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Direct gaze is a salient nonverbal signal for social interest and the intention to communicate. In particular, the du-
ration of another's direct gaze can modulate our perception of the social meaning of gaze cues. However, both
poor eye contact and deficits in social cognitive processing of gaze are specific diagnostic features of autism.
Therefore, investigating neuralmechanisms of gazemay provide key insights into the neuralmechanisms related
to autistic symptoms. Employing functional magnetic resonance imaging (fMRI) and a parametric design, we in-
vestigated the neural correlates of the influence of gaze direction and gaze duration on person perception in in-
dividuals with high-functioning autism (HFA) and a matched control group. For this purpose, dynamically
animated faces of virtual characters, displaying averted or direct gaze of different durations (1 s, 2.5 s and 4 s)
were evaluated on a four-point likeability scale. Behavioral results revealed that HFA participants showed no sig-
nificant difference in likeability ratings depending on gaze duration, while the control group rated the virtual
characters as increasingly likeable with increasing gaze duration. On the neural level, direct gaze and increasing
direct gaze duration recruit regions of the social neural network (SNN) in control participants, indicating the pro-
cessing of social salience and a perceived communicative intent. In participantswith HFA however, regions of the
social neural networkweremore engaged by averted and decreasing amounts of gaze, while the neural response
for processing direct gaze in HFA was not suggestive of any social information processing.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

One of the core deficits in autism spectrum disorders (ASD) concerns
the adequate interpretation of nonverbal behaviors, an ability that is es-
sential for successful social interactions between humans (Baron-Cohen
et al., 1999; Centelles et al., 2013; Ogai et al., 2003). In particular, gaze be-
havior serves important functions in social encounters by facilitating the
understanding of another person's mental states and allowing for the co-
ordination of attention and activities (Argyle and Cook, 1976; Argyle and
Dean, 1965; Emery, 2000; Kleinke, 1986; Pierno et al., 2008; Schilbach
et al., 2010). For instance, the direction of perceived gaze is important,
with direct gaze expressing interest and the intention to communicate
(Argyle and Cook, 1976; Argyle and Dean, 1965; Emery, 2000; Kampe
et al., 2003; Kleinke, 1986).
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However, behavioral studies have repeatedly demonstrated that di-
rect gaze does not elicit the so-called “eye contact effect” in individuals
with ASD. This means that perceived eye contact is neither preferred by
nor does it modulate cognition and attention in persons with ASD (for a
review, see Senju and Johnson, 2009a). Moreover, they are impaired in
reading others' mental states from the eye region (Baron-Cohen, 1997;
Baron-Cohen et al., 1997, 2001a). Thus, it has been suggested, that such
gaze processing deficits in ASD result from an impairment to extract
socially relevant information from the eye region, hence indicating
that social cues are less intrinsically salient for autistic persons (Nation
and Penny, 2008; Pelphrey et al., 2005a; Ristic et al., 2005; Senju and
Johnson, 2009a).

In search of the neural correlates of the processing of social gaze,
neuroimaging studies have focused to a large degree on the processing
of gaze direction in various contexts. Electrophysiological evidence has
robustly indicated differential neural activity for direct gaze versus
averted gaze (Conty et al., 2007; Gale et al., 1975; Hietanen et al.,
2008a, 2008b; Senju et al., 2005). FMRI studies have further explored
the specific brain regions involved in processing gaze direction (for re-
views, see Grosbras et al., 2005; Itier and Batty, 2009; Nummenmaa
and Calder, 2009; Senju and Johnson, 2009b). In a recent review,
Senju and Johnson (2009b) summarize that a total of six regions have
ved.
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been reported to show differential activity between direct and averted
gaze, namely the fusiformgyrus (FG), the posterior superior temporal sul-
cus (pSTS), the dorsomedial prefrontal cortex (dmPFC), the orbitofrontal
cortex (OFC) and the amygdala. These regions are known to be part of
the so-called “social neural network” (SNN), which is involved in con-
scious mental inference and evaluation of social stimuli (Frith, 2007;
Gallagher and Frith, 2003; Van Overwalle and Baetens, 2009; Vogeley
and Roepstorff, 2009). To our knowledge, only two fMRI studies have
investigated the neural processing of direct compared to averted
gaze in individuals with ASD relative to a control group (Pitskel et al.,
2011; von dem Hagen et al., 2013). Both studies confirmed a network
of SNN regions sensitive to direct gaze versus averted gaze in typically
developing participants. On the other hand, the SNN was not preferen-
tially active when perceiving direct gaze in participants with ASD.

However, dynamic aspects of gaze behavior have not been investi-
gated comprehensively so far, despite the fact that they are known to
modulate the communicative content transmitted by the eyes (Argyle
and Cook, 1976; Kleinke, 1986; Kuzmanovic et al., 2009). For instance,
a complex source of social information is the duration of perceived eye
contact. In order to adequately interpret it, more elaborate mentalizing
abilities are required (Eskritt and Lee, 2007). Humans learn to use relative
gaze duration towards different objects in the environment to infer other
people's preferences only during later developmental stages (Einav and
Hood, 2006; Montgomery et al., 1998).

To our knowledge, this is the first investigation of the processing of
both gaze direction and duration in adultswith high-functioning autism
(HFA) and a matched control group. For this purpose, the current study
made use of a parametric design and a person perception task, previous-
ly introduced by Kuzmanovic and colleagues (2009). Participants
watched dynamically animated faces of anthropomorphic virtual char-
acters while undergoing fMRI, and were asked to rate on a four-point
scale how likeable they perceived each virtual character to be. To esti-
mate the impact of gaze direction and gaze duration on person percep-
tion, these variables were systematically manipulated. We assumed
that, in the control group, direct compared to averted gaze would acti-
vate the pSTS, a region that has been robustly linked to the perception
of gaze behavior (Bristow et al., 2007; Calder et al., 2002; Ethofer
et al., 2011; Kuzmanovic et al., 2009; Pelphrey et al., 2004; Pitskel
et al., 2011; von demHagen et al., 2013;Wicker et al., 2003) and that in-
creasing gaze duration would engage the medial prefrontal cortex, a re-
gion associated with the evaluation of social stimuli (Amodio and Frith,
2006; Zysset et al., 2002). We further assumed that these effects would
be weaker or absent in participants with HFA, given that direct gaze
may hold less salience for them.

