
 International Journal of 

Molecular Sciences

Article

The Bromodomain Inhibitor N-Methyl pyrrolidone
Prevents Osteoporosis and BMP-Triggered Sclerostin
Expression in Osteocytes

Barbara Siegenthaler 1, Chafik Ghayor 1, Bebeka Gjoksi-Cosandey 1, Nisarat Ruangsawasdi 2

and Franz E. Weber 1,*
1 Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11,

8032 Zürich, Switzerland; barbara.m.siegenthaler@gmail.com (B.S); chafik.ghayor@usz.ch (C.G.);
bebeka.cosandey@gmail.com (B.G.-C.)

2 Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
nisarat_mac@hotmail.com

* Correspondence: franz.weber@zzm.uzh.ch; Tel.: +41-44-634-3140

Received: 27 August 2018; Accepted: 23 October 2018; Published: 25 October 2018
����������
�������

Abstract: (1) Background: In an adult skeleton, bone is constantly renewed in a cycle of bone
resorption, followed by bone formation. This coupling process, called bone remodeling, adjusts the
quality and quantity of bone to the local needs. It is generally accepted that osteoporosis develops
when bone resorption surpasses bone formation. Osteoclasts and osteoblasts, bone resorbing and
bone forming cells respectively, are the major target in osteoporosis treatment. Inside bone and
forming a complex network, the third and most abundant cells, the osteocytes, have long remained
a mystery. Osteocytes are responsible for mechano-sensation and -transduction. Increased expression
of the osteocyte-derived bone inhibitor sclerostin has been linked to estrogen deficiency-induced
osteoporosis and is therefore a promising target for osteoporosis management. (2) Methods:
Recently we showed in vitro and in vivo that NMP (N-Methyl-2-pyrrolidone) is a bioactive drug
enhancing the BMP-2 (Bone Morphogenetic Protein 2) induced effect on bone formation while
blocking bone resorption. Here we tested the effect of NMP on the expression of osteocyte-derived
sclerostin. (3) Results: We found that NMP significantly decreased sclerostin mRNA and protein
levels. In an animal model of osteoporosis, NMP prevented the estrogen deficiency-induced
increased expression of sclerostin. (4) Conclusions: These results support the potential of NMP
as a novel therapeutic compound for osteoporosis management, since it preserves bone by a direct
interference with osteoblasts and osteoclasts and an indirect one via a decrease in sclerostin expression
by osteocytes.
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1. Introduction

Osteoporosis is a common disease characterized by the deterioration of bone tissue and hence
decreasing bone mass. This results in increased bone fragility and higher fracture risk, particularly
at the hip, spine and wrist [1]. Hip fractures are the most severe since 80% of these fractures are
linked to osteoporosis. Furthermore, hip fractures result in a mortality rate of 20% in the first year
and disabilities in 50% of the survivors [2]. The course of osteoporosis is a process of gradual bone
loss occurring without symptoms. Today, over 200 million people worldwide are estimated to suffer
from this disease. Approximately 30% of all post-menopausal women in Europe and the United States
have osteoporosis while at least 40% of these women and 15–30% of all men will experience fragility
fractures during their lifetime [3]. Currently available treatments include bisphosphonates, selective
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estrogen receptor modulators (SERMs), parathyroid hormone (PTH) [4], Denosumab (monoclonal
RANKL (Receptor Activator of Nuclear factor Kappa-B Ligand) antibody), Strontium ranelate and
supplementation of estrogens, calcium and vitamin D. Even though osteoporosis causes an increased
osteoclastic bone resorption activity surpassing the rate of osteoblastic bone formation, most of the
above-mentioned treatments are targeting only one of the involved cell type. While there is a diverse
armamentarium to serve as inhibitors of the osteoclastic activity, PTH was the first anabolic agent
approved by the FDA (Food and Drug Administration (USA)) [5] for the treatment of osteoporosis in
2002. Recently, the FDA approved another PTH analogue (abaloparatide) however, the need for other
anabolic agents is still unmet [6]. Strontium ranelate is the single drug currently available targeting
both the catabolic and the anabolic side of osteoporosis [7,8]. Unfortunately, all of these treatments
come with the cost of undesired side effects making the search for more specific and more potent drugs
very urgent.

Recently we showed that N-methyl pyrrolidone, a solvent in FDA approved drugs, interferes
with the differentiation and activity of osteoblasts and osteoclasts [9,10]. Furthermore, we showed that
N-methyl pyrrolidone (NMP) acts as a bromodomain inhibitor and plays a role as an epigenetic
regulator [11]. Bromodomains are small protein domains recognizing acetylated proteins such
as histones. Their binding plays an important role in the remodeling of chromatin structure
regulating transcriptional activity [12] and the scaffolding of transcription complexes [13]. Inhibition
of bromodomains has already been discussed as promising therapeutic for multiple diseases [14].
The methyl group in NMP combined with the double bonded oxygen atom mimic acetyl-lysine,
therefore acting as a bromodomain inhibitor [15,16]. Binding interference studies of the different
bromodomain family members by NMP confirmed 70–80% reduced binding capacity of BRD2
(Bromodomain-containing protein 2) and BRD4 [11]. While high affinity bromodomain inhibitors like
JQ1 are applied in the micro-molar range, NMP was used in the milli-molar range and can therefore be
considered as a low affinity bromodomain inhibitor with additional low affinity binding capability
to so far unknown proteins or protein domains. The low affinity of NMP makes this molecule more
advantageous than JQ1 because even if both of them inhibit osteoclast differentiation, only NMP is able
to enhance the BMP-2-induced osteoblast differentiation [11]. Ultimately, NMP favorably influences
the bone formation/bone resorption balance [9,10].

