1 z—1 S P
0 [ —Qu.+ zuy)) 2zu, 0 0 2u, ]
1 0 —(ue + 2(z — Duy)) (z— Du, (z—Du, uc
Q= ° : : : : : : '
z—2 0 0 0 —(ue+2u)| 2u U
z—1 0 0 0 0 Uy uc + uy
S 0 0 0 0 0 0
P [ 0 0 0 0 0 0
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This form of the generator matrix is useful, as we will
make extensive use of the matrix Q* and the vectors vy
and v in our derivations.

Note that since Q is a transition rate matrix, the row
sums must be 0. The rows full-of-zeros corresponding to
the absorbing states are interpreted as the process having
zero rate of transition out from these states

The pseudogenization cause-specific hazard rate
In this section, we give a brief overview of the pseudo-
genization cause-specific hazard rate. A detailed analysis
of both the pseudogenization and subfunctionalization
cause-specific hazard rates is given in Additional file 1:
Section B. In the traditional hazard rate setting, there is
only one absorbing state, and the hazard rate is a measure
of the rate at which a process is absorbed, given that it has
not yet been absorbed. The cause-specific hazard rate can
be applied when there are several absorbing states, and is
a measure of the rate at which a process is absorbed into
a particular absorbing state, given that it has not yet been
absorbed into any absorbing state.

Given a random variable T recording time until absorp-
tion, the hazard rate A;(t), given that the process starts in
state i is defined [14] for all £ > 0, as

Pt <T<t+hT>tX(0) =i _ fi(®
h C1-F@®’
(4)

Li(t) = lim
h—0t

where f;(t) is the probability density of absorption occur-
ring at time ¢ given that the process starts in state i,
and Fj(t) is the corresponding cumulative distribution
function.

For the model described in the section “A continuous-
time Markov chain model for Subfunctionalization” the
hazard rate can be shown (see Additional file 1: Section B)
to be

_EEQ*tQ*l

Ai(t) =
0 = —

(5)

where e; is a (row) vector with a 1 in the i-th position
and O’s elsewhere, and 1 denotes a column vector of 1’s of
appropriate size.

When an absorption occurs, the process transitions into
an absorbing state (for the model considered here that is
either S or P). This motivates the definition of the cause-
specific hazard rate [15], which can be thought of as the
instantaneous rate of transition into a particular absorb-
ing state given that the process has not yet been absorbed.
In our case, we refer to these rates as the pseudoge-
nization cause-specific (j = P) and subfunctionalization
cause-specific (j = S) hazard rates, given by
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Pt <T <t+hX(T)=j|T >t,X(0) =1

A.ij () = lim
h—0F

_ fi®
T 1-F@®’

h

(6)

After some analysis (see Additional file 1: Section B) we
see that the cause-specific hazard rates for our model are
given by

[ﬁeQ*fv]l
Aij(t) = W' (7)

Additional analysis including an investigation of the lim-
iting behaviour, and the derivation of various measures
which are not directly related to the central narrative of
this paper are included in Additional file 1: Section B.
Although these results are not pivotal to this work, they
are likely to be of interest to more mathematically inclined
readers interested in applications of the phase-type distri-
bution to the derivation of related measures.

Now, in order to approximate the pseudogenization
hazard rates, Hughes and Liberles [8] applied the follow-
ing:

Z

pad

— L fort;  <t<t, 8
E(AT) orij—1 =t <t ()

where the fixed points ¢; are evaluated using

to=0 and ¢t =t_1+EAT;) forl<i=<z (9)

That is, the (approximating) assumption was made that
the hazard rates are piece-wise constant within such spec-
ified time intervals [ £;_1, £;].

However, there was an error in the approximation at
which Hughes and Liberles [8] ultimately arrived. They
wrote

2u, forO0<t<t
174 fort) <t < t,_
)\f: (4 1= < z—1 (10)
uc+u, fort, | <t<t,
0 fort > t,.

Notice that no weight is given to the possibility that sub-
functionalization has occurred for ¢ < t,, and for ¢ > ¢, no
weight is given to the possibility that it has not occurred.
Hence this approximation assumes that subfunctionaliza-
tion occurs at the time of the z® mutation ¢ = ¢, exactly.
This is a small but critical error, as the approximation
only holds in the unlikely event that subfunctionalization
occurs at time ¢ = t,, which for most parameter sets is far
from the mean time to subfunctionalization. We contend
that this ultimately led to the mischaracterization of the
subfunctionalization process in [8], and we will see in in
the section “Shape properties of the pseudogenization rate
functions” that our rate function behaves very differently
to this approximation.
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With a minor correction we get a good approximation
for the pseudogenization cause-specific hazard rate, using
the same notation we can write

2u, for0<t<tf
M= u fort; <t <t,_1
Uc + u, fort > t, 1.