2. Materials & methods

2.1. Subjects

A group of 13 HFA individuals and a group of 13 matched control
persons participated in this study (see Table 1). All subjects were
right-handed, as assessed by the Edinburgh Handedness Inventory
(Oldfield, 1971), reported normal or corrected-to-normal vision and
were naïve with respect to the purpose of the study.

The 13 HFA participants (9 male) were between 24 and 39 years of
age (M = 31.23, SD = 4.87) and were diagnosed and recruited in
Table 1
Demographic and neuropsychological data.

Age AQ WST Gender (m/f)

HFA (n = 13) 31.23 ± 4.87 38.31 ± 4.05 108.46 ± 8.1 9/4
CON (n = 13) 30.23 ± 3 13.85 ± 3.63 108.92 ± 9.23 9/4
t-Test p = .536 p b .001 p = .893 –

Mean values and the respective standard deviations are displayed; HFA = high-functioning
group; CON = control group; WST = German multiple-choice verbal IQ test
(“Wortschatztest”); AQ = Autism Spectrum Quotient.
the AutismOutpatient Clinic at the Department of Psychiatry of the Uni-
versity Hospital of Cologne in Germany. HFA, as part of the autism spec-
trum, is characterized by sociocommunicative impairments on the one
hand but intact non-social cognitive capacities on the other (Klin,
2006). Moreover, the brain structure of individuals with HFA appears
to be less impaired compared to other conditions within the spectrum.
For instance, investigations carried out in our group revealed only limit-
ed local areaswith cortical thinning, especially in the left posterior supe-
rior temporal sulcus (Scheel et al., 2011) and no difference in the size of
the corpus callosum (Tepest et al., 2010). As part of a systematic assess-
ment, the diagnoses were confirmed by clinical interviews according to
ICD-10 criteria by two specialized physicians and were supplemented
by extensive neuropsychological assessment. The sample included pa-
tients with the diagnoses Asperger syndrome/high-functioning autism
with an at least average Full Scale IQ (FSIQ N85, measured using
Wechsler Adult Intelligence Scale, WAIS). Thus, we henceforth use the
term HFA to refer to individuals with ASD and a high intellectual level
of functioning. None of the HFA participants were taking any psy-
chotropic medications except for two who were taking an antide-
pressant medication (Citalopram 40 mg/day and Cymbalta 30 mg/day,
respectively). Additionally, three HFA participants reported episodes of
depression in their past medical history. As depression is a common co-
morbidity in HFA (Lehnhardt et al., 2011; Stewart et al., 2006), they
were not excluded from the sample.

The 13 control participants (9 male) were between 24 and 36 years
of age (M = 30.23, SD = 3) andwere recruited online from the under-
and graduate students at theUniversity of Cologne inGermany. They re-
ported no history of psychiatric or neurologic disorders, and no current
use of any psychoactive medications. In order to avoid clinically
significant autistic traits in the control sample, control participants
were included only if scoring less than 22 on the Autism Quotient
(AQ) (Baron-Cohen et al., 2001b).

Intelligence in both diagnostic groups was assessed by the German
multiple-choice verbal IQ test (“Wortschatztest”, WST; see Table 1).
Known to provide a valid and time-effective estimate of intelligence
(Lehrl et al., 1995; Satzger et al., 2002; Schmidt and Metzler, 1992),
the WST has been used in previous studies for matching purposes
(David et al., 2010, 2011; Kuzmanovic et al., 2011; Scheel et al., 2011;
Schilbach et al., 2012).

Written informed consent was obtained from all participants and
they were informed of the necessary safety precautions involving fMRI
experiments prior to the scanning session. All participants received a
monetary compensation for their participation of 15 Euros per hour. The
study was conducted with the approval of the local ethics committee of
the Medical Faculty of the University of Cologne.

2.2. Stimuli & design

The current paradigm has a two by three factorial design with the
two factors (a) “gaze direction”, varied on two levels (direct or averted)
and (b) “gaze duration”, varied on three levels (1, 2.5 and 4 s). The stim-
ulus material was made up of dynamic displays of 20 computer-
generated faces (10 male, 10 female) created using the commercially
available 3D animation software package Poser 6.0 (Curious Labs Inc.,
Santa Cruz, USA). Virtual characters were used instead of real faces
due to their advantage of a high degree of standardization and system-
atic manipulability, which constitute important prerequisites enabling
the investigation of subtle nonverbal signals such as gaze behavior
(Bente et al., 2001a, 2001b; Vogeley and Bente, 2010). Each trial began
with the display of a face, the gaze of which was initially averted. After
a short blink (150 ms), the character directed its gaze toward the partic-
ipant and after a variable period of time (depending on the condition,
either 1, 2.5 or 4 s), the virtual character looked again away by shifting
its gaze back to the initial position (see Fig. 1). The duration of the initial
and final averted gaze within a direct gaze trial was adjusted according
to the respective duration of the direct gaze condition in order to



Fig. 1.A. Experimental design. B. An example of a virtual face stimulus and a sample direct gaze trial. The participants' taskwas to observe and rate the perceived likeability of each face on a
4-point scale.
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establish an equal total duration of 5.65 s for all animations (see Fig. 1).
Conditions with direct gaze were complemented by a condition in
which the virtual character expressed averted gaze throughout, i.e. it
did not include any gaze shifts away from the initial position. To keep
the conditions comparable and to maintain the natural appearance,
the eye-blinkoccurred in the averted gaze condition aswell. The task re-
quired participants towatch each animation and evaluate the likeability
of the presented animated characters on a four-point likeability scale,
with the response options 1 (“very dislikeable”), 2 (“rather dislikeable”),
3 (“rather likeable”) and 4 (“very likeable”).

