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Abstract: Much effort has been made to enhance the toughness of poly (lactic acid) (PLA) to broaden its
possible range of usage in technical applications. In this work, the compatibility of PLA with a partly
bio-based ethylene-propylene-diene-rubber (EPDM) through reactive extrusion was investigated.
The concentration of EPDM in the PLA matrix was in the range of up to 20%. The reactive extrusion
was carried out in a conventional twin-screw extruder. Contact angle measurements were performed
to calculate the interfacial tension and thus the compatibility between the phases. The thermal
and mechanical properties as well as the phase morphology of the blends were characterized.
A copolymer of poly (ethylene-co-methyl acrylate-co-glycidyl methacrylate) (EMAGMA) was used
as compatibilizer, which leads to a significant reduction in the particle size of the dispersed rubber
phase when compared with the blends without this copolymer. The use of EMAGMA combined
with soybean oil (SBO) and a radical initiator enhances the elongation at break of the compound.
The results indicate that the reduction of the particle size of the dispersed phase obtained with
the compatibilizer alone is not sufficient to improve the mechanical properties of the blend system.
The induced radical reactions also influenced the mechanical properties of the blend significantly.

Keywords: PLA; EPDM; soybean oil; bio-based polymers; reactive extrusion; compatibilization;
dynamic vulcanization; thermoplastic vulcanizate

1. Introduction

Poly (lactic acid) (PLA) is a commercially available bio-based and biodegradable polyester which
exhibits good mechanical properties such as high tensile modulus and strength. These properties
make it suitable to substitute conventional polymers in different industrial applications. Nevertheless,
the use of PLA in technical applications is limited due to its inherent brittleness and low elasticity.
In the past years, much effort has been made to overcome these disadvantages and to improve the
thermo-mechanical properties of PLA via different solution approaches [1,2].

One possible way to improve the mechanical properties of PLA is the physical blending with
low molecular weight additives or plasticizers, e.g., derivatives of citric acid [3] or glycerol [4].
This improves the ductility as well as the processability, but due to their high volatility, these small
molecules tend to evaporate during processing and to migrate to the polymer surface. This can be
avoided by using oligomeric or polymeric blending partners. Burgos et al. used oligomeric lactic
acid for plasticization [5]. This increased the elasticity but on the other hand greatly decreased
the tensile strength and Young’s modulus. Similar results were found when Jacobsen and Fritz
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used oligomeric poly (ethylene glycol) (PEG), a partial fatty acid ester and a glucose monoester as
plasticizers. Only PEG contributed to an additional increase in impact resistance in contrast to the
other additives [6,7]. Blends with oligomeric poly (1,2-propylene glycol adipate) (PPA) prepared by
Zhang et al. showed similar behavior but also with the same disadvantages [7]. Many publications
are available describing that PLA was physically blended with different other polymers, such as
poly(methyl methacrylate) (PMMA) [8], poly(butylene succinate) (PBS) [9], poly(ethylene-co-butyl
acrylate) (EBA) [10], poly(ethylene-co-octylene) (POE) [11], thermoplastic polyurethane (TPU) [12].
Blending of PLA with other polymers is limited due to incompatibility and the resulting phase
separation. Therefore, different compatibilizers were used in the aforementioned studies to decrease
interfacial tension and thus enhance the mechanical properties. However, the synthesis of tailor-made
compatibilizers can be rather time consuming or expensive, while there are only few commercially
available copolymers that can be used as specialty compatibilizers for PLA blend systems.

To overcome the disadvantages of physical blending, reactive compatibilization has attracted
much attention in recent years. This general description covers different approaches. One possibility is
the use of small multi-functional reactive components, which can react with both phases of the polymer
blend. Another example is the use of diisocyanates such as 4,4′-methylene diphenyl diisocyanate
(4,4′-MDI) or epoxy group containing copolymers such as styrene–acrylate–glycidyl methacrylate
copolymer (Joncryl®), which can react with hydroxyl, carboxyl, or amine groups of different polymer
types [13,14]. In both cases, the compatibilizer covalently attaches to both phases and acts as a chemical
link in the interface. An alternative method is the in situ production of physical compatibilizers in
polyester–polyester blends, which can be achieved by the use of transesterification catalysts [15].
It is also possible to use compatibilizers, which are compatible with either matrix or dispersed phase
and can react with the other phase. Common reactive groups are isocyanates, epoxides, or anhydrides,
depending on the polymer blend in which they are to be used [13,14].