(11)

However, as mentioned above, we contend that this is
not the rate of central interest in modeling subfunctional-
ization.

Pseudogenization rates

In this section, we introduce a new measure, referred
to as the pseudogenization rate, which we contend to
be of greatest interest in modeling subfunctionalization,
and gene duplication more generally. This measure is a
slight variation of the hazard rate which accounts for the
possibility that subfunctionalization has occurred. This
allows analysis of the instantaneous rate of pseudoge-
nization when it is not possible to determine whether
subfunctionalization has occurred.

Note that in the traditional hazard rate setting, all of the
absorbing states are thought of as corresponding to some-
thing analogous to death, or failure. In such case, we are
rarely interested in modeling the process after absorption,
and hence the focus on rates in which absorption has not
occurred. In contrast, the central feature subfunctional-
ization is the ability for both duplicates to be preserved
by selective pressure when subfunctionalization occurs.
Hence in our model, the absorbing state S corresponds to
an immunity from subsequent failure, and as such we are
interested in modeling the behaviour of the system only
under the assumption that failure (i.e. pseudogenization)
has not yet occurred.

Hughes and Liberles [8] assumed that subfunctionaliza-
tion occurred at precisely time ¢t = ¢,, and approximated
the rate of pseudogenization by first approximating the
cause-specific hazard rate (the hazard rate conditional on
absorption into state P) up to time ¢ = £,, and setting the
rate to be 0 for t > ¢, (see Eq. (10)). In this way, they
partially overcame the fact that the cause-specific hazard
rate fails to account for the primary feature of the sub-
functionalization process. However, the assumption that
subfunctionalization occurs at some predetermined point
in time is hard to justify, and we show that there are sub-
stantial differences between the qualitative behaviour of
such an approximation and the exact rate derived here.

Pseudogenization rate for fixed z
Let
Tp = inf{t > 0: X(¢) = P} (12)

be the random variable recording the time at which pseu-
dogenization occurs. Assume that there are z regulatory
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regions in the duplicate pair of genes. We define the
pseudogenization rate as
P(t < Tp < t+h|Tp > t,X(0) = 0)

h

f;(t) = lim
h—0t

__f®
1-F@)
(13)

where E(t) = P(Tp < ¢) andf = F'(¢) are the corre-
sponding cumulative distribution and probability density
functions, respectively. After some analysis (see Addi-
tional file 1: Section C) this leads to a pseudogenization
rate of

epeQ 'ty
1—eg (¥t —1) Q) tvp
Given enough time, and given that pseudogenization
does not occur (which we condition on in the pseudoge-
nization rate), we would intuitively expect that subfunc-
tionalization must eventually occur. As such, we would

expect the rate /5(¢) to approach zero as ¢ approaches
infinity, that is,

B(t) = (14)

Jim J5(8) = 0. (15)

We have confirmed this analytically in Additional file 1
Section C).

Note that it does not make sense to calculate moments
of time to pseudogenization (e.g. the mean, variance)
with this rate. This is because of the possible absorp-
tion into the state S - if subfunctionalization occurs, then
the time to pseudogenization is infinite. Recalling that
the pseudogenization rate does not condition on subfunc-
tionalization not occurring, clearly then the mean time to
pseudogenization is infinite. For a meaningful calculation
of moments, the hazard rate should be used.

Average pseudogenization rate (for randomly distributed z)
We now consider the pseudogenization rate averaged over
the possible values of z. We let Z be a random variable
tracking the number of regulatory regions in a duplicate
pair, and define the average pseudogenization rate as

Zmax

Hp(t) = Y phy(e).

z2=Zin

(16)

Notice that since each #5(f) — 0ast — 0, it follows
that

lim HE(t) = 0. (17)
t—00

Subfunctionalization survival function and Poisson
duplication

In order to fit the model to genome data, we will make
use of the survival function implied by our model together
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with some assumptions about the underlying gene dupli-
cation process.

By Eq. (14), the survival function corresponding to the
random variable Tp is given by

P(Tp>t)=1—F@t) =1—e, <eQ*t - 1) (Q*) ' vp.
(18)

Note that the data (handled by Hughes and Liberles [8])
contains the counts of the number of surviving duplicates
at the current time. However, this number depends on the
gene duplication process, which needs to be considered
in the analysis. By introducing a Poisson process to model
the duplication process (see Additional file 1: Section D),
and a random variable Y'(¢) representing the number of
duplicates that have survived to time ¢ we are able to
derive the probability that there are y duplicates surviving
at the current time as

PY(t) =) = WW&O(”@),

y, (19)
where F (¢) is defined in (18), and By is the average number
of duplication events that occur in a time interval of length
0.01s - s being the expected number of substitutions per
silent site. Note, the time interval is chosen as 0.01s since
this is the size of the intervals in the data set we examine
in the section “Fitting the model to genome data”

Note that (19) defines a Poisson random variable with
parameter

B@) = Bo(1 — F(1)), (20)
which is the expected number of duplicates surviving to
time ¢ if the duplication process is Poisson with parameter
Bo and the survival process is the model under discussion
in this paper.