Besides osteoblasts and osteoclasts, osteocytes are the third but most abundant bone cell type
in bone and compose up to 95% of all cells in bone tissue [17]. They are differentiating from the
mineral-depositing osteoblasts and become embedded within the newly formed osteoid [18,19].
Differentiation of osteoblasts towards osteocytes is indicated by a dramatic morphological change
from the polygonal osteoblastic phenotype to a stellate osteocyte extending numerous cellular
protrusions to form an interconnected dendritic network [20–22]. From the osteocytes located in their
lacuna, the dendritic network spreads out within the so called lacuna-canalicular system, is essential
for sensing mechanical stimuli [23] and orchestration of the activity of osteoblast and osteoclasts
via changes in the molecular signaling through this network [24,25]. Upon mechanical stresses,
nitric oxide (NO) is produced and stimulates the COX2 (Cyclooxygenase 2) driven production of
Prostaglandin (PGE2) [26,27]. Via further downstream pathways involving estrogen receptors and
periostin, the expression of sclerostin is reduced [28,29]. Sclerostin—mainly produced by osteocytes—is
encoded by the SOST (Sclerosteosis) gene on chromosome 17 in humans [30], is a negative regulator
of bone formation and therefore an important regulator of bone mass [31]. It binds to the LRP5/6
receptor and Frizzled co-receptor on the osteoblast cell surface, thereby interfering with Wnt ligand
binding and hence blocking osteoblast differentiation and activity [32]. Decreasing osteoblast activity
while maintaining osteoclast function leads to a shift of the bone remodeling balance towards bone
resorption and bone loss [33]. Extended periods of increased bone resorption; e.g., due to decrease of
estrogen, cause severe loss of bone strength with increasing fracture risk [34–36]. Targeting sclerostin
expression could therefore be a valuable tool for the prevention of osteoporosis and anti-sclerostin
antibodies are already investigated [37–39]. Moreover, it has been shown previously that bone
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morphogenetic proteins (BMPs) induce the expression of sclerostin—potentially through the Wnt
signaling pathway [40,41]. Increased sclerostin expression under bone anabolic conditions can therefore
be considered a negative feedback loop whereby the administered BMPs induce bone formation at
osteoblastic levels, and with the parallel induction of sclerostin expression preventing over-stimulation
of the anabolic processes or ectopic bone formation.

Following up on our findings showing that NMP inhibits osteoclast differentiation [9], improves
osteoblast differentiation and increases bone regeneration [10], the present study aimed to evaluate the
effect of NMP on osteocytes.

2. Results

2.1. NMP Has No Toxic Effect on Osteocyte Like Cells

The response of osteocytes to NMP was evaluated in the mouse immortalized osteocyte cell
line IDG-SW3 and the rat osteosarcoma cell line UMR-106. IDG-SW3 cells are a clonal cell line from
long-bone chips of mice carrying a Dmp1 promoter driving GFP (Green Fluorescent Protein) crossed
with the Immortomouse, which expresses a thermolabile SV40 large T antigen regulated by interferon
γ (IFN-γ) [42]. UMR-106 cells are a cloned derivative of a transplantable rat osteogenic sarcoma.
Both cell lines are known to express SOST. Therefore, cells from both lines were stimulated with
increasing concentrations of NMP and cell viability was assessed using the WST-1 assay. The tested
chemical concentrations in the range between 0.5 to 5 mM in differentiating IDG-SW3 cells (Figure 1A)
and in UMR-106 cells (Figure 1B) did not reduce cell viability.
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Figure 1. Cell viability dependent on the N-methyl pyrrolidone (NMP) concentration. (A) Differentiating
IDG-SW3 cells were treated with NMP in a range from 0.5–5 mM over a time period of 9 days. (B) UMR-106
cells were treated with NMP in a range from 0.5–5 mM over 48 h. WST-1 cell viability assessment at collection
time revealed no toxicity at NMP concentrations up to 5 mM.



Int. J. Mol. Sci. 2018, 19, 3332 4 of 14

2.2. NMP Decreases Sclerostin Expression in Osteocyte Like Cells

To study the potential of NMP to increase bone formation at the level of osteocytic signaling,
we investigated the gene expression pattern of SOST under NMP-treatment condition. Quantitative
reverse-transcription real-time PCR (q RT-PCR) of treated osteocyte-like cells revealed a significant
reduction in sclerostin mRNA. In the early stages of osteocyte differentiation (14-day IDG-SW3
cells), NMP modulated only slightly the expression of sclerostin mRNA (Figure 2A). In contrast,
when the NMP treatment extends up to 35 days (late osteocyte differentiation), the expression of
sclerostin is significantly reduced (p < 0.05). Similarly, UMR-106 cells treated with 2 or 5 mM NMP
(Figure 2B) displayed a significant reduction in SOST mRNA expression already after 1 h of treatment
(non-significant only for 2 mM NMP at 8 h). This reduction stayed constant up to 24 h of stimulation.
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Figure 2. NMP decreases sclerostin mRNA and protein expression. (A) Immortalized mouse IDG-SW3
cells were stimulated with 2 mM (dark bars) and 5 mM (light bars) NMP during the whole period
of differentiation. (B) Rat osteosarcoma UMR-106 cells were incubated with 2 mM (dark bars) and
5 mM (light bars) NMP over a time period of 24 h. (C) UMR-106 cells were treated for 8 h with the
indicated NMP concentrations in normal culture medium. Whole cell lysates were subjected to Western
Blot analysis indicating an NMP concentration-dependent reduction in sclerostin expression. The star
indicates statistical significance at α = 0.05, while “ns” indicates non-significance at the same threshold.

The sclerostin reducing effect of NMP was further tested in UMR-106 cells in a titration of chemical
up to the initially tested highest concentration of 5 mM. While 1 mM of NMP only slightly reduced
sclerostin protein expression, increasing concentrations of NMP induced a concentration-dependent
reduction in sclerostin protein expression as measured by Western Blot (Figure 2C).

2.3. NMP Prevents BMP-2 Induced Increase in Sclerostin Expression

It has been reported that BMP-2 treatment of human osteoblastic cells induces sclerostin expression [41].
Here we were interested to test if NMP has the potential to re-balance sclerostin expression after BMP-2
stimulation. Indeed, while BMP-2 stimulation of UMR-106 cells led to an increased sclerostin expression,
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this response was prevented by a combined stimulation with BMP-2 and NMP (Figure 3A). Figure 3B shows
the corresponding SOST mRNA levels determined by q RT-PCR.
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Figure 3. NMP prevents the BMP-2 induced increase in sclerostin expression. Stimulation of UMR-106
cells with 500 ng/mL bone morphogenetic protein 2 (BMP-2) increases sclerostin protein at 8 h (A)
whereas a combination of BMP-2 and 2 mM NMP decreases sclerostin protein. Illustration of qRT-PCR
of the same treatment is presented in (B).