2.3. Experimental procedure

An experimental trial consisted of a stimulus presentation lasting for
5.65 s, followed by a four-point likeability rating scale lasting for 1 s.
Further, each trial entailed two randomly jittered inter-stimulus inter-
vals (ISIs): one between each stimulus presentation and the following
rating scale (applied ISI durations: 1.55 s, 1.75 s, 2.25 s and 2.5 s;
mean ISI 2 s) and the other between single trials to increase
condition-specific BOLD signal discriminability (Dale, 1999; Serences,
2004) (applied ISI durations: 5.4 s, 6.33 s, 7.2 s and 8.1 s; mean ISI:
6.75 s). An average trial lasted for 15.4 s. Each of the twenty stimulus
faces was provided in two versions (head orientation towards right or
left side), summing up to a total of 160 trials. The experiment was
conducted in an event-related fashion and split into two runs each last-
ing for 20 min. Both runs consisted of equivalent numbers of condition-
specific events, shown in randomized order. The sequence of the two
runs was randomized as well. A break of approximately 2–4 (two to
four) min was taken between runs.
Prior to the fMRI experiment all participants were introduced to the
task by a standardized instruction and practice session presented on a
computer screen outside the MRI environment. None of the stimuli
used in the introduction were used in the subsequent fMRI experiment.
Participants were told that they would see short animations of virtual
faces which they should watch carefully and that, after each animation,
they would be asked “How likeable did the face appear to you?”, to
respond by pressing one of four buttons corresponding to a four-point
scale which would appear on screen. Additionally, subjects were
instructed to focus on the fixation cross between trials and to rate on
the displayed scale as intuitively and quickly as possible.

To balance for lateralized motor-related activations, participants al-
ternately used the right or left hand across runs. The stimulus presenta-
tion and response recording were performed by the software package
Presentation (version 12.2; Neurobehavioral Systems, Inc., www.
neurobs.com/) and responses were assessed using four buttons of a
MR-compatible handheld response device (LUMItouch™, Photon Con-
trol Inc., BC, Canada).

2.4. Data acquisition

Functional magnetic resonance imaging (fMRI) was performed on a
Siemens 3 T whole-body scanner, which was equipped with a standard
head coil and a custom-built head holder for movement reduction (Sie-
mens TRIO, Medical Solutions, Erlangen, Germany). For the fMRI scans
we used a T2*-weighted gradient echo planar imaging (EPI) sequence
with the following imaging parameters: TR = 2200 ms, TE = 30 ms,
field of view = 200 × 200 mm2, 36 axial slices, slice thickness 3.0 mm,
in-plane resolution = 3.1 × 3.1 mm2. Each session consisted of 574
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volumes preceded by 4 additional volumes allowing for T1 magnetic
saturation effects. These 4 images were discarded prior to further image
processing.

2.5. Behavioral data analysis

The subjects' rating scores for each condition level were mean aver-
aged. Subsequently, the overall effect of gaze duration on individual
ratings as well as group differences were tested using SPSS (PASW Sta-
tistics 18) by a twowaymixed analysis of variance (ANOVA)with group
(HFA vs control) as a between-subject factor and direct gaze duration
(codes 1 to 3 for the different gaze durations) as a within-subject factor.
IfMauchly's test indicated that the assumption of sphericitywas not ful-
filled, degrees of freedomwere corrected using theGreenhouse–Geisser
estimates of sphericity. Planned polynomial contrasts were applied for
trend analyses. Pairwise comparisons (Bonferroni corrected post-hoc
tests) were performed to better characterize the nature of the signifi-
cant main effect of gaze duration. The trials with averted gaze were ex-
cluded from this analysis as their primary purpose was to provide a
control condition for the fMRI paradigm (i.e. a “high-level baseline”).
Nevertheless, paired sample t-tests were performed to test whether
the averted gaze condition was rated significantly different compared
to the direct gaze conditions. All effects are reported as significant at
p b .05.

2.6. FMRI data analyses

FMRI data were spatially preprocessed and analyzed using SPM5
(Wellcome Department of Imaging Neuroscience, London, UK)
implemented in Matlab 6.5 (The MathWorks, Inc., Natick, USA).
After the functional images were corrected for head movements
using realignment, the mean functional image for each participant
was computed and coregistered to the Montreal Neurological Insti-
tute (MNI) reference space using the unified segmentation function
in SPM5. The ensuing deformation was subsequently applied to the
individual functional volumes. Functional images were then spatial-
ly smoothed with an isotopic Gaussian filter (8 mm full width at half
maximum) to meet the statistical requirements of further analyses
and to account for macroanatomical interindividual differences across
participants.

The datawere analyzed using a General LinearModel as implemented
in SPM5. The analysis followed a combined categorical-parametric design
that allowedus to characterize different forms of responses to direct gaze:
(i) the categorical response to the presence of direct or averted gaze (DG
vs AG and AG vs DG) and (ii) the parametric response to varying gaze
durations within the direct gaze condition by identifying brain regions
where activations increase or decrease linearly with increasing direct
gaze duration (DGd+ and DGd−).

At the single subject level, conditions DG and AGweremodeled sep-
arately using a boxcar reference vector convolved with the canonical
hemodynamic response function. Events were defined by onsets of
corresponding stimulus presentations, whereas durations always
amounted to 5.65 s according to the duration the virtual character
was present on screen. Within this categorical framework, the effect of
DGd was modeled as a linear parametric modulation of the hemody-
namic response to DG by the corresponding duration (1, 2.5, 4 s).
Taken together, two types of events (AG, DG) and one event parameter
of interest (DGd) were included in the statistical analysis at the single
subject level. Additionally, another two regressors were added to the
model (one for either hand). Here, the duration of all response events
amounted to 1 s according to the time the rating scale was present on
screen. Head movement estimates were included as regressors to re-
move movement-related variance from the image time series. Thereby,
all eventswere computed against resting baseline byweighting only the
regressor corresponding to that particular event with “1” and all other
regressors with “0”. Only in the case of response events, both hand
regressors were weighted with “1”.

The performed single-subject contrasts were then fed into the 2nd
level group analysis using a flexible factorial ANOVA (factors: group, con-
dition and subject), employing a random-effects model (Penny et al.,
2003). First, the group-level analysis evaluated which brain regions
were differentially active while watching direct gaze versus averted
gaze (and vice-versa) for the control group and the HFA group, together
and separately. The following t-contrasts were computed: (i) DG N AG,
(ii) AG N DG, (iii) HFA_DG N HFA_AG, (iv) HFA_AG N HFA_DG, (v)
CON_DG N CON_AG, and (vi) CON_AG N CON_DG. Second, the main ef-
fect of gaze durationwas calculated. The following t-contrasts were com-
puted for both groups separately and together: (i) DGd+, the positive
effect of gaze duration, that is, brain regions with increased neural acti-
vation corresponding to increases in perceived gaze duration, and (ii)
DGd−, the negative effect of gaze duration, that is, brain regions with
increased neural activation corresponding to decreases in perceived
gaze duration. Significant Group × Condition interactions ((DG N AG) ×
(CON N HFA) and (DG N AG) × (HFA N CON)) were investigated in
order to see whether the effect of stimulus condition varied as a function
of group membership.