A special subcategory of reactive compatibilization is the use of peroxides in polymer blends.
Peroxides can induce radical reactions in both polymer phases of a blend. Due to the termination
reactions that happen in the interfacial region, copolymers of both of the polymer phases are created
which can then act as physical compatibilizers. Furthermore, the radical reactions have an influence
on the properties of the polymer phases themselves. When using cross-linkable polymers so called
thermoplastic vulcanizates (TPV) are obtained, which is why this kind of reactive compatibilization
is also called dynamic vulcanization. TPVs are polymer blends that consist of a thermoplastic
matrix with a cross-linked and elastic dispersed phase. The properties of TPVs range from impact
modified thermoplastics to ductile thermoplastic elastomers that combine the elastic properties
of elastomers with the (re-)processability of thermoplastics [16]. There are many publications
describing dynamically vulcanized biopolymer blends. Most of them use PLA as matrix phase
with different commercially available soft segments like natural rubber (NR) [17,18], epoxidized
natural rubber (ENR) [19,20], poly(ethylene-co-vinyl acetate) (EVA) [21,22] and different synthesized
bio-based unsaturated elastomers [23,24]. Nevertheless, there are also publications with other matrices,
for example polyhydroxyalkanoates (PHAs) [25,26]. Most of the mentioned publications use a batch
process to produce the bio-based TPVs, e.g., by using an internal mixer and long reaction times.

In this study, we investigated the continuous production of PLA-based TPVs by reactive extrusion.
For the dispersed phase, we used a commercially available and partially bio-based ethylene propylene
diene monomer rubber (EPDM). Viscosity and reactivity of the soft phase was varied by using soybean
oil as a bio-based and reactive plasticizer. A reactive compatibilizer is used to further enhance the
compatibility of the different phases during reactive extrusion.
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2. Materials and Methods

2.1. Materials

Poly(lactic acid) (PLA, Ingeo™ 4044D) was purchased from Natureworks LLC, Minnetonka,
MN, USA, with a melt flow index (MFI) of 6 g per 10 min (210 ◦C, 2.16 kg) and an L-lactide content of
about 96%. Ethylene propylene diene monomer rubber (EPDM, Keltan® Eco 8550) was kindly provided
by Arlanxeo Netherlands B.V., Geleen, NL, with a mooney viscosity of 80 MU (ML(1 + 4), 125 ◦C),
an ethylene content of 55% and an ethylidene norbonene content of 5.5%. Poly(ethylene-co-methyl
acrylate-co-glycidyl methacrylate) (EMAGMA, Lotader® AX8900) was purchased from Arkema S.A.,
Colombes, FR, with a methyl acrylate content of 24%, a glycidyl methacrylate content of 8% and a MFI
of 6 g per 10 min (190 ◦C, 2.16 kg). Tert-butylperoxy 2-ethylhexyl carbonate (TBEC, Trigonox® 117)
was purchased from Akzo Nobel Nederland BV, Arnhem, NL, as a PLA masterbatch with a peroxide
content of 40%. Soybean oil (SBO, refined, extra pure) was purchased from Carl Roth GmbH & Co. KG,
Karlsruhe, DE. Calcium carbonate (Omyalite® 90 OM), was purchased from Omya International AG,
Oftringen-Aargau, CH. Dimethyl sulfoxide (DMSO), ethylene glycol and thiodiglycol were purchased
from Merck KGaA, Darmstadt, DE. We used all materials as received.

2.2. Sample Preparation

EPDM was cut into pieces and granulated under liquid nitrogen in a cutting mill. The granulate
was powdered with 2.5 wt % of calcium carbonate to prevent agglomeration. Prior to blending,
PLA was dried overnight at 60 ◦C in a dry-air drier. Blends with varying ratios of the different
components were prepared in an intermeshing, co-rotating twin-screw extruder (ZSK 25 from Coperion
GmbH, Stuttgart, DE, screw diameter 25 mm, L/D ratio 40), at a screw speed of 250 rpm and a mass
flow rate of 12 kg/h. The temperature was set to 190 ◦C for each zone (except for first and second zone
with 60 ◦C and 170 ◦C, respectively). The strand was cooled in a water bath, pelletized via strand
granulation and dried in a dry-air dryer at 60 ◦C. The granulates were compression molded to 2 mm
thick sheets for tensile tests and to 4 mm thick sheets for impact fracture tests in a Scientific LP-S-20
compression molding machine from LabTech Engineering Co. LTD, Samutprakarn, TH, at 200 ◦C and
75 kN for 5 min. The sheets were milled to rectangular bars (130 × 10 × 2 mm for tensile tests and
80 × 10 × 4 mm for impact fracture tests) in a milling machine.

The samples were prepared with varying ratios of the different components, which is represented
by their nomenclature. Samples contained different amounts of the following components with their
corresponding abbreviation in brackets used in the sample nomenclature: PLA (P), EPDM (E), SBO (S),
EMAGMA (C), and TBEC (T). The number following the abbreviation corresponds to its amount in
mass parts (pph). For example the sample P80-E16-S4-C5-T0.2 consists of 80 parts PLA, 16 parts EPDM,
4 parts SBO, 5 parts EMAGMA, and 0.2 parts TBEC. PLA, EPDM and SBO were always calculated to
give 100 parts whereas EMAGMA and TBEC were added on top. The amount of TBEC is also given in
parts per hundred rubber (phr) corresponding to the total amount of soft phase (EPDM and SBO).