2.4. Increased Sclerostin Expression in Osteoporosis Induced Animals Can Be Prevented by NMP

Multiple recent studies have shown a relationship between post-menopausal estrogen deficiency
and sclerostin levels in humans. To induce osteoporosis in healthy female rats, excision of their ovaries
was performed (OVX), while control animals underwent a sham operation (Sham). Paraffin embedded
femur sections were immunohistochemically stained for sclerostin protein and the compact area of the
bone (red square in Figure 4A) was assessed for sclerostin positive osteocytes (Figure 4A).

Osteoporosis induced control animals (Figure 4C, OVX PBS) displayed a more numerous and intense
sclerostin staining (p = 0.018)) compared to the Sham operated, healthy animals (Figure 4B). Furthermore,
there was a slight reduction in the number of cells stained positive for sclerostin between OVX animals
treated with NMP (Figure 4D, p = 0.024) and the Sham control animals (Figure 4B). An additional set of
histological section is provided in Figure 4E. Moreover, NMP treatment was able to significantly reduce the
number of sclerostin positive cells compared to non-treated OVX animals (p = 0.024) (Figure 4F). In control
animals (Sham PBS, black bar) about 30% of all osteocytes are sclerostin positive. For osteoporosis induced
animals (OVX PBS, white bar) this number increases to 50%. NMP treated animals (OVX NMP, grey bar)
contain slightly less (about 25%) sclerostin positive cells than the control.
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Figure 4. NMP prevents the osteoporosis induced increase in sclerostin expression. Female rats were
subjected to ovariectomy (OVX) or control surgery (Sham) and treated with vehicle (PBS) or NMP and
femurs were collected for histology. (A) Location of image acquisition of histological sections is marked
by the red square. (B) Sham PBS animals with sclerostin producing osteocytes (brown color). (C) OVX
animals injected with the vehicle control (PBS). (D) OVX animals injected with the chemical NMP.
Scale bars in B-D represent 50 µm. (E) High and low-magnifications of histological sections stained for
sclerostin expression for all three groups as indicated: Sham PBS, OVX PBS and OVX NMP. Scale in
the upper panel is 200 µm and in the lower panel 50 µm. The area of the histology of the lower panel
is indicated in the respective upper panel by the dashed black rectangle. (F) Percentage of sclerostin
positive cells. Stars indicate statistical significance at α = 0.05.

2.5. Bromodomain Inhibition Decreases Sclerostin Expression

The effect of NMP on the sclerostin expression profile was investigated in osteocyte-like UMR-106
cells. The result presented in Figure 2 showed that NMP significantly decrease sclerostin expression
within 8 h of stimulation. In order to show that the effect of NMP is due to its bromodomain
inhibitor activity, we have treated UMR-106 cells with JQ1, a potent and highly selective bromodomain
inhibitor [43]. The mitochondrial activity, which reflect cell viability/toxicity, was evaluated by the
WST-1 assay. Up to one µM, JQ1 treatment showed no difference in cell viability (Figure 5A) while
the sclerostin gene expression analysis revealed a concentration-dependent decrease (Figure 5B).
The results obtained at mRNA level was also confirmed at the protein level by western-blot (Figure 5C).
Taken together, these results indicate that the inhibition of bromodomain activity, whether by NMP or
by JQ1, is responsible for the negative regulation of sclerostin expression.
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Figure 5. The high affinity bromodomain inhibitor JQ1 decreases sclerostin expression. UMR-106 cells
treated for 8 h with a titration of the bromodomain inhibitor JQ1 do not change their metabolic activity
(A). JQ1 treatment leads to a concentration dependent decrease in SOST mRNA (B) and Sclerostin
protein (C) expression. Error bars indicate standard deviation from three independent experiments.
“ns” indicates non-significance at α = 0.05.

3. Discussion

Recently we identified the small chemical N-methyl pyrrolidone (NMP) as a low-affinity bromodomain
inhibitor and potent agent stimulating osteoblastic bone formation [10], while blocking osteoclastic bone
resorption [9]. Here we investigated the effect of NMP on gene expression from the main bone cell type,
the osteocytes. We focused on sclerostin expression, since various studies have linked osteocytic sclerostin
expression to the regulation of bone mass in response to mechanical loading and un-loading of the bone [44].
Sclerostin is expressed in un-loading situations to interfere with the Wnt signaling pathway and thereby
blocking the differentiation and activity of osteoblasts. In the present study, stimulation with the low-affinity
bromodomain inhibitor NMP to the concentrations tested did not induce toxic responses as measured
by the WST-1 assay. In contrast, earlier studies using the known high-affinity bromodomain inhibitor
JQ1 demonstrated interference with cell viability and gene transcription [45–47]. In our osteocyte-like cell
lines we could show that NMP was able to reduce sclerostin expression at the mRNA and protein level in
a concentration dependent manner.