With this result, calculating the likelihood of the data
given the parameters is straight-forward, and computa-
tionally tractable, as we only need to multiply over the
probabilities for each of the data bins.

Next, in order to fit the parameters By, u;, u, and z to the
data set, we use the maximum likelihood method with the
log likelihood given by

log(Lg) =Y Dilog(B(s;) — B(s;) — T log(D;+1), (21)

where D; is the count in the ith bin of the data set, and s; is
the associated cumulative number of silent substitutions
per silent site, used as a proxy for time.

For the data set we examine in the section “Fitting the
model to genome data”, s; = 0.01i.
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Results

Here we discuss some further mathematical results which
have more direct biological implications than those dis-
cussed in the methods section, as well as results from
data fitting. In the section “Shape properties of the pseu-
dogenization rate functions” we discuss results pertain-
ing to the shape of the pseudogenization rate function
introduced in the section “Pseudogenization rates’, these
results have some implications about the predictions of
the subfunctionalization process which are detailed fur-
ther in the discussion. In the section “Fitting the model to
genome data” we fit the model to the data sets of Hughes
and Liberles [8] to estimate the relative rates of muta-
tion and the number of regulatory regions comprising
gene duplicates in Homo sapiens, Mus musculus, Canis
familiaris and Rattus norvegicus.

Shape properties of the pseudogenization rate
functions

In this section we analyze the shape properties of the
pseudogenization rate function, and consider the impli-
cations of these properties on the predictions of the
subfunctionalization process. We show that our model
predicts a sigmoidal shaped pseudogenization rate, we
also show this does not always imply the broadly con-
cave decreasing hazard rate (where the instantaneous rate
of pseudogenization decreases faster and faster as time
elapses) suggested by Hughes and Liberles [8]. We find the
critical value at which the function’s behaviour shifts from
being obviously sigmoidal to apparently exponential (i.e.
convex decreasing), which we illustrate in Fig. 2.

Hughes and Liberles [8] found that a hazard rate follow-
ing a Weibull distribution provided an extremely good fit
to gene duplicate data. Konrad et al. [12] fit sigmoid (S-
shaped) curves to their data sets. Panel (d) of Fig. 2 shows
that this is indeed the shape arising from our model. Note
that the time axis in Panel (d) of Fig. 2 includes nega-
tive values. There is an obvious continuation of /5(t) to
the domain ¢t € R (i.e. including negative ¢) where we
take the same expression for /5 without interpreting ¢ as
corresponding to time.

Considering the behaviour of 4% (t) for negative ¢ can
be useful, as an important qualitative feature is whether
the change of concavity occurs in ¢ > 0, or t < O.
At the point of inflection, the function changes between
decreasing more and more quickly, and decreasing more
and more slowly. As far as our biological interpretation of
H%(2) (as the rate of pseudogenization) is concerned, we
are only interested in ¢ > 0. Hence, whether this change
of behaviour occurs in real, physical, time (¢ > 0) or not is
an important defining feature of the characteristics of the
process. This is demonstrated in Fig. 2.

Notice that there are two distinct predictions for the
behaviour of this process. The process can begin with
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Fig. 2 Pseudogenization rate h7(t) with forz = 12 y less than a, greater than b and equal to ¢ ycit. Panel d shows the overall shape of h% (1), with
negative values of t included. a Pseudogenization rate h;(t) with y < pZ;.. The change in concavity occurs at t ~ 2.7. As such, the sigmoidal nature
of the function is apparent - we see an initially slowly decreasing hazard rate which decreases more and more rapidly up to the change in concavity,
after which the decline in the hazard rate slows, and approaches the asymptote at zero. b Pseudogenization rate h; (t) with y > yZ;.. Here the
change in concavity occurs for some t < 0, and hence cannot be seen in real, physical time (t > 0). The shape is not obviously sigmoidal, and looks
similar to that of an exponential decay. The rate of pseudogenization is initially declining rapidly, before approaching its asymptote at zero.