2.3. Characterization

2.3.1. Surface and Interfacial Properties

To quantify the differences in polarity of the materials used in this study, the corresponding
surface free energy (SFE) was determined. The SFE of a liquid or solid and its polar and dispersive
parts was calculated via contact angle measurements. The relation between the contact angle and the
SFE of the different phases is described by the Young Equation (1):

σs = σsl + σl· cosθ, (1)
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where σs is the SFE of the solid, i.e., the polymeric sample, σl the SFE of the liquid, σsl the interfacial
tension between the solid and the liquid and θ the contact angle. According to the method from
Owens–Wendt–Rabel–Kaelbe [27–29] built on the theory of Fowkes, Equation (2) is used for calculating
the interfacial tension by using the geometric mean:

σi j = σi + σ j − 2
√
σd

i ·σ
d
j − 2

√
σ

p
i ·σ

p
j , (2)

where σd and σp are the dispersive and polar parts of the SFE, respectively. Contact angle measurements
were performed with several test liquids with known σd and σp values as listed in Table 1

Table 1. Test Liquids and Corresponding Surface Tension Components.

Test Liquid σd
l [mN/m] σp

l [mN/m] σtotal
l [mN/m] Reference

Water 21.8 51.0 72.8 [30,31]
Dimethyl sulfoxide (DMSO) 36.0 8.0 44.0 [30,31]

Ethylene glycol 29.0 19.0 48.0 [30,31]
Thiodiglycol 38.4 15.6 54.0 [32]

A drop with about 3–5 µL of the test liquid was placed on a compression molded plate under test
conditions (23 ◦C, 50% relative humidity). The drop shapes were recorded using a VHX 1000 digital
microscope from Keyence Deutschland GmbH, Neu-Isenburg, DE, and analyzed using ImageJ open
source software with the contact angle plugin developed by M. Brugnara [33]. All results are presented
as the average of at least five measurements per sample and test liquid.

The interfacial tensions between the different polymeric phases were calculated according to
Equation (2) and in comparison according to Wu’s model [34] using the harmonic mean, Equation (3):

σi j = σi + σ j − 4

 σd
i ·σ

d
j

σd
i + σd

j

+
σ

p
i ·σ

p
j

σ
p
i + σ

p
j

. (3)

With the calculated interfacial tensions, the spreading coefficient S and the wetting coefficient ω
are calculated according to Equations (4) and (5) [35,36]:

S = σAB − σBC − σAC, (4)

ω =
σBC − σAC
σAB

, (5)

where σAB is the interfacial tension between the matrix A (PLA) and the dispersed phase B (EPDM), σBC
the interfacial tension between EPDM and the compatibilizer C (EMAGMA), and σAC the interfacial
tension between PLA and EMAGMA.

2.3.2. Morphological Properties

For a qualitative analysis of compatibilization, a Molau test was performed [37,38]. For this,
the samples were dissolved in dichloromethane (DCM) (5% w/v) under stirring. The obtained
suspensions were characterized visually and the degree of turbidity was taken as an indicator
for a successful compatibilization. Scanning electron microscopy (SEM) was performed with a Vega
3 from TESCAN GmbH, Dortmund, DE, with 20 kV acceleration voltage. The compression molded
specimens were submerged in liquid nitrogen for 10 min and quickly sliced with a Leica RM 2265
microtome. Additionally, SEM images were taken from selected tensile fracture surfaces. To prevent
electrostatic charging, the samples were sputter coated with gold under vacuum prior to observation.
Analysis of the SEM pictures was performed with open source ImageJ software. To quantify the phase
morphology a statistical analysis of the particle sizes in the blend was performed. From at least
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three different locations on the sample surface at least 200 particles were chosen—unless otherwise
stated—and the according diameters were calculated assuming circular particles. The particle size
distribution parameter σ and average particle size d were calculated with the following equations.

ln d =

∑N
i = 1 ni ln di∑N

i = 1 ni
, (6)

ln σ =

√√∑N
i = 1 ni(ln di − ln d)2∑N

i = 1 ni
, (7)

where ni is the number of particles with diameter di and σ is a parameter describing the particle size
distribution [39]. These values were used for the calculation of the inter particle distance L according
to the model from Wu (Equation (8)) [40]:

L = d

(πφ
) 1

3

exp
(
1.5 ln2 σ

)
− exp

(
0.5 ln2 σ

), (8)

where φ is the volume fraction of the dispersed phase.

2.3.3. Mechanical Properties

Tensile tests were performed with a 5567A universal testing system from Instron GmbH,
Darmstadt, Germany, at a speed of 50 mm/min in accordance to DIN EN ISO 527-1. Testing speed
for the determination of the Young’s modulus between 0.05 and 0.25% elongation was 1 mm/min.
Charpy impact fracture tests were performed with a Ceast 9050 pendulum impact testing machine
from Instron GmbH, Darmstadt, Germany, with notched (type A) specimens using a 5 J instrumented
pendulum according to DIN EN ISO 179-2. Test specimens were stored under test conditions
(23 ◦C, 50% relative humidity) for at least 16 h prior to testing. All results are presented as the
average from five measurements. Graphs of tensile tests represent the median measurement with
regard to elongation at break.