Treatment strategies in osteoporotic patients include the administration of bone morphogenetic
protein 2 (BMP-2) to stimulate osteoblastic bone formation. These high BMP-2 doses stimulate
sclerostin expression in a negative feedback loop to prevent bone overgrowth and ectopic bone
formation [40,48]. In our study, BMP-2 administration in UMR-106 cells stimulated the expression
of sclerostin, but this increase was suppressed by the co-administration of NMP. This new finding
indicates that a co-administration of NMP with BMP-2 would be beneficial, because less of the
expensive BMP-2 is required to reach the same bone anabolic effect. Since BMP-2 application is
associated with mild to severe side effects, the partial substitution of BMP-2 with NMP might lower
the risk for undesired side effects of BMP-2.
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Furthermore, besides BMPs increasing sclerostin levels, it has been shown that sclerostin serum
levels in postmenopausal women are inversely correlated to the serum estradiol levels [34,35].
A constant estrogen supplementation has been found to reduce sclerostin levels [36,49]. Even though
these are clear indications for estrogen regulating the sclerostin levels, the exact mechanisms involved
are not resolved yet. To explore the relationship between estrogen deficiency-induced osteoporosis and
chemical treatment, an ovariectomized (OVX) rat animal model was employed. Immunohistochemistry
of femur sections confirmed an increased sclerostin expression linked to estrogen deficiency in OVX
animals, whereas this increase in sclerostin expression was prevented by the systemic injection of
NMP. This is of special interest since previous studies have investigated the link between sclerostin
expression and bone resorption/formation. While the upregulation of sclerostin expression from
osteocytes in disuse conditions was directly linked to bone loss, there was no such correlation observed
for the down-regulation of sclerostin upon increased strain [50,51]. Our findings indicate a vital
role of the prevention of an increased sclerostin expression in order to maintain bone parameters.
These observations further strengthen the role of the low-affinity bromodomain inhibitor NMP as
potential new drugs in osteoporosis treatment.

Currently the exact mechanism for NMP’s potential to reduce sclerostin expression and to prevent
the BMP-2 or OVX related increase in sclerostin is not clear yet. We hypothesize that the acetyl-lysine
mimicking, low-affinity bromodomain inhibitor NMP [11] interferes with the acetyl-recognition
by a so far unknown protein involved in sclerostin expression, thereby decreasing its expression.
Strong indications for a bromodomain-dependent regulation of the SOST gene is provided by our
observation that the established high-affinity bromodomain inhibitor JQ1 induced a concentration
dependent decrease in sclerostin expression in UMR-106 cells at 10.000 times lower concentrations
than needed with NMP (Figure 5). For both chemicals, the concentrations used are in line with their
concentrations needed to inhibit acetyl-lysine binding to bromodomains [11,15,43]. For the high
affinity bromodomain inhibitor JQ1, the molecular mechanism has been established [43]. Low affinity
inhibitors like NMP, however, have to be applied at concentrations where interference with diverse
proteins and signaling pathways can occur. That might have been the reason why JQ1 in contrast to
NMP inhibits bone formation by its much higher affinity to bromodomains [11]. The low affinity to
bromodomains by NMP, however, can be overwritten by additional effects of NMP in osteoblasts,
like the enhancement of the kinase activity for Smads and p38, which sums up to an enhancement of
the BMP-signaling in vitro and of bone regeneration in vivo [10]. Therefore, it will be very difficult,
if not impossible to dissect all the molecular mechanisms underlying the regulation of sclerostin
expression under NMP treatment.

Various studies have already investigated the regulation of the SOST gene at the level of micro
RNAs (Hassan et al. 2012), the upstream proximal SOST promotor [52] and the downstream enhancer
element [53]. While in early development, the proximal promotor is strongly controlled via regulation
by BMP, Runx2 and Osx predominantly involving DNA methylation [54], the SOST promotor is
differentially methylated in mature osteoblasts and mature osteocytes. During the osteoblast-osteocyte
transition, the extensive methylations preventing sclerostin expression from osteoblasts is removed,
permitting sclerostin expression in osteocytes [17,48,55]. Regulation of the distal enhancer element
in the evolutionarily conserved region 5 (ECR5) has recently started to be investigated by multiple
groups. They found competitive binding to ECR5 by histone deacetylase 5 (HDAC5) and the myocyte
enhancer factor 2C (MEF2C) to influence the acetylation state of lysine 27 on histone 3 (H3K27Ac) and
thereby alter the level of sclerostin expression [56–60]. One could speculate that NMP with affinity to
the acetyl-binding bromodomain can interfere and inhibit sclerostin expression at this level.

In essence, exposure of osteocytes to NMP is able to reduce sclerostin expression in vitro and in vivo
and suggest an anti-osteoporotic effect of the low affinity bromodomain inhibitor NMP mediated on the
level of osteocytes by reduced sclerostin expression. Even though we found the established bromodomain
inhibitor JQ1 to reduce sclerostin expression in a concentration dependent manner as well, suggesting
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a bromodomain-dependent inhibition of sclerostin expression, more experiments are needed to identify the
exact mechanism underlying the inhibiting effect of bromodomain inhibitors on sclerostin expression.

4. Materials and Methods

4.1. Cell Culture: Cell Lines

The IDG-SW3 mouse cell line was a kind gift from Prof. Lynda Bonewald (Kansas, MO, USA).
IDG-SW3 cells were expanded in proliferation condition at 33 ◦C in α-MEM (Invitrogen: 22571-020,Carlsbad,
CA, USA)) containing 10% heat-inactivated FBS, 100 U/mL of penicillin G, 100 mg/mL of streptomycin
and 2500 U/mL of Interferon-γ (Life Technologies, #PMC4031, Lot 989517A, Carlsbad, CA, USA) [42].
To induce IDG-SW3 towards octeocytes, the cells were plated in osteogenic condition at 37 ◦C with the
supplementation of 50 µg/mL of ascorbic acid and 4 mM β-glycerophosphate in the absence of Interferon-γ.
Collagen-coated plates (0.15 mg/mL (BD #354236, Franklin Lakes, NJ, USA) in 0.02 M acetic acid) were
necessary for both proliferation and differentiation condition. UMR-106 cells (ATCC; Manassas, VA, USA)
were cultured in α-MEM medium supplemented with 10% of heat-inactivated FBS, 100 U/mL of penicillin,
50 U/mL of streptomycin at 37 ◦C.

4.2. Cell Viability Assay

Cell viability was assayed using the WST-1 reagent for colorimetric quantification of cellular
proliferation, viability and cytotoxicity according to manufacturer’s instruction (Roche Diagnostics,
Risch-Rotkreuz, Switzerland). In brief: cells were seeded in 96 well plates and incubated for 24 h,
followed by stimulation with NMP (#328634, Sigma-Aldrich, Steinheim, Germany) or JQ1 (#27400,
BPS Bioscience, San Diego, IL, USA) as indicated in the figures. WST-1 substrate (1/10th of the total
volume = 10 µL) was added to each well and cells were incubated for 2 h. Colorimetric change was
measured at 450 nm with 630 nm as a reference.