¢ Pseudogenization rate hj () with y = ;.. Here the change in concavity occurs at exactly t = 0. This is qualitatively similar to the case in panel b,
with the pseudogenization rate rapidly declining, and the decline becoming slower as the rate approaches its asymptote at zero.

d Pseudogenization rate h;(t) taken as a function over all R. This gives a complete picture of the shape of the pseudogenization rate function.
Smaller values of y translate the graph to the right, and result in a longer initial period of slowly declining pseudogenization rate. If y > ycit, the
point of inflection occurs to the left of t = 0, and we see behaviour similar to panel a
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a rapid decline in the rate of pseudogenization, quickly
approaching its asymptote at zero, and leaving relatively
little opportunity for pseudogenization to occur. Alterna-
tively, it can start with a slowly declining pseudogenization
rate, giving more time for pseudogenization to occur
before a high probability of subfunctionalization eventu-
ally takes over and the rate of pseudogenization begins to
rapidly decline towards it’s aymptote at zero.

In the absence of a relative clock (such as synonymous
site mutations, which we use in the section “Fitting the
model to genome data”) the parameters u, and u, are
only meaningful relative to each other. As such, non-
dimensionalization is a convenient technique to reduce
the number of parameters from 3 to 2.

We can replace parameters u, and u, with their ratio
y = u,/u., and work with time units 1/u.. Thus u, can
be thought of as the units of the rate (note that the rate
units u., are the inverse of the time units 1/u, as usual).
This technique is applied implicitly throughout many of
the results that follow.

The change in concavity will occur when the second
derivative is zero, i.e. when /43'(t) = 0. We define yZ,,
to be the ratio u,/u, at which the second derivative is
zero precisely when ¢ is zero, i.e the ratio u,/u, such that
h3'(0) = 0. When 0 < y = u,/uc < yZ; the con-
cavity of /% (¢) will change for some t* > 0, and we see
the behaviour where an initially slowly-declining hazard
rate decreases more and more quickly before slowing back
down as it approaches zero. Otherwise, the change in con-
cavity occurs for some negative value of ¢, and in this case
the hazard rate begins its rapid decline immediately, with
the rate of decline slowing from it’s initially-high value
at all times. Figure 3 shows the values of yZ,, for various
values of z.
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Fig. 3 Critical values y;, for various values of z. When u,/uc < yZ;
the change in concavity for the pseudogenization rate function will
occur in positive time. Otherwise, the change occurs in negative t and
the sigmoidal nature of the function will not be apparent when

plotted fort > 0
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The sigmoidal shape is in good qualitative agreement
with previous results, and in Additional file 1: Section E
we retro-fit our model to existing phenomenological
approximations due to Teufel et al. [11] and Konrad et al.
[12], finding particularly good agreement with the shape
of the hazard function in Teufel et al. [11]. The continua-
tion of /5(¢) to include negative ¢ is particularly useful in
this analysis, and in Additional file 1: Section G we prove
a result about the limit as £ — —oo of a generalization of

%(t) applicable to any absorbing CTMC with a finite state
space.

We note that the shape of /5(¢) is only sigmoidal for
0 < ur < uc. For u, = 0 the shape of /5(t) becomes
exponential, and when u, > u,, hf)(t) may have multiple
turning points, or points of inflection. However, these are
not realistic parameter sets for subfunctionalization.

Example 4.1 (y < y%;,)

In this example, we examine the shape of the pseudo-
genization rate for z = 12, and y = u,/u, = 0.005 <
yclr%t = 0.0714. In this case, the sigmoidal shape of the rate
function is quite apparent. This is because the change in
concavity occurs in physical time, and hence in Panel (a)
of Fig. 2 we can see that the rate is relatively flat near £ = 0.

Example 4.2 (y = yZ;,)

For this example, we examine the shape of the pseudog-
enization rate for z = 12 and y = u,/u, = 0.0714 = yclr%t,
shown in Panel (c) of Fig. 2. Here we see little evidence of
the sigmoidal shape of the rate function for ¢ > 0, which

could be well approximated by an exponential decay.

Example 4.3 (y > y%;)

In this example, we examine the shape of the pseudoge-
nization rate for z = 12 and y = u,/u, = 0.2 > yclr%t =
0.0714. In this case, the point of inflection does not occur
in physical time and the shape of the function becomes
indistinguishable from an exponential decay. Panel (b) of

Fig. 2 shows the rate function for this example.

Fitting the model to genome data

In this section we fit the model to the data set analyzed
in Hughes and Liberles [8], the data set is included in
Additional file 2, while the MATLAB scripts used for anal-
ysis are in Additional file 3. This data consists of counts of
the number of duplicate pairs in several genomes with cor-
responding estimates of the cumulative number of silent
substitutions per silent site, binned in intervals of length
0.01s, where s is the cumulative number of silent substitu-
tions per silent site. The silent substitutions can be used
as a proxy for time, and the intervals of length 0.01s rep-
resent on average 1.1 million years. Hughes and Liberles
[8] tested the quality of the alignments by comparing the
mean and median fraction of alignment columns which
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were gap free. They concluded that the alignments for
the four species M. musculus, R. norvegicus, H. sapiens
and C. familiaris were of high quality, and these are the
data sets we will examine here. In [8] Hughes and Liber-
les fit off-the-shelf survival functions to these data sets.
Here we assume that the underlying duplicate process is
a Poisson process, and fit the survival function derived
from our model as discussed in the section “Subfunctiona-
lization survival function and Poisson duplication” of the
Methods.