2.3.4. Thermal Properties

Differential scanning calorimetry (DSC) was performed with a DSC 204 F1 Phoenix from Erich
NETZSCH GmbH & Co. Holding KG, Selb, Germany, equipped with a liquid nitrogen cooling system.
The device is regularly calibrated using an indium standard. The samples were cooled to −100 ◦C,
heated up to 230 ◦C, cooled again to −100 ◦C and heated up to 250 ◦C with heating and cooling rates of
10 K/min under nitrogen atmosphere.

3. Results and Discussion

3.1. Surface and Interfacial Properties

In this work, we used the compatibilizer EMAGMA to improve the compatibility between the
PLA and EPDM phases in a blend. To quantify the polarity and thus predict the compatibility of PLA,
EPDM and EMAGMA their interfacial tensions were measured. The values were calculated from
contact angle measurements with different test liquids. Results are shown in Table 2.
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Table 2. Contact Angles and Calculated Surface Free Energy (SFE) of Poly(lactic acid) (PLA),
Ethylene-Propylene-Diene-Rubber (EPDM) and poly(Ethylene-Co-Methyl Acrylate-Co-Glycidyl
Methacrylate) (EMAGMA).

Sample Contact Angle [◦] SFE [mN/m]
Water Ethylene Glycol Thiodiglycol DMSO σt σd σp

PLA 63.4 ± 1.8 26.2 ± 1.5 27.8 ± 1.6 n.a. * 46.0 ± 1.7 33.1 ± 1.1 13.0 ± 0.6
EPDM 84.0 ± 2.2 69.8 ± 3.0 77.4 ± 2.9 54.8 ± 2.4 23.8 ± 2.2 14.4 ± 1.2 9.4 ± 1.0

EMAGMA 83.5 ± 1.6 68.9 ± 2.3 64.5 ± 2.3 52.4 ± 1.5 26.5 ± 1.7 18.8 ± 1.0 7.7 ± 0.7

* not applicable because dimethyl sulfoxide (DMSO) is a solvent for PLA.

The results indicate that the overall SFE of the compatibilizer EMAGMA lies between those of
PLA and EPDM. As a first approximation, these results show that EMAGMA can be a suitable physical
compatibilizer for this polymer blend. To make a more accurate statement, the interfacial tensions and
the resulting values for the spreading and wetting coefficients were calculated according to Equations
(2)–(5). The results are shown in Table 3.

Table 3. Calculated Interfacial Tensions (IFT), Spreading Coefficients, and Wetting Coefficients of the
Used Materials.

Interface IFT Harmonic Mean [mN/m] IFT Geometric Mean [mN/m]

PLA–EPDM 7.9 4.1
PLA–EMAGMA 5.3 2.7

EPDM–EMAGMA 0.7 0.4
Spreading coefficient 1.9 1.0

Wetting coefficient −0.6 −0.6

It is to be noted that there are differences in the results whether using the harmonic or geometric
mean for the calculation. Wetting of EMAGMA on the dispersed phase occurs for S > 0. Considering
the wetting coefficient ω a more accurate statement is possible. For ω > 1 EMAGMA is mainly located
in the PLA phase, for ω < −1 EMAGMA is mainly located in the EPDM phase and for −1 < ω < 1
EMAGMA is mainly located in the interphase [41]. From the results it can be observed that the
spreading coefficient for the spreading of EMAGMA on EPDM is > 0. This indicates that EMAGMA
can spread on the EPDM phase surface inside the blend.

The wetting coefficient also confirms this. As the value lies between −1 and 1, EMAGMA should
mainly be located in the interfacial area and not inside one of the two phases. According to these
results, EMAGMA is well suited as a physical compatibilizer for PLA and EPDM.

In addition to the physical compatibilization effects of EMAGMA, it contains epoxy groups
that can react with hydroxyl or carboxyl groups of the PLA [42,43]. These reactions would lead to
copolymers of PLA and EMAGMA, which would have a higher compatibilizing effect than the pure
EMAGMA. This is illustrated in Figure 1.
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and possible chemical reactions.

3.2. Morphological Properties

One effect of good compatibilization in polymer blends is a decrease in particle size of the
dispersed phase, i.e., in this study the EPDM. During processing, there is an equilibrium between
droplet breakup due to deformation by shear stress and coalescence of droplets by collision. One factor
describing the droplet breakup is the Weber number We, often found as capillary number Ca, which is
a dimensionless number defined as the ratio of deforming inertial forces to cohesive forces acting on
the droplets, as presented in Equation (9),

We =

.
γ·d0·ηc

2·σ
, (9)

where
.
γ is the shear rate, d0 the droplet average diameter, ηc the matrix viscosity, and σ the interfacial

tension between the matrix and dispersed phase. During extrusion, the Weber number has to exceed
a critical value We, crit. for the droplet to break up in the shear flow, otherwise, no further breakup
will occur. The critical Weber number was empirically studied by different working groups [44] and
depends highly on the viscosity ratio of the two polymer phases, which is illustrated in Figure 2.
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Figure 2. Critical Weber number We, crit. for shear flow (solid line) and elongational flow (dotted line)
as a function of the viscosity ratio λ of dispersed phase ηd to continuous phase ηc from empirical
equations according to de Bruijn [45] and Peters et al. [46].