4.3. Quantitative Real-Time RT-PCR

Total RNA was isolated using the RNeasy mini kit (Qiagen, Hilden, Germany) and mRNA
was reverse-transcribed into cDNA using the iScript Reverse Transcrition supermix for RT-qPCR
(Bio-Rad, Hercules, CA, USA). The resulting cDNA was then used for real-time PCR using the iQ SYBR
Green supermix and the myiQ iCycler (both from Bio-Rad). Extension temperature for all primers
used was 60 ◦C. The mouse specific primer pairs to assess GAPDH (Glyceraldehyde-3-phosphate
dehydrogenase) and SOST in samples from the cell line: IDG-SW3 were purchased from
Microsynth (Balgach, Switzerland) (GAPDH forward: 5′-AGGTCGGTGTGAACGGATTTG-3′,
GAPDH reverse: 5′-TGTAGACCATGTAGTTGAGGTCA-3′; amplicon length 122 bp; SOST
forward: 5′-AGCCTTCAGGAATGATGCCAC-3′, SOST reverse: 5′-CTTTGGCGTCATAGGGATGGT-3′,
amplicon length 123 bp). The rat specific primers (QT00199633 for GAPDH, amplicon length 149
bp and QT00418558 for SOST, amplicon length 108 bp) to assess UMR-106 mRNA were purchased
from Qiagen.

4.4. Western Blot

At collection time, cells were washed with ice cold PBS and frozen at−80 ◦C until further analysis.
Cells were then lysed for 15 min on ice in lysis buffer (Promega, Madison, WI, USA) supplemented with
a cocktail of protease and phosphatase inhibitor (Fisher Scientific, Waltham, MA, USA). Collected cell
lysate was centrifuged at 14,000× g for 15 min and supernatants were transferred to new Eppendorf
tubes. Protein concentration was measured using the BCA (BiCinchoninic acid Assay) assay (Thermo
Fisher, Waltham, MA, USA). Equal amounts of proteins were run on a 4–20% precast polyacrylamide
gel and transferred to a PVDF (Polyvinylidene difluoride) membrane using the precast Trans-Blot
turbo stack (both Bio-Rad). Proteins were detected by anti-sclerostin antibody (1:500, R&D AF1589,
Minneapolis, MN, USA) and anti GAPDH antibody as loading control (1:1000, Cell signaling D16H11,
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Danvers, MA, USA), followed by appropriate secondary antibodies coupled to horseradish peroxidase
(HRP). After incubation with the electrochemiluminescence (ECL) substrate, signal was detected using
a ChemiDoc imaging system (Bio-Rad).

4.5. Osteoporosis Rat Model

Healthy female Sprague–Dawley rats were obtained from Charles River laboratories. The rats
were adapted to laboratory environment for 2 weeks before the experiment. A total of 30 animals were
used for either bilateral laparotomy (Sham, n = 10) or bilateral ovariectomy (OVX, n = 20). One week
after recovering from surgery, the OVX rats were divided into 2 groups: OVX receiving vehicle (OVX
Veh, n = 10) and OVX receiving NMP (OVX NMP, n = 10). Treatment via intraperitoneal injection was
started 1 week after OVX and lasted for 15 weeks. The administered dose was weekly adjusted to
animal body weight. Femurs were collected immediately following sacrifice and adherent soft tissue
was removed. Bone samples were fixed, decalcified (10% EDTA at 37 ◦C) and embedded in paraffin
(Sophistolab AG, Muttenz, Switzerland) for further analysis. All animal procedures met the ARRIVE
guidelines were approved by the Animal Ethics Committee of the local authorities (Veterinäramt,
Canton Zurich, project codes: 40/2012 (approved on the 2 April 2012) and 068/2015 (approved on the
31 July 2015), and follow the EU Directive 2010/63/EU for animal experiments.

4.6. Immunohistochemistry (IHC)

Paraffin sections from long bones were de-paraffinized and rehydrated in a series of decreasing
percentage of Ethanol. After permeabilization with 0.1% NP-40 in PBS for 10 min, sections were blocked
in TBS supplemented with 10% normal serum and 1% BSA for 2 h at room temperature in a humidified
chamber. Anti sclerostin antibody (Abcam ab63097, 1:25, Cambridge, UK) was added directly onto
the sections in TBS containing 1% BSA and incubated at 4 ◦C overnight (negative controls did not
contain primary antibody). After washing off the primary antibody in TBS + 0.025% Triton, peroxide
background signal is reduced by an incubation in 0.3% H2O2 in TBS for 15 min. HRP conjugated
secondary antibodies are incubated for 1 h at room temperature in TBS + 1% BSA (Abcam ab97085,
1:200) and signal is detected with 3,3′-diaminobenzidine tetrahydrochlordie (DAB) for 5–10 min.
Slides were counterstained using light green reagent, dehydrated in a series of increasing ethanol
concentration, fixed in Xylol and mounted with Eukitt. Images were captured using an automated slide
scanner form the Center of light microscopy at the University of Zürich (ZMB). Signal quantification
was performed in a blinded manner.