At the group level, all effects are reported as significant at p b .05,
corrected for multiple comparisons at the cluster level (pFWEcorr)
with p b .001, uncorrected, at the voxel level (Friston et al., 1996). Func-
tional activationswere anatomically localized byusing thebrain atlas by
Duvernoy (1999) and the SPM anatomy toolbox, version 1.7 (Eickhoff
et al., 2005), implementing a maximum probability map. Group activa-
tionmapswere superimposedon an SPMcanonical T1-weighted image.
Reported coordinates refer to maximum values in a given cluster
according to the standard MNI template.
2.7. Eye tracking data

Due to technical difficulties with the recording hardware, eye track-
ing could not be performed reliably during fMRI and eye movements of
the participants could hence not be considered. However, we were in-
terested in investigatingwhether individuals with HFA and control per-
sonswould differ in the visual exploration of faceswhile performing the
likeability rating task. Therefore we tested a gender-, age- and verbal
intelligence-matched sample consisting of a group of 6 high-
functioning individuals with ASD (4 male; mean age 32.7 years, stan-
dard deviation (SD) = 3.6 years) and 6 control participants (5 male;
mean age 28.8 years, SD = 3.5 years) in a follow-up experiment. Eye
movements were monitored at a frequency of 50 Hz and recorded
using TOBII systems eyetracking technology. For the statistical analysis
the eye tracking data were first inspected in order to remove saccades
and identify fixations. To this end, a MATLAB (Version 7.1, MathWorks,
Natrick, MA) dispersion-based identification algorithm was developed.
This algorithm uses a Dispersion-Threshold Identification approach
and determines fixations based on both a priori defined dispersion
and duration criteria (Falkmer et al., 2008; Salvucci and Goldberg,
2000). To detect potential fixations, the algorithm uses a sliding win-
dowmethod (Salvucci and Goldberg, 2000), which encompasses amin-
imum number of chronological data points and checks whether the
criteria are met. Further, facial regions of interest (ROIs) were defined.
These areas were based on the core facial features such as forehead,
eyes, nose, mouth including the chin area, as well as a category for the
rest of the face. Mean fixation frequencies were calculated and a
mixed design ANOVA was performed for each ROI. The analysis was
performed both with absolute as well as with relative fixation frequen-
cies (i.e. fixation frequencies towards a particular ROI relative to the
total fixation frequencies to the whole face). A two-factorial mixed
design ANOVA was used for each ROI separately, with the repeated-
measures variable “gaze duration” and the between group variable
“group”.
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3. Results

3.1. Behavioral results

The behavioral analysis revealed no main effect of gaze duration
(F(2, 48) = 1.1, p = .34) or group (F(1, 24) = 2.92, p = .1); however
the interaction effect between the two factors gaze duration and group
approached significance (F(2, 48) = 2.83, p = .07). When looking at
the two groups separately, a significant main effect of gaze duration
was only found in the control group (F(1.13, 13.49) = 6.74, p b .05),
but not in the HFA group (F(2, 24) = .67, p = .52; see Fig. 2). The
pairwise comparisonswithin the control group showed a significant dif-
ference between mean likeability ratings for the 1 s versus 2.5 s condi-
tion (p = .006) and a trend toward significance between the 1 s and 4 s
condition (p = .08). In addition, for control participants, polynomial
contrasts revealed both a significant linear trend (F(1,12) = 6.41,
p b .05) and a significant quadratic trend (F(1,12) = 11.82, p b .005)
for the gaze duration condition in the control group. In the HFA group,
neither of these trends was significant. Across both groups however,
paired-samples t-tests showed that the averted gaze condition was
rated significantly lower than the 1 s (t(25) = −2.78, p b .05) and
2.5 s conditions (t(25) = −2.6, p b .05). The difference between the
averted gaze and the 4 s direct gaze condition only approached signifi-
cance (t(25) = −1.87, p = .07).

3.2. Neural results

First, we identified brain regions in each group of participants that
responded more strongly to direct gaze compared to averted gaze
(DG N AG) as shown in Fig. 3 and Table 2. In the control group, activity
was localized bilaterally in the STG, the pSTS, and the MT/V5 area, as
well as the left paracentral lobule. Furthermore, in the right hemisphere,
the supramarginal gyrus/TPJ, the PCun and the insular cortex responded
more strongly to direct than to averted gaze. In HFA individuals, the
same contrast yielded activations solely in the right pSTS.

Second,we identified brain regions in each groupof participants that
responded more strongly to averted gaze compared to direct gaze
(AG N DG; Fig. 3; Table 2). In the control group, this contrast did not
yield any significant results. In the HFA group the same contrast yielded
activations in the PCun and PCC, the left middle and superior frontal
sulcus, as well as the mOFC. Other regions identified as differentially
Fig. 2. The plot illustrates the effects of gaze duration on likeability ratings. The scores on the
y-axis indicate the mean of stimuli ratings. A score of 1 refers to rating a face as “dislikable”
and one of 4 as “likeable”. Error bars show 1 standard error of the mean.
responsive were distributed bilaterally among the TPJ (localized in the
posterior terminal ascending branch of the STS), the inferior temporal
cortex, including the FG and the parahippocampal gyri.

The analysis of the group × condition interaction evaluating brain
regions more responsive to direct than to averted gaze in the controls
versus the HFA, revealed activations in the mOFC, the right Cun and
PCun, left MTG, extending to the aSTS and bilaterally the TPJ (localized
in the posterior terminal ascending branch of the STS; Fig. 3; Table 2).
The interaction evaluating brain regions more responsive to direct
than to averted gaze in HFA versus controls, did not reveal any signifi-
cant differential neural response.