During processing the value of the Weber number changes caused by various parameter changes
during the reactive extrusion. The main mechanism is the droplet breakup during processing.
This decreases d0 in Equation (9) and leads to a smaller value of the Weber number. As a consequence, the
size of the dispersed soft phase particles reaches a minimum during processing at constant processing
conditions, i.e., constant shear rate and matrix viscosity, when We ≤We,crit. Compatibilization of the
different phases, i.e., decreasing the interfacial tension σ, increases the initial value of We which leads
to smaller particles. Influencing the viscosities of either phase affects the initial viscosity ratio λ and
therefore the necessary We,crit for droplet breakup. Adding a plasticizer influences the viscosity ratio
λ by a constant factor, whereas dynamical crosslinking in any phase results in a time dependent
change of λ.

Furthermore, compatibilizers also reduce the probability of coalescence and hence maintain
smaller particle sizes of the dispersed phase, as illustrated in Figure 3. The same mechanism is also
observed when the dispersed phase consists of cross-linked particles. Because we used a combination
of compatibilization and dynamic vulcanization of the dispersed phase, we expected the best results
when combining both mechanisms.
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To gain a qualitative statement of the compatibilization, a Molau test was performed. The dissolved
samples were photographed directly after stirring. The results are shown in Figure 4.Polymers 2020, 12, x FOR PEER REVIEW 9 of 23 
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PLA as well as SBO are dissolved in dichloromethane (DCM) while EPDM remains as a solid
dispersed phase that directly starts to separate due to differences in density compared to DCM
(Figure 4a). The same can also be observed when TBEC is present (Figure 4b). This indicates that
there is no compatibilization between PLA and the plasticized EPDM-SBO phase through radical
interactions at the used processing conditions. Besides its plasticizing effect, the SBO was supposed to
act as a reactive plasticizer due to reactions of the double bonds of the unsaturated fatty acid chains
with the EPDM during vulcanization. As depicted by the results of the Molau test, the use of SBO
did not lead to a reaction between the two polymer phases. When adding EMAGMA to the blend,
a flocculation and dispersion of the particles can be observed (Figure 4c), which indicates an increased
compatibility between the two phases. This corresponds to the expectations from the results of the
interfacial tension calculations. The dispersion of the blend containing all of the additives, i.e., SBO,
EMAGMA, and TBEC, is more homogenous compared to the dispersion without TBEC (Figure 4d),
indicating an even higher degree of compatibility.

For a more detailed analysis of the phase morphology of the prepared blends, we performed SEM
measurements of sliced sample surfaces, which are depicted in Figures 5–7. Cryo-slicing of the pure
PLA shows cutting grooves, but no second phase. On the other pictures, it is possible to differentiate
between those grooves and the elastomeric soft phase when analyzing the samples regarding the size
and distribution of the soft phase. We can see qualitatively in Figures 6 and 7 that the addition of TBEC
alone did not contribute to the size reduction of the EPDM particles. Only the addition of EMAGMA
as a compatibilizer reduces the particle size of the soft phase significantly. This is in accordance to the
mechanism of droplet breakup considering Equation (9). The combination of EMAGMA and TBEC
does not have an additional effect on the size of the soft phase.

The SEM results also show that there is no qualitative improvement of the interfacial adhesion
through the compatibilization or the dynamic vulcanization. We still can see voids between PLA and
EPDM and to some extent deformed EPDM particles inside these holes. These effects should not occur
if the interfacial adhesion was significantly improved. This lack of adhesion also plays an important
role in the mechanical properties as the stress cannot be transferred from the matrix to the soft phase
and the formation of voids will be the main mechanism during deformation.
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Figure 6. Cryo-sliced surfaces of the samples without soybean oil (SBO). (a) Without EMAGMA and
Tert-butylperoxy 2-ethylhexyl carbonate (TBEC), (b) with 1 phr TBEC, (c) with 5 pph EMAGMA,
and (d) with 5 pph EMAGMA and 1 phr TBEC.
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and 1 phr TBEC.

We studied the particle size distribution of the dispersed EPDM phase in more detail by using the
open source ImageJ software for calculating the particle sizes and inter particle distances according to
Equations (6)–(8). The results are shown in Figure 8.