4.7. Statistical Analysis

Experiments were performed in at least three independent experiments. Results are expressed as
mean ± Standard Deviation (SD). Statistical analysis was performed using the Student’s t test and
considered significant with p < 0.05 (*).
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ALP Alkaline phosphatase
BCA BiCinchoninic acid Assay
BMP Bone morphogenetic protein
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bp Base pair
BRD2 Bromodomain-containing protein 2
COX Cyclooxygenase
FDA Food and Drug Administration (USA)
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GFP Green fluorescent protein

JQ1
(6S)-4-(4-Chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine-6-acetic
acid 1,1-dimethylethyl ester

LEP Leptin
NMP N-methyl pyrrolidone
NO Nitric oxide
Osx Osterix
OVX Ovariectomy
PGE Prostaglandine
PTH Parathyroid Hormone
PVDF Polyvinylidene difluoride
RANKL Receptor Activator of Nuclear factor Kappa-B Ligand
SOST Sclerosteosis gene
WST (4-[3-(4-Iodophenyl)-2-(4-nitro-phenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate)

References

1. NIH, Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [CrossRef]
2. Foundation, I.O. What Is Osteoporosis. Available online: https://www.iofbonehealth.org/epidemiology

(accessed on 26 August 2018).
3. Reginster, J.Y.; Burlet, N. Osteoporosis: A still increasing prevalence. Bone 2006, 38, S4–S9. [CrossRef]

[PubMed]
4. Kress, B.C.; Mizrahi, I.A. Monitoring antiosteoporotic treatment of postmenopausal women using

biochemical markers of bone turnover. Drugs Today 1999, 35, 181–185. [CrossRef] [PubMed]
5. Qin, L.; Raggatt, L.J.; Partridge, N.C. Parathyroid hormone: A double-edged sword for bone metabolism.

Trends Endocrinol. Metab. 2004, 15, 60–65. [CrossRef] [PubMed]
6. Dede, A.D.; Makras, P.; Anastasilakis, A.D. Investigational anabolic agents for the treatment of osteoporosis:

An update on recent developments. Expert Opin. Investig. Drugs 2017, 26, 1137–1144. [CrossRef] [PubMed]
7. Almeida, M.M.; Nani, E.P.; Teixeira, L.N.; Peruzzo, D.C.; Joly, J.C.; Napimoga, M.H.; Martinez, E.F. Strontium

ranelate increases osteoblast activity. Tissue Cell 2016, 48, 183–188. [CrossRef] [PubMed]
8. Reginster, J.Y.; Brandi, M.L.; Cannata-Andia, J.; Cooper, C.; Cortet, B.; Feron, J.M.; Genant, H.; Palacios, S.;

Ringe, J.D.; Rizzoli, R. The position of strontium ranelate in today’s management of osteoporosis.
Osteoporos. Int. 2015, 26, 1667–1671. [CrossRef] [PubMed]

9. Ghayor, C.; Correro, R.M.; Lange, K.; Karfeld-Sulzer, L.S.; Gratz, K.W.; Weber, F.E. Inhibition of osteoclast
differentiation and bone resorption by N-methyl pyrrolidone. J. Biol. Chem. 2011, 286, 24458–24466.
[CrossRef] [PubMed]

10. Miguel, B.S.; Ghayor, C.; Ehrbar, M.; Jung, R.E.; Zwahlen, R.A.; Hortschansky, P.; Schmoekel, H.G.; Weber, F.E.
N-methyl pyrrolidone as a potent bone morphogenetic protein enhancer for bone tissue regeneration.
Tissue Eng. Part A 2009, 15, 2955–2963. [CrossRef] [PubMed]

11. Gjoksi, B.; Ghayor, C.; Siegenthaler, B.; Ruangsawasdi, N.; Zenobi-Wong, M.; Weber, F.E. The epigenetically
active small chemical N-methyl pyrrolidone (NMP) prevents estrogen depletion induced osteoporosis. Bone
2015, 78, 114–121. [CrossRef] [PubMed]

12. Gong, F.; Chiu, L.Y.; Miller, K.M. Acetylation reader proteins: Linking acetylation signaling to genome
maintenance and cancer. PLoS Genet. 2016, 12, e1006272. [CrossRef] [PubMed]

13. Devaiah, B.N.; Gegonne, A.; Singer, D.S. Bromodomain 4: A cellular Swiss army knife. J. Leukoc. Biol. 2016,
100, 679–686. [CrossRef] [PubMed]

14. Mirguet, O.; Lamotte, Y.; Chung, C.W.; Bamborough, P.; Delannee, D.; Bouillot, A.; Gellibert, F.; Krysa, G.; Lewis, A.;
Witherington, J.; et al. Naphthyridines as novel BET family bromodomain inhibitors. ChemMedChem 2014, 9,
580–589. [CrossRef] [PubMed]

http://dx.doi.org/10.1001/jama.285.6.785
https://www.iofbonehealth.org/epidemiology
http://dx.doi.org/10.1016/j.bone.2005.11.024
http://www.ncbi.nlm.nih.gov/pubmed/16455317
http://dx.doi.org/10.1358/dot.1999.35.3.533847
http://www.ncbi.nlm.nih.gov/pubmed/12973383
http://dx.doi.org/10.1016/j.tem.2004.01.006
http://www.ncbi.nlm.nih.gov/pubmed/15036251
http://dx.doi.org/10.1080/13543784.2017.1371136
http://www.ncbi.nlm.nih.gov/pubmed/28836858
http://dx.doi.org/10.1016/j.tice.2016.03.009
http://www.ncbi.nlm.nih.gov/pubmed/27157549
http://dx.doi.org/10.1007/s00198-015-3109-y
http://www.ncbi.nlm.nih.gov/pubmed/25868510
http://dx.doi.org/10.1074/jbc.M111.223297
http://www.ncbi.nlm.nih.gov/pubmed/21613210
http://dx.doi.org/10.1089/ten.tea.2009.0009
http://www.ncbi.nlm.nih.gov/pubmed/19320543
http://dx.doi.org/10.1016/j.bone.2015.05.004
http://www.ncbi.nlm.nih.gov/pubmed/25959414
http://dx.doi.org/10.1371/journal.pgen.1006272
http://www.ncbi.nlm.nih.gov/pubmed/27631103
http://dx.doi.org/10.1189/jlb.2RI0616-250R
http://www.ncbi.nlm.nih.gov/pubmed/27450555
http://dx.doi.org/10.1002/cmdc.201300259
http://www.ncbi.nlm.nih.gov/pubmed/24000170


Int. J. Mol. Sci. 2018, 19, 3332 12 of 14

15. Philpott, M.; Yang, J.; Tumber, T.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud, S.; Keates, T.;
Felletar, I.; Ciulli, A.; et al. Bromodomain-peptide displacement assays for interactome mapping and
inhibitor discovery. Mol. Biosyst. 2011, 7, 2899–2908. [CrossRef] [PubMed]

16. Shortt, J.; Hsu, A.K.; Martin, B.P.; Doggett, K.; Matthews, G.M.; Doyle, M.A.; Ellul, J.; Jockel, T.E.;
Andrews, D.M.; Hogg, S.J.; et al. The drug vehicle and solvent N-methyl pyrrolidone is an immunomodulator
and antimyeloma compound. Cell Rep. 2014, 7, 1009–1019. [CrossRef] [PubMed]

17. Bonewald, L.F. The amazing osteocyte. J. Bone Min. Res. 2011, 26, 229–238. [CrossRef] [PubMed]
18. Franz-Odendaal, T.A.; Hall, B.K.; Witten, P.E. Buried alive: How osteoblasts become osteocytes. Dev. Dyn.