Further,we tested for thefirst-order parametricmodulation of direct
gaze in order to identify regions where the activation increased (or de-
creased) linearly with an increasing duration of direct gaze. The analysis
showed that brain activity in the control group was modulated by gaze
duration in the left TPJ (localized in the posterior terminal ascending
branch of the STS) and dACC, whereas there was no significantmodula-
tion by DGd in any brain regions for the HFA group (see Fig. 4, Table 3).
In the direct group comparison, the control participants showed signif-
icantly greater correlation of the DGdwith the activity in themOFC, left
insula and dACC (see Fig. 4, Table 3). No brain region showed signifi-
cantly greater activation for this contrast in the HFA compared to the
control group. Decreasing gaze duration experience was associated
with an engagement of the PCun only in the HFA group (see Fig. 4,
Table 3).
3.3. Eye tracking results

Results of the subsequent eye-tracking experiment showed that
there was no significant effect of gaze duration on the amount of fixa-
tions to the eye region of the stimulus faces F(3,30) = 2.053, p =
0.128. Moreover, the main effect of group did not reach significance,
F(1,10) = 0.208, p = 0.658, indicating that both groups attended to
the eyes of the animated character to a similar extent. Finally, no signif-
icant interaction relationship was found, meaning that different gaze
durations did not have any differential effect on the amount of fixations
to this particular ROI for participants with ASD and control participants,
F(3,30) = 0.947, p = 0.430. Similar results were found for all other
ROIs.
4. Discussion

The present study focused on the influence of the two factors gaze
direction and gaze duration on the neural processing of likeability of dy-
namic virtual human faces in HFA participants and a matched control
group. Behavioral results revealed that increasing gaze duration in-
creased likeability ratings linearly for the control but not for the HFA
group. Neural results in the control group revealed two complementary
cognitive processes related to the two different gaze parameters. On the
one hand, the recruitment of regions of the SNN for direct gaze process-
ing, including the pSTS, the insula, the PCun and the TPJ indicates sa-
lience detection. On the other hand, direct gaze duration processing
revealed the involvement of regions of the mPFC (the dACC and the
mOFC). These regions are typically associated with outcome monitor-
ing, hence indicating higher-order social cognitive processes related to
the evaluation of the ongoing communicational input conveyed by
prolonged eye contact. In the HFA group solely the pSTS was engaged
by direct compared to averted gaze, while several regions of the SNN,
namely the PCun, the TPJ and the FG were activated by the opposite
contrast. Moreover, in the HFA group, while processing increasing
gaze duration did not elicit any differential activations, decreasing
gaze duration was correlated with neural activity in the PCun. Thus,
the present results also show that, participants with HFA may ascribe
greater salience to averted rather than direct gaze.



Fig. 3.A.Differential neural activity for observing direct compared to averted gaze in control participants. B. Differential neural activity for observingdirect compared to averted gaze inHFA
participants. C. Differential neural activity associatedwith the group × gaze interaction; plots illustrate corresponding contrast estimates obtained for the four stimulus categories for three
different local maxima: right PCun (11, −50, 60), left mOFC (−2, 48, −21) and left TPJ (−44, −65, 20). Error bars represent confidence intervals. D. Differential neural activity for
observing averted compared to direct gaze in HFA participants. The principally activated voxels are overlaid on the mean structural anatomic image of the 26 participants: p b .001,
cluster-level corrected; DG = direct gaze; AG = averted gaze; CON = control group; HFA = high-functioning autism group; PCun = precuneus; mOFC = medial orbitofrontal cortex;
TPJ = temporoparietal junction.
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4.1. Behavioral findings

In general, faces displaying direct gaze were perceived as signif-
icantly more likeable than those with averted gaze across both
groups. This is in line with previous research findings, which have
concluded that there is a general preference for facial cues to social
interest over cues to disinterest (Clark and Mils, 1993; Jones et al.,
2006). A main effect of gaze duration was found in the control
group, indicating an overall positive effect of prolonged gaze on
impression formation. Indeed, previous studies have robustly dem-
onstrated that the longer a person looked into an observer's eyes,
the more favorably this person was judged with regard to likeability,
potency or self-esteem (Argyle et al., 1974; Bente et al., 2007a,
2007b; Brooks et al., 1986; Droney and Brooks, 1993; Knackstedt
and Kleinke, 1991; Kuzmanovic et al., 2009). This is plausible,
since in the context of social interaction, “prolonged gaze” is a cue
of social interest and may convey signals of preference and/or
approach (Argyle and Cook, 1976; Kampe et al., 2003; Mason et al.,
2005). In the HFA group, the main effect of gaze duration did not
reach significance (see Fig. 2). A characteristic observation in indi-
viduals with ASD is absent visual reciprocity and atypical gaze
behavior (Buitelaar, 1995), which may suggest a general neglect of
the eyes as a relevant social information source (Pelphrey et al.,
2005a; Senju and Johnson, 2009a; Zürcher et al., 2013; for a review,
see Senju and Johnson, 2009a). Interestingly however, our own sub-
sequent eye-tracking experiment found no difference in the fre-
quency or duration of fixations on various regions of the virtual
faces, including the eyes, across conditions or groups (Fletcher-
Watson et al., 2009; Rutherford and Towns, 2008). In other words,
in the present paradigm, the eye region was well perceived but
not integrated into the impression formation process of HFA sub-
jects. This is in concordance with the finding that the degree to
which nonverbal information contributes to complex subjective
social decisions is significantly lower in HFA than in control partici-
pants (Kuzmanovic et al., 2011; Schwartz et al., 2010). A difference
between groups failed to reach significance, however this may be
due to the low sample size.
4.2. FMRI findings

4.2.1. Effects of gaze direction

4.2.1.1. The pSTS is recruited in direct gaze versus averted gaze in both
groups.

The finding of increased pSTS activation in both groups confirms our
initial hypothesis and supports previous research that attests this
region's involvement in processing direct gaze direction (Calder et al.,
2002; Ethofer et al., 2011; Pelphrey et al., 2004; von dem Hagen et al.,
2013; Wicker et al., 2003). However, the pSTS is also engaged during
the processing of biological motion (Allison et al., 2000). The increased
activation of the pSTS for direct compared to averted gaze, may be in
part driven by additional biological motion in the direct gaze condition
compared to averted gaze. Accordingly, it has been suggested that the
pSTS is specifically involved in processing the social significance of mo-
tion cues and their contribution to social communication (Gao et al.,
2012; Zilbovicius et al., 2006). In the context of gaze behavior, the
pSTS might be involved in decoding intentions behind the eye move-
ments, with respect to a communicative intention (Bristow et al.,
2007; Hooker et al., 2003; Mosconi et al., 2005; Pelphrey et al., 2003,
2004). Taken together, in the current study we argue that the direct
gaze condition was more suggestive of an intentional communicative
intention compared to the averted one.