As we see, the particle size as well as the inter particle distance significantly decrease upon adding
EMAGMA to the blends. Adding SBO to the blends without EMAGMA leads to an increase in particle
size and inter particle distance. This may be caused by a bigger difference in viscosity since SBO acts as
a plasticizer for the soft phase. This effect is even more pronounced for the samples containing TBEC.
Adding EMAGMA diminishes the difference between the samples with and without TBEC.

According to these results, we deduce the following theoretical model: During the reactive
extrusion process, the peroxide decomposition starts inside the blend matrix, i.e., PLA. In case the
initial particles of the soft phase are big, which is determined by the content of EMAGMA, and the
viscosity of the soft phase, which is determined by the content of SBO, is too high, the diffusion of the
peroxide into the soft phase is hindered The interfacial area is small due to the large EPDM particles and,
additionally, the EPDM’s viscosity is too high for a fast diffusion of the peroxide. Hence, the peroxide
decomposition and following radical reactions mainly take place in the PLA phase. This leads to
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an even higher matrix viscosity and consequently to a bigger difference in viscosity between matrix
and dispersed phase. The resulting decrease in the Weber number of the system leads to bigger EPDM
particles as can be seen in the results. Adding SBO to the system decreases the viscosity of the EPDM
phase. Without EMAGMA, the initial particle size of the EPDM phase is not small enough for a fast
diffusion. This leads to an even higher viscosity ratio and, thus, to bigger EPDM particles what can be
seen in the results. Adding EMAGMA to the blends decreases the initial size of the soft phase and
thus increases the interfacial area where diffusion of the peroxide between the phases can take place.
Thus, the particles of the soft phase in blends with and without TBEC tend to be of smaller and more
similar sizes with increasing content of EMAGMA. The proposed model is illustrated in Figure 9.Polymers 2020, 12, x FOR PEER REVIEW 12 of 23 
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3.3. Mechanical Properties

Tensile and impact tests were performed to investigate the effect of the different morphological
and interfacial properties on the mechanical properties of the prepared polymer blends. Figure 10
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shows the influence of the soft phase on the tensile properties. All samples contain EMAGMA and
the soft phase includes 20 wt % of SBO. It can be observed that the Young’s modulus as well as the
tensile strength decrease with increasing content of soft phase independent of TBEC content in the
blends. This can be explained by an additive mechanism of these mechanical properties based on the
volumetric content of the phases in the blend, which is not influenced by the addition of peroxide.
Basically, there is no significant influence of the peroxide addition on the Young’s modulus and the
tensile strength of these materials. Only the sample containing 10 pph of soft phase and 1 phr TBEC
shows a lower modulus of 2.5 GPa and a tensile strength of 26.9 MPa compared to the sample without
TBEC with 3.1 GPa and 33.8 MPa, respectively. The elongation at break exhibits a different behavior
compared to the course of the Young’s modulus and the tensile strength with increasing soft phase
content. First, the elongation at break increases up to 20 pph soft phase content, but for higher soft
phase content it decreases. The addition of peroxide and the induced radical reactions at the interface
and/or in the soft phase increase the value of the elongation at break compared to the corresponding
samples without the use of peroxide. This indicates an improved stress transfer between the matrix
and the dispersed soft phase during the tensile test.Polymers 2020, 12, x FOR PEER REVIEW 14 of 23 
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Figure 11 depicts the influence of the SBO content on the tensile properties. In samples without
EMAGMA and TBEC it interestingly affects the Young’s modulus, which first decreases upon adding
5 wt % of SBO to the soft phase and then increases with higher SBO contents. The addition of SBO
does not influence tensile strength and elongation at break. When adding 5 pph EMAGMA and
1 phr TBEC, tensile strength and Young’s modulus show a similar behavior as in the samples without
these additives. However, the system behaves different regarding the elongation at break, which firstly
increases with an increasing content of SBO of up to 20 wt % and then decreases for 30 wt % SBO in the
soft phase. Two different mechanisms that are directly connected to each other are responsible for these
results. First, the addition of SBO leads to a reduction of the EPDM’s viscosity influencing the viscosity
ratio and thus the droplet breakup as described by the Weber number (cf. previous chapter). This can even
lead to a system in which the viscosity of EPDM is much lower than that of PLA and thus droplet breakup
is hindered. During dynamic vulcanization, the viscosity of the soft phase increases again due to the
formation of crosslinks. This increases the viscosity ratio, which favors droplet breakup of the soft
phase leading to smaller particles and a higher elongation at break. Secondly, the unsaturated fatty acid
chains in the SBO can also react with the radicals formed by peroxide decomposition. This reaction can
lead to two different effects. On the one hand, SBO can contribute to the EPDM crosslinking as a small
multifunctional crosslinking agent. On the other hand, SBO can decrease the crosslinking efficiency of
EPDM by consuming free radicals without reacting with the EPDM phase. Regarding the elongation
at break, the results indicate that an optimum SBO content is at about 20 wt % inside the soft phase.
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Figure 11. Tensile properties with varying contents of SBO inside the soft phase. Each sample contains
20 pph of soft phase. (a) Samples without EMAGMA and TBEC and (b) samples containing 5 pph
EMAGMA and 0.2 pph TBEC.