We computed maximum likelihood estimates (MLEs)
6, = [y, fic, Bo] for uy,u. and By for each z from 2 to
20 for four mammalian genomes. We call the best of
these z’s (in terms of likelihood) z, with the understand-
ing that this is not a true maximum likelihood estimate,
since we restricted Z € {2,3,...,20}. We chose this trun-
cation because it is unlikely that a gene would have in
excess of 20 regulatory regions [8]. The case z = 1 is
excluded, as subfunctionalization cannot occur in this
case, and the survival model reduces to an exponential
survival function with parameter 2(u; + u,) whenz = 1
or u, = 0.

The ratio y = u,/u. and z appear to be strongly corre-
lated in the MLEs, as shown in Fig. 4. A power law relation
between y and z appeared to fit quite well, with R? values
> 0.97 for each of the four genomes.

We compared the fit of our survival function (18)
against Weibull and exponential functions using rela-
tive likelihood via the AIC [16]. For all four genomes,
our model outperformed the exponential function, but
was itself outperformed by the Weibull function in the
rat, mouse and human genomes. In the canine genome
there was insufficient evidence to choose between the
Weibull function and the survival function derived from
the model.

Mechanistic models can contain parameters that are
part of the generative process but add little to data
fitting, sometimes resulting in less support for mech-
anistic models when compared to simpler models,
even when the mechanistic models give more accu-
rate inference of the underlying process as judged by
the accuracy of parametrization (see Liberles et al.
[17]). With this justification in mind, we move for-
ward with analysis of the results of fitting the mecha-
nistic subfunctionalization model to genomic data. The
analysis of mechanistic parameters is conditional on
the generative process being what is modeled, namely
subfunctionalization.

To estimate the relative rates of mutation y = u,/u,
together with the mean number of duplicates per 0.01s,
Bo, we fixed z = Z and computed €2 likelihood inter-
vals for each of the parameters using the profile likelihood
approach. We also calculated e? likelihood intervals for z
using the values of the MLE. In the regular asymptotic
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Fig. 4 Maximum likelihood estimates for y = u,/u, for each
z=273,..., 20 for four mammalian species. a y vs z in the MLE for
Canis familiaris. b y vs z in the MLE for Homo sapiens ¢ y vs zin the
MLE for Rattus norvegicus d y vs z in the MLE for Mus musculus
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case e? likelihood intervals are equivalent to 95.4% con-
fidence intervals [18]. Since the shape of the profile like-
lihood is quite standard (for example, see Fig. 5), it is
reasonable to regard these intervals as approximate 95%
confidence intervals. These results are summarized in
Table 1.

There were some minor identifiability issues in fitting
the model to this data, in particular, for the Rattus norvegi-
cus and Canis familiaris genomes, we were able to find
good relative likelihood scores for any z = 2,3,...20,
which prevents us from reliably estimating z for these two
genomes. Together with the close correlation between z
and y = u,/u, this could be overcome by fixing one or
more of the parameters using some outside analysis. In
both cases, the maximum likelihood estimate for z was
z=2.

As a point of interest, we ran some simulations using
parameters similar to those estimated for the rat genome.
We simulated bins of data identical to those in the data, i.e.
30 bins corresponding to 0.01s,0.02s,...0.3s, and found
that the parameters of the model were difficult to recover
in this case, with the MLE value for z varying between
runs with the same parameters. In some runs, even when
z was fixed to the correct value used in the simulation
ur and u, were not able to be accurately recovered, with
y = u,/u. varying from around 0.05 to 0.3 (true value
0.2) in the handful of simulations we ran. The true param-
eters fell within the e? likelihood intervals, but it wasn’t
until we increased the number of intervals to 100 that
we started to get more reliable recovery of the simulation
parameters.

The simulation analysis provided some insight into the
relatively unstable results for the rat and dog genomes.
We suspect that the combination of low count values (and
hence low fy), together with the relatively low estimated
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Fig. 5 The profile likelihood curve for u in the Rattus norvegicus
genome
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Table 1 €2 likelihood intervals and maximum likelihood
estimates for four species

lower MLE upper lower MLE upper
Rattus norvegicus Mus musculus
Uc 2.24 3.04 3.68 18.03 20.07 2233
ur 0.00 0.67 241 2.87 3.26 3.69
Bo 186.63 204.04 221.06 633.00 680.84 731.62
z 2 2 20 3 3 5
Homo sapiens Canis familiaris
Uc 1244 14.71 1743 6.36 7.74 9.25
ur 2.52 3.1 3.80 1.30 2.39 345
Bo 31555 348.11 384.05 114.12 129.07 145.77
z 3 3 5 2 2 20

mutation rate, leads to an overall lack of information in
the data for these two genomes compared to the others,
and hence the difficulty pinpointing parameters. Based on
the results of the simulations we ran, we expect that the
likelihood intervals for these genomes are somewhat reli-
able, while the maximum likelihood estimates themselves
are probably not very precise.