2006, 235, 176–190. [CrossRef] [PubMed]
19. Manolagas, S.C. Birth and death of bone cells: Basic regulatory mechanisms and implications for the

pathogenesis and treatment of osteoporosis. Endocr. Rev. 2000, 21, 115–137. [CrossRef] [PubMed]
20. Mc Garrigle, M.J.; Mullen, C.A.; Haugh, M.G.; Voisin, M.C.; McNamara, L.M. Osteocyte differentiation and

the formation of an interconnected cellular network in vitro. Eur. Cells Mater. 2016, 31, 323–340. [CrossRef]
21. Pajevic, P.D. Regulation of bone resorption and mineral homeostasis by osteocytes. IBMS BoneKEy 2009, 6,

63–70. [CrossRef]
22. Palazzini, S.; Palumbo, C.; Ferretti, M.; Marotti, G. Stromal cell structure and relationships in perimedullary

spaces of chick embryo shaft bones. Anat. Embryol. 1998, 197, 349–357. [CrossRef] [PubMed]
23. Knothe Tate, M.L.; Adamson, J.R.; Tami, A.E.; Bauer, T.W. The osteocyte. Int. J. Biochem. Cell Biol. 2004, 36,

1–8. [CrossRef]
24. Heino, T.J.; Hentunen, T.A.; Vaananen, H.K. Osteocytes inhibit osteoclastic bone resorption through

transforming growth factor-β: Enhancement by estrogen. J. Cell. Biochem. 2002, 85, 185–197. [CrossRef]
[PubMed]

25. Zhao, S.; Zhang, Y.K.; Harris, S.; Ahuja, S.S.; Bonewald, L.F. MLO-Y4 osteocyte-like cells support osteoclast
formation and activation. J. Bone Min. Res. 2002, 17, 2068–2079. [CrossRef] [PubMed]

26. Bonnet, N.; Standley, K.N.; Bianchi, E.N.; Stadelmann, V.; Foti, M.; Conway, S.J.; Ferrari, S.L. The matricellular
protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical
activity. J. Biol. Chem. 2009, 284, 35939–35950. [CrossRef] [PubMed]

27. Grimston, S.K.; Watkins, M.P.; Brodt, M.D.; Silva, M.J.; Civitelli, R. Enhanced periosteal and endocortical
responses to axial tibial compression loading in conditional connexin43 deficient mice. PLoS ONE 2012, 7,
e44222. [CrossRef] [PubMed]

28. Lara-Castillo, N.; Kim-Weroha, N.A.; Kamel, M.A.; Javaheri, B.; Ellies, D.L.; Krumlauf, R.E.; Thiagarajan, G.;
Johnson, M.L. In vivo mechanical loading rapidly activates beta-catenin signaling in osteocytes through
a prostaglandin mediated mechanism. Bone 2015, 76, 58–66. [CrossRef] [PubMed]

29. Zaman, G.; Saxon, L.K.; Sunters, A.; Hilton, H.; Underhill, P.; Williams, D.; Price, J.S.; Lanyon, L.E.
Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen
receptor alpha and disuse. Bone 2010, 46, 628–642. [CrossRef] [PubMed]

30. Poole, K.E.; van Bezooijen, R.L.; Loveridge, N.; Hamersma, H.; Papapoulos, S.E.; Lowik, C.W.; Reeve, J.
Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005, 19,
1842–1844. [CrossRef] [PubMed]

31. Robling, A.G.; Niziolek, P.J.; Baldridge, L.A.; Condon, K.W.; Allen, M.R.; Alam, I.; Mantila, S.M.;
Gluhak-Heinrich, J.; Bellido, T.M.; Harris, S.E.; et al. Mechanical stimulation of bone in vivo reduces
osteocyte expression of SOST/sclerostin. J. Biol. Chem. 2008, 283, 5866–5875. [CrossRef] [PubMed]

32. Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and
antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [CrossRef] [PubMed]

33. Flanagan, B.; Nichols, G., Jr. Bone matrix turnover and balance in vitro. II. The effects of aging.
J. Clin. Investig. 1969, 48, 607–612. [CrossRef] [PubMed]

34. Mirza, F.S.; Padhi, I.D.; Raisz, L.G.; Lorenzo, J.A. Serum sclerostin levels negatively correlate with parathyroid
hormone levels and free estrogen index in postmenopausal women. J. Clin. Endocrinol. Metab. 2010, 95,
1991–1997. [CrossRef] [PubMed]