Several neuroimaging studies using dynamic facial stimuli failed
to find pSTS modulation to gaze direction in autistic individuals
(Pelphrey et al., 2003, 2005a; Pitskel et al., 2011; von dem Hagen
et al., 2013). Behavioral studies have corroborated this finding by show-
ing that autistic participants show no preferential response to eyes as a
social cue (Ristic et al., 2005; Senju and Johnson, 2009a; Senju et al.,
2003, 2005, 2008; Wallace et al., 2006). Thus, it has been suggested
that there might be a difference in the way direct gaze is processed be-
tween autistic and control persons. The present results, however, show
that direct compared to averted gaze does actually elicit a response in
the pSTS in participants with HFA, but it tends to be weaker than in
the control participants and restricted to the right hemisphere. However,
these differences do not reach significance in the interaction effect (see



Table 2
Effects of gaze direction.

Region Cluster-level Side MNI coordinates T

Size pFWE-corr x y z

Gaze direction
DG N AG controls

MT/V5 1411 0.000 R 47 −68 −2 6.47
MT/V5 1077 0.000 L −45 −72 2 5.57
Rolandic operculum 783 0.000 R 48 2 6 5.24
Insula R 41 8 3 5.02
Precuneus 390 0.004 R 12 −51 66 4.95
Paracentral lobule? 1064 0.000 L −5 −35 60 4.13
Superior temporal gyrus 322 0.023 L −51 −32 8 4.44
Superior temporal gyrus 1237 0.000 R 57 −41 12 4.44
Temporoparietal junction/supramarginal gyrus R 47 −36 23 4.42
Posterior superior temporal sulcus R 65 −47 15 3.95

DG N AG HFA
Posterior superior temporal sulcus 283 0.040 R 66 −45 6 4.73

AG N DG HFA
Posterior cingulate cortex/precuneus 4642 0.000 R 11 −60 23 5.69
Temporoparietal junction 734 0.000 R 45 −63 23 5.47
Fusiform gyrus 356 0.015 L −32 −33 −18 5.20
Parahippocampal gyrus L −26 −36 −12 4.02
Middle frontal gyrus 310 0.028 L −38 23 48 5.12
Middle temporal gyrus 1182 0.000 L −59 −12 −15 4.99
Inferior temporal sulcus L −47 −6 −33 4.78
Rectal gyrus 535 0.002 L −9 35 −29 4.97
Parahippocampal gyrus 321 0.024 R 24 −33 −14 4.90
Fusiform gyrus R 32 −41 −9 4.13
Temporoparietal junction 662 0.000 L −45 −66 21 4.90
Inferior temporal gyrus/sulcus 544 0.001 R 56 −14 −27 4.58
Middle temporal gyrus R 51 −9 −20 4.53

(DG N AG) × (Controls N HFA)
Temporoparietal junction 868 0.000 L −44 −65 20 5.21
Subcallosal gyrus 1209 0.000 L/R 0 15 −18 4.88
Rectal gyrus/mOFC L −2 48 −21 4.58
Cuneus 598 0.001 R 12 −60 21 4.85
Middle temporal gyrus 347 0.017 L −60 −12 −20 4.76
Precuneus 450 0.004 R 11 −50 60 4.56
Middle temporal gyrus 270 0.021 R 57 −14 −18 4.48
Temporoparietal junction 549 0.001 R 48 −68 14 4.32

Abbreviations: T = t-values of regions active in each contrast; L = left hemisphere; R = right hemisphere; MT/V5 = middle temporal area.
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Fig. 3C, Table 2). One speculation is that, although the gaze direction
change is detected, direct gaze does not convey the same salience in
participants with HFA. This hypothesis needs to be tested in future
studies.
Fig. 4.A. Neural activation associatedwith increasing gaze duration for the control group. B. Direct
gaze duration. Plots illustrate corresponding contrast estimates obtained for the four stimulus cate
left insula (−38, −9, −6). Error bars represent confidence intervals. C. Neural activation associ
overlaid on the mean structural anatomic image of the 26 participants: p b .001, cluster-level corr
CON = control group; HFA = high-functioning autism group; dACC = dorsal anterior cingulate
Strong activation for the direct gaze versus averted gazewas also ob-
served in a region corresponding to the extrastriate areaV5,whichplays
a central role in motion processing in general (MT+/V5) (Born and
Bradley, 2005; Wilms et al., 2005). Indeed, eye motion has been found
group comparison between the control andHFA group for the neural processing of increasing
gories for three different local maxima: left dACC (−9, 33, 15), rightmOFC (11, 38,−17) and
ated with decreasing gaze duration for the HFA group. The principally activated voxels are
ected; DGd+ = increasing direct gaze duration; DGd− = decreasing direct gaze duration;
d cortex; mOFC = medial orbitofrontal cortex.



Table 3
Effects of gaze duration.

Region Cluster-level Side MNI coordinates T

Size pFWE-corr x y z

Gaze duration
Increasing controls

Dorsal anterior cingulate cortex 810 0.000 L −9 33 15 5.21
Dorsal anterior cingulate cortex R 5 30 18 4.23
Temporoparietal junction 316 0.026 L −50 −62 23 4.20

Increasing controls N HFA
Dorsal anterior cingulate cortex 595 0.001 L −9 33 15 5.40
Dorsal anterior cingulate cortex R 5 27 18 4.03
Rectal gyrus/medial orbitofrontal
gyrus

282 0.041 R 11 38 −17 4.45

Insula 562 0.001 L −38 −9 −6 4.44
Decreasing HFA

Precuneus 551 0.001 L −6 −80 38 3.95
Precuneus R 3 −72 38 3.48

Abbreviations: T = t-values of regions active in each contrast; L = left hemisphere; R =
right hemisphere.
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to elicit activation in this area (Puce et al., 1998; Watanabe et al., 2001,
2006). Considering the fact that in the present study the direct gaze con-
ditions included more motion quantity due to the additional gaze shift,
the enhanced MT/V5 activity is likely to indicate an automatic bottom-
up analysis of eye motion as a salient moving physical stimulus. Inter-
estingly however, the HFA group does not show activation of the MT/
V5 complex, which is consistentwith thefinding of atypicalmotion per-
ception in individuals with ASD (Freitag et al., 2008; Herrington et al.,
2007).
4.2.1.2. Regions of the SNN are recruited by the perception of direct gaze
versus averted gaze in the control group.