We also note that for the rat genome the value u, =
0 was within the established likelihood intervals. In this
case, the survival function for our model reduces to an
exponential survival function with parameter 2u.. The
lack of differentiation between the mechanistic and phe-
nomenological models in this case is likely due to the
previously mentioned relative lack of information in the
rat data.

For the Homo sapiens and Mus musculus genomes the
maximum likelihood estimate for z was z = 3 in both
cases, with z = 3,4,5 falling in the e? likelihood inter-
val. In these two cases the higher mutation rate estimates,
together with larger counts of duplicates are suggestive of
more informative data, and the results are in-line with this
suggestion. We expect the maximum likelihood parameter
estimates to be more reliable in these cases.

Note that we model the evolution of a pair of gene
duplicates, and thus our estimates implicitly assume that
all of the duplicates in the genomes analyzed have the
same parameters as each other. That is, the maximum
likelihood estimate Z is an estimate for the number of reg-
ulatory regions each gene has assuming they all have the
same number of regulatory regions. Similarly, the esti-
mates for u#, and u, assume a consistent rate of mutation
throughout all of the genes in the data set.

These assumptions are inherent to the application of
models at the level of individuals (or in this case, pairs
of individuals) to larger data sets, however the impor-
tance of these assumptions is particularly apparent when
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considering fixed parameters such as z. In the absence
of parameter z, we could think of the Poisson rates u,
and u, as measuring an average mutation rate across the
genome, however, since z is fixed there is no similar inter-
pretation for the number of regulatory regions. With this
in mind, we can think of #, and u, as average mutation
rates given that all duplicates examined have exactly z
regulatory regions.

In order to relax this assumption, we computed anal-
ogous maximum likelihood estimates for randomly dis-
tributed Z using a truncated (2 < Z < 20) Poisson
distribution with parameter «, given by

-1

o® 20 ok
— — —o —o
P(Z =2 = = e kE T e ,
=2

(22)

which resulted in distributions where the majority of the
weight was at the lower end of the truncation, Z = 2.
However, this result should be viewed with care, as the
procedure is biased in favour of results which place the
majority of the weight around the points of truncation,
Z = 2 and Z = 20. This is because having the majority
of the weight on a single value of Z allows for the param-
eters By, uy, u. to be chosen so as to best fit the particular
value of Z, giving a distinct advantage over more evenly
weighted distributions.

It should be noted that this analysis relies upon a par-
ticular set of assumptions, that the mode of action on
all genes in the genome is subfunctionalization of the
regulatory regions. It should be further noted that sub-
functionalization of coding sequences is possible, but in
some circumstances may not be a neutral process char-
acterized by the same dynamics. For example, subfunc-
tionalization from a ligand-binding generalist to a pair of
specialists that are specific to an individual or set of lig-
ands might require selection to attain that specificity (see
Liberles et al. [19] for further discussion of this point).
Other types of coding sequence subfunctionalization, like
regulation mediated by post-translational modification of
specific amino acids might occur with regulatory region-
like dynamics.

Discussion

The present work partially contradicts Hughes and Liber-
les [8] characterization of subfunctionalization by an
initially constant, and then broadly decreasing, concave
hazard function which has been adapted by subsequent
works [10—12]. The intuition behind this characterization
can be explained by thinking of the initial period of con-
stant hazard rate as corresponding to the waiting time for
the first mutation. After this first mutation the unaffected
gene will be selectively protected against pseudogeniza-
tion, and hence there is a sharp decline in the hazard rate
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(from 2u, to u. in terms of both the model discussed
in [8] and the model discussed in this paper). Once the
first mutation has fixed, there is now an opportunity for
an additional mutation to lead to subfunctionalization,
in which case the rate of pseudogenization will decrease
from u. to 0. The probability that subfunctionalization
occurs before time ¢ is rapidly increasing with ¢, and this
leads to the concave decline in the hazard function.

In contrast, our hazard rate /5(¢) has a sigmoid shape,
which includes a period of concave decline, followed by a
change in concavity, and a period of convex decline. Con-
sidered as a function of t > 0, /#5(¢) can include short
or long initial periods of concave decline, or no period of
concave decline at all, depending on the ratio y = u,/u,.
In all cases the hazard rate /5 (¢) will be declining convexly
towards 0 from some point ¢ = £t onwards.