The effect of the peroxide addition, alone and in combination with SBO and EMAGMA as well as
in combination with TBEC, EMAGMA, and SBO, is shown in Figure 12. The PLA–EPDM blend with
TBEC alone and the blends with EMAGMA and TBEC do not show any significant changes in tensile
properties. The blend containing 20 wt % SBO inside the soft phase is the only one to exhibit a decrease
in Young’s modulus and tensile strength with a TBEC content of 0.1 phr. The other blends with
SBO and higher TBEC contents do not show any significant changes. When combining all additives,
i.e., EMAGMA, SBO, and TBEC, a substantial change in the tensile properties, especially regarding the
increase in elongation at break in the blend containing 1 phr TBEC is observed.
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phase. (a) Samples without SBO and EMAGMA, (b) samples containing 5 pph EMAGMA, (c) samples
containing 20 wt % SBO inside the soft phase and (d) samples containing 5 pph EMAGMA and 20 wt %
SBO inside the soft phase.
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The influence of the content of EMAGMA is depicted in Figure 13. The blends without SBO
and TBEC show a slight increase in elongation at break, but no significant change in the other tensile
properties. When adding SBO to the blends, the tensile strength decreases from about 25 MPa without
SBO to 20 MPa and the Young’s modulus does not change considerably. The addition of EMAGMA
leads to a substantial increase in elongation at break from about 2% to nearly 20%. When adding
both, SBO and TBEC, to the blend, the increase in elongation at break is even more impressive and
reaches values of more than 30%, which is 15-fold higher than for PLA and the pure blend of PLA and
EPDM. These results clearly indicate the interrelationship of all the additives and thus corroborate
the proposed mechanism of peroxide diffusion and decomposition. On the other hand, our results
also show that small particle sizes and inter particle distances alone are not sufficient to increase the
mechanical properties of PLA–EPDM blends. The materials without SBO and TBEC also comprise of
small EPDM particle sizes and inter particle distances. However, only the combination of EMAGMA,
SBO, and TBEC leads to an enhancement of the mechanical properties, especially regarding the
elongation at break. This indicates that interfacial adhesion together with the properties of the different
polymeric phases of the TPVs plays a crucial role for their mechanical properties.
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Figure 14 summarizes the results of the mechanical tests for tensile properties and depicts the
influence and importance of the combination of EPDM with SBO, EMAGMA, and TBEC. In Table 4 the
characteristic values of these samples are listed.

The impact properties with varying ratios of the additives are shown in Figure 15. The amount of
EMAGMA exhibits the most significant influence on the impact values, which increase from around
2 kJ/m2 to around 6 kJ/m2 with increasing content of EMAGMA. The addition of peroxide does not
influence the impact strength for the samples with SBO and the sample without SBO and EMAGMA.
In the blend containing EMAGMA without SBO, an increasing content of peroxide leads to a decrease



Polymers 2020, 12, 605 16 of 21

in the notched impact strength. This is also in accordance with the proposed model, since the peroxide
mainly reacts in the PLA phase in this case. This leads to a more brittle matrix and, thus, decreases
the impact strength. For the other blends, i.e., without SBO and EMAGMA as well as with SBO and
without EMAGMA, respectively, no decrease can be observed, because the impact properties were not
enhanced at all. The blend containing 20 wt % SBO and 5 pph EMAGMA does not show any influence
of the content of peroxide on the impact properties.

1 
 

 
(a) (b) 

 Figure 14. Tensile tests of the corresponding samples. (a) Samples without SBO and (b) samples
with SBO.

Table 4. Mechanical Properties of the Corresponding Samples from Tensile and Charpy Impact Tests.

Sample Elongation at
Break [%]

Tensile Strength
[MPa]

Young’s Modulus
[GPa]

Charpy Notched Impact
Strength [kJ/m2]

P100 2.0 ± 0.2 65.9 ± 2.3 4.9 ± 0.3 2.4 ± 0.5
E100 1130 * 4 * 4E-3 * n.a. **

P80-E20 2.8 ± 0.6 24.6 ± 0.7 2.5 ± 0.1 1.8 ± 0.1
P80-E20-T0.2 3.3 ± 0.2 25.1 ± 0.4 2.3 ± 0.2 2.2 ± 0.3
P80-E20-C5 3.7 ± 1.2 23.2 ± 0.3 2.2 ± 0.1 5.9 ± 0.1

P80-E20-C5-T0.2 5.1 ± 1.4 22.0 ± 0.1 2.1 ± 0.1 3.1 ± 0.1
P80-E16-S4 2.3 ± 0.8 20.7 ± 0.8 2.6 ± 0.2 2.0 ± 0.2

P80-E16-S4-T0.2 1.9 ± 0.8 18.5 ± 1.4 2.2 ± 0.1 1.6 ± 0.2
P80-E16-S4-C5 17.3 ± 6.1 18.4 ± 0.6 2.4 ± 0.1 3.7 ± 0.5

P80-E16-S4-C5-T0.2 29.0 ± 5.9 18.9 ± 0.2 2.4 ± 0.2 4.0 ± 0.3

* only one single measurement; ** not applicable.