Confirming the initial hypothesis, the neural correlates of the
comparison between direct gaze and averted gaze in the control
group are not solely restricted to the occipitotemporal areas. It addi-
tionally involves regions typically assigned to the SNN, namely the
TPJ (localized in the supramarginal gyrus), the insula, and the
PCun. Evidence from functional neuroimaging studies shows that
the right TPJ is associated with mental state attribution (e.g. Saxe
and Wexler, 2005). In the context of gaze processing, two studies
have found the TPJ to be preferentially active for direct relative to
averted gaze in typically developing individuals (Pitskel et al.,
2011; von dem Hagen et al., 2013). Increased insula response has
been previously found when subjects were exposed to eye motion
(Pelphrey et al., 2005b), to direct gaze (Ethofer et al., 2011; Pitskel
et al., 2011) or an increasing proportion thereof (Calder et al.,
2002), as well as for inferences about the mental states of others on
the basis of the eye region (Baron-Cohen et al., 1999). The PCun
has also been engaged by gaze-based joint attention tasks (Bristow
et al., 2007; Williams et al., 2005), reading Theory of Mind (ToM)
stories (Fletcher et al., 1995; Young et al., 2010), and viewing ToM
cartoons (Gallagher et al., 2000). Moreover, the PCun plays an im-
portant role in self-awareness and self versus non-self representa-
tion (Johnson et al., 2002; Legrand and Ruby, 2009; Lieberman and
Pfeifer, 2005; Lou et al., 2004; Vogeley et al., 2001). Indeed, direct
gaze displayed by another person signals social attention (Kampe
et al., 2003; Kleinke, 1986; von Grünau and Anston, 1995) and is an
indicator for self-relevance (Cristinzio et al., 2010; N'Diaye et al.,
2009; Schilbach et al., 2006). Thus, self-referential processing
might have increased in the direct gaze condition of the present
study as a function of enhanced perceived interpersonal involve-
ment. Together, these findings support the idea of direct gaze as an
important social cue prompting mental state inference. Neverthe-
less, these regions are not active for the same contrast in individuals
with HFA, supporting previous research that demonstrates differen-
tial neural processing of direct gaze in ASD (Grice et al., 2005;
Pelphrey et al., 2005a; Pitskel et al., 2011; Senju et al., 2005; von
dem Hagen et al., 2013).

4.2.1.3. Regions of the SNN are recruited by the perception of averted gaze
versus direct gaze in HFA.

In the HFA participants we found a set of regions to be preferentially
activated by averted gaze versus direct gaze. Specifically, this group
demonstrated greater recruitment of the PCun and PCC, the mOFC and
left dlPFC, as well as bilaterally the TPJ (localized in the posterior termi-
nal of the ascending STS branch) and the FG (extending to the
parahippocampal gyrus). Interestingly, these are also regions, which
are commonly associated with the SNN. This finding is in concordance
with a recent study by von dem Hagen et al. (2013) who have shown
that the SNN shows an atypical response in that it is not activated by di-
rect compared to averted gaze, but by the reverse contrast. The authors
suggest that in ASD averted gaze may be more salient or a preferred
mode of social interaction and that this might explain why this type of
gaze engaged the SNNnetwork in a similarway to direct gaze in control
participants.

The FG has been associatedwith the processing of faces and facial fea-
tures (Kanwisher andYovel, 2006).However, fMRI studies have previous-
ly found evidence of reduced or atypical activation in the FG in individuals
with ASD when processing facial information (e.g. (Humphreys et al.,
2008; Pierce et al., 2001; Schultz et al., 2000)). Given the fact that normal
levels of FG activation in individuals with ASD can be elicited through
experimental manipulations such as directing participants to fixate on
the eye region (Hadjikhani et al., 2004, 2007) and considering that there
is a correlation between FG activation and time spent fixating on the
eye region (Dalton et al., 2005), the finding of increased FG activation
could be explained by a longer time period that HFA participants look at
the eyes in the averted gaze condition compared to the direct one. As
our eye tracking data investigation did not reveal any difference in fre-
quency of fixations to the eye region across gaze conditions, we don't
consider differential visual attention reflecting the differences in FG acti-
vation as very likely. In contrast, it is possible that, averted gaze allowed
HFA participants to integrate gaze processing with the facial context
more easily to make a judgment on the perceived likeability of a virtual
person. The additionalfindingof the engagement of the TPJ region corrob-
orates this interpretation, considering that this particular brain region has
been previously found to be maximally face sensitive (Kreifelts et al.,
2009).Moreover, face-evoked activation in themOFChas beenpreviously
found in fMRI studies, particularly during valence assessment of facial
stimuli (Aharon et al., 2001; Kim et al., 2007; Kranz and Ishai, 2006;
O'Doherty et al., 2003). Thus, it has been proposed that this region may
encode information about valence and identity of faces (Kringelbach
and Rolls, 2004). The mOFC is densely connected with the parahippo-
campal cortex (Carmichael and Price, 1995) and with posterior midline
structures such as the PCC/PCun (Cavada et al., 2000), all of which are
activated by this contrast. Previous studies point to a role of the
parahippocampal regions in contextual (Rauchs et al., 2008) and autobio-
graphical memory (Fink et al., 1996;Maguire et al., 2000). Themedial pa-
rietal region (PCC/PCun) is engagedby tasks involving either a social or an
outward-directed valuation component. Summarizing previous findings,
Schiller et al. (2009) suggest that this region is involved in assigning
value to social information guiding our first impressions of others. In
sum,we suggest that the current pattern of activation in HFA participants
is related to both cognitive control and specific social inferential process-
ing. This reflects the fact that, for HFA participants, gaze information may
be better integrated with contextual information to form a valence im-
pression of a face in the averted compared to the direct gaze condition.

The current design has two limitations: i) the direct gaze conditions
constituted 3/4 of all events, and ii) the direct gaze conditions included
an additional gaze shift compared to the averted gaze condition. Both of
these factors could have rendered the direct gaze stimuli more salient
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irrespective of the gaze per se. Thus, the activation of the SNN could be
elicited by different factors in the two participant groups: by an effect of
novelty for the averted gaze condition in HFA and by an effect of
increased motion quantity in the control group.