For y > yZ; the change in concavity occurs for some
t > 0, and we see a short or long period of concave decline
followed by convex decline (see Panel (a) of Fig. 2). This
essentially agrees with the characterization of Hughes and
Liberles [8]. In fact, Fig. 7 of [8] shows a period of con-
vex decline in the mean hazard rate when averaging over
certain distributions of the number of regulatory regions
z. However, the present work shows that even with a
fixed number of regulatory regions z a change in concav-
ity will occur in the hazard rate /%(¢). This suggests that
the period of convex decline is more fundamental to sub-
functionalization than suggested by the characterization
of [8], which focused particularly on the period of concave
decline.

For y < yZ, the difference in our hazard rate and the
characterization of Hughes and Liberles [8] is more stark,
and warrants a careful reconsideration of the biological
intuition. In this case, the hazard rate /5() is convexly
decreasing for all £ > 0, much like an exponential decay
(see Panel (b) of Fig. 2).

This convexly decreasing hazard rate /15(2), as seen in
our model, contradicts the characterization of subfunc-
tionalization as predicting a concave decline in the hazard
rate. However, the prediction of a convex decay comes
from the same mechanics which motivate, and (for certain
parameter sets) give rise to the concave characteriza-
tion. Thus, we suggest some new intuition for duplicates
that have a large nonfunctionalizing mutation rate in the
regulatory regions.

Noting that /15(t) = A%(6)P(X(¢) # S), consider now
the evolution of a duplicate pair with some large non-
functionalizing mutation rate in the regulatory regions,
relative to that in the coding regions. Two important fea-
tures are then apparent which explain the convex decline
of the hazard rate /15 (t).

First, there is a high probability that an initial nonfunc-
tionalizing mutation in the regulatory region occurs in a
short time. This results in an initial, rapid decrease in the
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rate of pseudogenization, since the first nonfunctionaliz-
ing change in a regulatory region results in a change in the
pseudogenization rate from 2, to u.

Second, once this first mutation has fixed, there is a very
high rate of subfunctionalization (rate of transition to S).
Since K5(t) = A5(O)PX(t) # S), the term P(X(¢) # S)
(which is decreasing exponentially) dominates. Together
with the initially rapidly decreasing pseudogenization, this
leads to the exponential-like decay of /1%(t).

Biologically speaking, the case y < yZ; could corre-
spond to a set of genes with complex regulation and a
small coding sequence target for both nonfunctionaliza-
tion and for the accumulation of synonymous mutations.
This analysis predicts that genes with the features of com-
plex regulation requiring multiple functional transcrip-
tion factors that have the ability to be subfunctionalized
together with a short coding sequence would be strong
candidates for subfunctionalization rather than nonfunc-
tionalization, and would be less likely to be characterized
by a concave hazard function. These conditions could be
met, for example, when genes are expressed in multi-
ple tissues at different levels. When examined in actual
genomic data, genomes dominated by such genes have not
been observed, but represent a theoretical possibility in
which subfunctionalization would be better characterized
by a convex than a concave declining hazard function.

At the individual gene level, there are several classes
of proteins that might be thought of as candidates for
falling into this space. Casein is a longer protein that could
accumulate synonymous changes, but would be hard to
nonfunctionalize. It is expressed in multiple tissues, but
the regulation of its expression and the strength of neg-
ative selection on each regulatory domain is not well
known [20].

Another example of genes that might fall into this cat-
egory are hormones like insulin and gonadotropin hor-
mone releasing hormone (GnRH) that are relatively short
proteins, although they are less broadly expressed [20].
GnRH has in fact been retained after multiple gene dupli-
cation events in vertebrate lineages with functional diver-
gence between copies (the functions in the ancestral state
are not known) [21].

Our final example of genes that are candidates to show
this behaviour are the intrinsically disordered proteins,
which are shorter than folded proteins on average, and
may be more mutationally robust to nonfunctionalizing
mutations [22]. What is unclear at this stage is the selec-
tion on their function and their expression.

While these types of genes are not likely to domi-
nate any whole genome analysis, the model predicts that
genes with small mutational footprints for nonfunction-
alizing mutations and large footprints for regulatory sub-
functionalization would undergo subfunctionalization at
high rates.
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Conclusions

In this paper, we have introduced a new mathemati-
cal model for the biological process of subfunctional-
ization. The model is mechanistically motivated, and
analytically and computationally tractable. We have ana-
lyzed the model in detail, deriving key performance
measures including mean times to subfunftionaliza-
tion/pseudogenization, variances, and hazard functions.
The parameters of the model correspond to real biolog-
ical processes, and as such we have been able to use
model fitting to make some inferences about the nature of
gene duplicates in four mammalian genomes. The model
provides a means to calculate exact results pertaining
to subfunctionalization under different rates of mutation
for fixed or randomly distributed numbers of regulatory
regions, and to estimate the values of these parameters via
maximum likelihood.