To further analyze the influence of the different additives, scanning electron microscopy (SEM)
images were taken from tensile fracture surfaces, which are shown in Figure 16. Pure PLA shows
brittle fracture behavior without any forms of crazing but a smooth surface with clear fracture edges
(Figure 16a). Adding EPDM to the matrix does not enhance the mechanical properties, as we know
from the previously shown results. The fracture surface also shows brittle fracture behavior in the
PLA domains. Because EPDM is not bound to the PLA matrix, the EPDM particles can easily be torn
apart from the matrix at the fracture surface. This is indicated by voids on the surface (Figure 16b).
The sample containing EPDM, SBO, EMAGMA, and TBEC shows a very different behavior. The material
shows a more ductile fracture behavior. This is indicated by the presence of large plastic deformation
structures of the polymer phases instead of exhibiting plane fracture surfaces (Figure 16c). It can also
be seen in this sample that the adhesion between the polymeric phases is much better compared to the
other samples. The EPDM phase seems to be connected to the PLA phase which is indicated by the
deformation of the EPDM instead of getting separated from the PLA phase (Figure 16d).
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3.4. Thermal Properties

The dispersion of EPDM and EMAGMA inside the PLA matrix affects its thermal behavior.
To determine these effects, DSC measurements were performed. Figure 17 shows the second heating
run of the corresponding samples.
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 Figure 17. Second heating run of the differential scanning calorimetry (DSC) measurements of the
corresponding samples. (a) Samples without SBO and (b) samples with SBO. The curves have been
shifted for better comparability.

The addition of EPDM to PLA does not have a big influence on the thermal properties. Immiscibility
of the polymer phases is visible from two separate glass transitions that are nearly the same value as
for the pure polymers. Cold crystallization of the PLA is almost not affected by the addition of EPDM.
For the sample containing TBEC without SBO, nearly no changes in thermal properties can be observed,
too. In the sample with SBO and TBEC, however, the enthalpy of the PLA cold crystallization decreases
significantly. EMAGMA exhibits the most striking influence on cold crystallization of PLA: nearly no
cold crystallization is visible at all. Wang et al. have investigated the crystallization kinetic of PLA
blends with a thermoplastic polyester elastomer (TPEE) compatibilized with a small multifunctional
epoxide [47]. They have seen that the crystallization half time increases significantly with increasing
the content of the multifunctional epoxide and assigned these results to the reaction between the
epoxide and the PLA. This is in accordance to our results.

4. Conclusions

In this work, we investigated the compatibilization of a TPV consisting of the bio-polyester PLA
as the matrix material and a partly bio-based EPDM as the elastic and dispersed soft phase. To enhance
the compatibility between the two phases we used EMAGMA as a compatibilizer, SBO to change the
EPDM’s viscosity and reactivity as well as a peroxide, i.e., TBEC, to induce dynamic vulcanization of
the blend. We observed that EMAGMA serves as a physical compatibilizer due to the reduction of
the interfacial tension between PLA and EPDM. Thus, the addition of EMAGMA reduces the particle
size of the EPDM phase inside the PLA matrix and consequently enhances the mechanical properties,
especially impact strength. We also found that the dynamic vulcanization with TBEC depends on
the particle size of the soft phase as well as on its viscosity. We propose that decreasing particle size
and viscosity influences the decomposition and diffusion of the peroxide in such a way that leads to
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crosslinking reactions mainly inside the soft phase. The mechanical properties of the TPVs corroborate
this model. We noticed significant changes especially in elongation at break when combining all
different additives and their effects.

In summary, the elongation at break increased from 2.8% for the pure blend of PLA and EPDM to
29 ± 5.9% for the compatibilized TPV. Charpy notched impact strength increased from 2.4 kJ/m2 for
PLA to 4.0 kJ/m2 for the compatibilized TPV and to 5.9 kJ/m2 for the compatibilized blend. Dynamic
vulcanization did not influence the thermal properties of the blend significantly with the exception of
the addition of EMAGMA, which leads to diminishing cold crystallization of the PLA.

In the future, we are going to investigate the influence of the combination of EPDMs viscosity and
peroxide diffusion and decomposition in more detail by using a non-reactive hydrogenated SBO and
determination of the corresponding viscosities to further corroborate or adjust the proposed model.
Furthermore, we are going to examine the possible reaction between EMAGMA as compatibilizer with
PLA to enhance the compatibility between the different polymeric phases further. To investigate the
compatibilization between the different polymer phases in more detail we are also going to perform
dynamic rheological measurements. The results will be presented in a following paper. With this
knowledge, it will be possible to tune the properties of such TPVs for achieving tailor-made solutions
for different applications.
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