4.2.1.4. Effects of gaze × group interaction.
Our investigation of regions that demonstrated a group by gaze in-

teraction identified several regions of the SNN, namely, the right PCun
and TPJ (localized in the posterior terminal of the ascending STS
branch), the left MTG, as well as the mOFC. Some regions, which we
have previously discussed were sensitive to gaze direction in only one
group; however there were also regions modulated by gaze direction
in both groups.

In concordancewith two recent studies (Pitskel et al., 2011; von dem
Hagen et al., 2013) we have found a significant group by gaze direction
interaction in the right TPJ, with control participants showing greater
activity in this region to direct gaze versus averted gaze but the opposite
pattern in participants with HFA. In particular, the right TPJ has been as-
sociated with mental state attribution (Lombardo et al., 2011; Saxe and
Wexler, 2005; Vogeley et al., 2001).Moreover, in the present study the
PCun was also active to direct gaze versus averted gaze in control
participants, and recruited in response to averted compared to direct
gaze in HFA participants. Indeed, this region has been previously en-
gaged by gaze direction discrimination and joint attention tasks
(Bristow et al., 2007; Carlin et al., 2011; Williams et al., 2005). Inter-
estingly, both the TPJ and the PCun have also been involved in atten-
tional reorienting (PCun, Cavanna and Trimble, 2006; TPJ Mitchell,
2008). Indeed, the TPJ region, as part of the ventral attention net-
work (Corbetta et al., 2000) is particularly sensitive to stimuli that
are considered task-relevant (Chang et al., 2013). Thus, the engage-
ment of these regions may reflect covert attentional orienting re-
sponses to gaze (Carlin et al., 2011; Friesen and Kingstone, 2003).
Differences in the gaze condition that suggests such a reorienting
process might be caused by a “group-driven divergence in the type
of gaze that holds the most social and attentional salience” (Pitskel
et al., 2011, p 1691).

4.2.2. Neural correlates of gaze duration

4.2.2.1. Regions of the mPFC and the insula are engaged by processing in-
creasing direct gaze duration by the control group.

Confirming the initial hypothesis, we have found a positive correla-
tion of signal increases with increasing gaze duration in a region of the
mPFC, namely the dACC. This region has been involved in optimizing
behavioral performance when confronted with continuously evolving
environmental demands (Sheth et al., 2012). Therefore, it has been sug-
gested that it also plays an important role in updating our social infor-
mation from other people (Adolphs, 2009). In addition to the dACC,
the direct group comparison also revealed an involvement of another
region of themPFC, namley themOFC. This regionmay encode informa-
tion about valence and identity of faces (Kringelbach and Rolls, 2004)
and has been involved in monitoring the reward value of stimuli
(Amodio and Frith, 2006; Kringelbach, 2005; Kringelbach and Rolls,
2004). Evidence for the reward potential of direct gaze manifests in
early ontogeny as even very young infants preferentially attend to
faces with direct compared to averted gaze (Farroni et al., 2002;
Symons et al., 1998) and improve affect regulation and suckling behav-
ior when experiencing direct gaze (Blass et al., 2007). Along the same
line, eye contact has been found to serve as a reward in operant condi-
tioning (Argyle and Cook, 1976). This result is consistent with our
behavioral findings of increased likeability with increasing gaze dura-
tion. In addition, the involvement of themOFC in direct gaze process-
ing has been previously linked to enhanced emotional processing
during direct gaze perception (Conty et al., 2007; Wicker et al.,
2003). Finally, the mOFC has also been involved in contextual
updating, i.e. as contexts change, the threshold at which prepotent
tendencies are expressed is shifted (Hughes and Beer, 2012). Thus,
the current activation patternmay reflect the updating of underlying
strategies for likeability judgments. Therefore, the initial gaze direc-
tion detection may trigger an automatic response tendency, which
needs to be updated with respect to the incoming information trans-
mitted by varying durations of the eye contact: The longer the direct
gaze duration, the more information with respect to a potential com-
municative exchange is conveyed.

In addition, the direct group comparison also demonstrates the
involvement of the left insula for processing increasing direct gaze
duration for the control versus the HFA group. A functional model
on the insula has proposed that particularly its anterior portion
could be associated with subjective experience and conscious
awareness (Craig, 2009). Thus, it has been suggested that it is
part of a “salience network” which integrates social and contextual
information with internal states (e.g. arousal; Critchley et al.,
2000) to provide a neural substrate of conscious experience that
guides behavior (Craig, 2009; Seeley et al., 2007). In this line, a
study by Ethofer et al. (2011) has found that particularly the ante-
rior insula is selectively sensitive to the social significance of direct
gaze (i.e. gaze shifts towards the observer). Both the ACC and the
insula have been involved in indexing the sequential progression
of the feeling of subjective awareness (for a review, see Craig,
2009), which leads us to suggest that the present insular activation
might point to a subjective feeling of an enhanced emotional
salience or arousal initiated by the perception of increasing direct
gaze duration.

4.2.2.2. The PCun is engaged by processing decreasing direct gaze duration
in the HFA group.

Participants with HFA did not show any differential neural response
to increasing gaze duration. This suggests that increasing direct gaze
does not signal the same communicative intent to individuals with
HFA as it does to the control participants. Interestingly, the same region
engaged by averted compared to direct gaze, the PCun was also prefer-
entially engaged by decreasing direct gaze perception in HFA partici-
pants. Considering that this region is involved in attentional orienting
tasks (Cavanna and Trimble, 2006), activation in this region may reflect
covert attentional orienting responses to a stimulus that is salient
(Carlin et al., 2011; Friesen and Kingstone, 2003). In the case of HFA par-
ticipants this seems to be the case for shorter rather than longer gaze
durations.

5. Conclusion

The present study focused on the processing of gaze direction and
gaze duration by making use of virtual characters as stimuli. While
direct gaze and increasing direct gaze duration may signal social sa-
lience and a communicative intent to typically developing individuals,
gaze duration did not lead to the same significant relationship in HFA.
However, the present results also demonstrate, that in participants
with HFA, gaze processing deficits are not based on gaze direction
discrimination per se. Rather, they seem to result from ascribing sa-
lience to averted gaze rather than direct gaze and from being impaired
in using subtle aspects of gaze, such as the duration of direct gaze, to un-
derstand others.
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