This gives a fresh perspective on the subfunctional-
ization process, and results from the mathematical anal-
ysis show that the subfunctionalization model predicts
behaviour which is qualitatively more in-line with empir-
ical reality than previously thought. The model fits well
to empirical data sets, with its survival function provid-
ing a better fit than the often-used exponential function
in all of the cases examined. The highly flexible Weibull
distribution outperformed our model in three of the four
cases examined in terms of absolute fit, however the main
advantage of a mechanistic model over a flexible phe-
nomenological model is the fact that it uses biologically
meaningful parameters.

Our analysis of the four mammalian genomes (using
data handled by Hughes and Liberles [8]) suggests that
(subject to our modeling assumptions) gene duplicates
most likely have only a few regulatory regions, and that
the rate of mutation in these regulatory regions is around
5-10 times smaller than the rate of mutation in the cod-
ing region, which is suggestive of the relative mutational
target sizes. This is the first model-based estimate of
the number of regulatory regions in gene duplicates. The
estimates, based upon an assumption of duplicate gene
preservation through the subfunctionalization process are
in-line with the conventional thinking. Force et al. [5]
suggested that the ratio of mutations be about 0.1, and
Hughes and Liberles [8] suggested that between 2 and 12
regulatory regions were realistic. Mechanistic character-
ization of mutational potentials in protein-coding genes
from molecular-level analysis can add additional insight
into these parameterizations.

Further, we have discovered a previously unrecognized
characterization of subfunctionalization which could the-
oretically occur in genes with small mutational footprints
for nonfunctionalizing mutations and large footprints for
regulatory subfunctionalization. While these genes are
not likely to dominate any whole genome analysis, the
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model predicts that they would undergo subfunctional-
ization at high rates, with a sharply convex declining
hazard rate for pseudogenization. This contrasts the char-
acterization of Hughes and Liberles [8], which features
a (primarily) concave declining hazard rate and is con-
firmed by our model for genes with larger footprints for
nonfunctionalization mutations.

In order to make accurate inferences in a phylogenetic
context, increasingly realistic models of the underlying
evolutionary processes will be required. While the model
described here tackles only a small piece of the overall
picture of the evolution of gene duplicates, we believe
it is helpful towards the development of a mechanistic
model for the overall process of gene duplicate evolution.
Our model describes the evolution of a pair of duplicates
evolving under subfunctionalization with relatively few
assumptions. In terms of modeling this process, the main
weaknesses of the model are the lack of detailed model-
ing of the coding region, which is treated as a single unit
which can undergo nonfunctionalizing mutation at a con-
stant Poisson rate, and the assumption of constant Poisson
rates of mutation, consistent across the regulatory regions.

Applying this model to whole-genome data, as in the
section “Fitting the model to genome data’, requires a
broadening of scope beyond the evolution of a pair of
duplicates, and beyond the process of subfunctionaliza-
tion. We have implicitly assumed that all of the duplicates
in each of the genomes examined are evolving under
subfunctionalization, which is not likely to be a realistic
assumption. Also, we have fit a single parameterization of
the model to each genome. This is similarly unrealistic, as
it would imply that all duplicates have the same number of
regulatory regions as each other, and that all of these reg-
ulatory regions undergo nonfunctionalization at the same
rate. At the whole-genome level a more realistic approach
would be to allow each duplicate pair to evolve according
to a separate parameterization of the model, however this
method would have no statistical power.

Furthermore, some attributes of the generative process
have not been modeled. One example is the underlying
population genetic process of fixation of both the gene
duplicate itself and mutations in the gene. When these
mutational events are non-neutral, this process becomes
particularly difficult to model. Similarly, the organisms
studied here at genomic levels are diploid, but no model
for dominance and the underlying genetics has been pro-
posed. Finally, a steady state mutational process has been
assumed, with a constant duplication rate.

Two distinct avenues for extension of the work pre-
sented here are apparent. The first is in widening the scope
of the model itself, for example by including other pro-
cesses besides subfunctionalization, such as neofunction-
alization, dosage balance, and potentially other processes
described in Innan and Kondrashov [3] to create a more
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complete model for the evolution of gene duplicates. The
second avenue for extension would focus on the applica-
tion of models in broader analysis. Here we applied our
model in a whole-genome analysis to get some estimates
of mutation rates and number of regulatory regions. The
larger problems of the inference of parameters in a phylo-
genetic context, gene tree/species tree reconciliation, and
ancestral copy number inference from multi-species data
in a phylogenetic context are of particular interest.
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