35. Modder, U.I.; Clowes, J.A.; Hoey, K.; Peterson, J.M.; McCready, L.; Oursler, M.J.; Riggs, B.L.; Khosla, S.
Regulation of circulating sclerostin levels by sex steroids in women and in men. J. Bone Min. Res. 2011, 26,
27–34. [CrossRef] [PubMed]

http://dx.doi.org/10.1039/c1mb05099k
http://www.ncbi.nlm.nih.gov/pubmed/21804994
http://dx.doi.org/10.1016/j.celrep.2014.04.008
http://www.ncbi.nlm.nih.gov/pubmed/24813887
http://dx.doi.org/10.1002/jbmr.320
http://www.ncbi.nlm.nih.gov/pubmed/21254230
http://dx.doi.org/10.1002/dvdy.20603
http://www.ncbi.nlm.nih.gov/pubmed/16258960
http://dx.doi.org/10.1210/er.21.2.115
http://www.ncbi.nlm.nih.gov/pubmed/10782361
http://dx.doi.org/10.22203/eCM.v031a21
http://dx.doi.org/10.1138/20090363
http://dx.doi.org/10.1007/s004290050145
http://www.ncbi.nlm.nih.gov/pubmed/9623668
http://dx.doi.org/10.1016/S1357-2725(03)00241-3
http://dx.doi.org/10.1002/jcb.10109
http://www.ncbi.nlm.nih.gov/pubmed/11891862
http://dx.doi.org/10.1359/jbmr.2002.17.11.2068
http://www.ncbi.nlm.nih.gov/pubmed/12412815
http://dx.doi.org/10.1074/jbc.M109.060335
http://www.ncbi.nlm.nih.gov/pubmed/19837663
http://dx.doi.org/10.1371/journal.pone.0044222
http://www.ncbi.nlm.nih.gov/pubmed/22970183
http://dx.doi.org/10.1016/j.bone.2015.03.019
http://www.ncbi.nlm.nih.gov/pubmed/25836764
http://dx.doi.org/10.1016/j.bone.2009.10.021
http://www.ncbi.nlm.nih.gov/pubmed/19857613
http://dx.doi.org/10.1096/fj.05-4221fje
http://www.ncbi.nlm.nih.gov/pubmed/16123173
http://dx.doi.org/10.1074/jbc.M705092200
http://www.ncbi.nlm.nih.gov/pubmed/18089564
http://dx.doi.org/10.1074/jbc.M413274200
http://www.ncbi.nlm.nih.gov/pubmed/15778503
http://dx.doi.org/10.1172/JCI106019
http://www.ncbi.nlm.nih.gov/pubmed/5774103
http://dx.doi.org/10.1210/jc.2009-2283
http://www.ncbi.nlm.nih.gov/pubmed/20156921
http://dx.doi.org/10.1002/jbmr.128
http://www.ncbi.nlm.nih.gov/pubmed/20499362


Int. J. Mol. Sci. 2018, 19, 3332 13 of 14

36. Modder, U.I.; Roforth, M.M.; Hoey, K.; McCready, L.K.; Peterson, J.M.; Monroe, D.G.; Oursler, M.J.; Khosla, S.
Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal
women. Bone 2011, 49, 202–207. [CrossRef] [PubMed]

37. Boschert, V.; Frisch, C.; Back, J.W.; van Pee, K.; Weidauer, S.E.; Muth, E.M.; Schmieder, P.; Beerbaum, M.;
Knappik, A.; Timmerman, P.; et al. The sclerostin-neutralizing antibody AbD09097 recognizes an epitope
adjacent to sclerostin’s binding site for the Wnt co-receptor LRP6. Open Biol. 2016, 6, 160120. [CrossRef]
[PubMed]

38. Costa, A.G.; Bilezikian, J.P.; Lewiecki, E.M. Update on romosozumab: A humanized monoclonal antibody to
sclerostin. Expert Opin. Biol. Ther. 2014, 14, 697–707. [CrossRef] [PubMed]

39. Recker, R.R.; Benson, C.T.; Matsumoto, T.; Bolognese, M.A.; Robins, D.A.; Alam, J.; Chiang, A.Y.; Hu, L.;
Krege, J.H.; Sowa, H.; et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin
antibody, in postmenopausal women with low bone mineral density. J. Bone Min. Res. 2015, 30, 216–224.
[CrossRef] [PubMed]

40. Kim, R.Y.; Yang, H.J.; Song, Y.M.; Kim, I.S.; Hwang, S.J. Estrogen modulates bone morphogenetic
protein-induced sclerostin expression through the Wnt signaling pathway. Tissue Eng. Part A 2015, 21,
2076–2088. [CrossRef] [PubMed]

41. Sutherland, M.K.; Geoghegan, J.C.; Yu, C.; Winkler, D.G.; Latham, J.A. Unique regulation of SOST,
the sclerosteosis gene, by BMPs and steroid hormones in human osteoblasts. Bone 2004, 35, 448–454.
[CrossRef] [PubMed]

42. Woo, S.M.; Rosser, J.; Dusevich, V.; Kalajzic, I.; Bonewald, L.F. Cell line IDG-SW3 replicates osteoblast-to-late-
osteocyte differentiation in vitro and accelerates bone formation in vivo. J. Bone Min. Res. 2011, 26, 2634–2646.
[CrossRef] [PubMed]

43. Filippakopoulos, P.; Knapp, S. Targeting bromodomains: Epigenetic readers of lysine acetylation.
Nat. Rev. Drug Discov. 2014, 13, 337. [CrossRef] [PubMed]

44. Galea, G.L.; Lanyon, L.E.; Price, J.S. Sclerostin’s role in bone’s adaptive response to mechanical loading. Bone
2016, 96, 38–44. [CrossRef] [PubMed]

45. Bandopadhayay, P.; Bergthold, G.; Nguyen, B.; Schubert, S.; Gholamin, S.; Tang, Y.; Bolin, S.; Schumacher, S.E.;
Zeid, R.; Masoud, S.; et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin. Cancer Res.
2014, 20, 912–925. [CrossRef] [PubMed]

46. Saenz, D.T.; Fiskus, W.; Manshouri, T.; Rajapakshe, K.; Krieger, S.; Sun, B.; Mill, C.P.; DiNardo, C.;
Pemmaraju, N.; Kadia, T.; et al. BET protein bromodomain inhibitor-based combinations are highly active
against post-myeloproliferative neoplasm secondary AML cells. Leukemia 2016, 31, 678. [CrossRef] [PubMed]

47. Wang, L.; Wu, X.; Huang, P.; Lv, Z.; Qi, Y.; Wei, X.; Yang, P.; Zhang, F. JQ1, a small molecule inhibitor of
BRD4, suppresses cell growth and invasion in oral squamous cell carcinoma. Oncol. Rep. 2016, 36, 1989–1996.
[CrossRef] [PubMed]

48. Delgado-Calle, J.; Sanudo, C.; Bolado, A.; Fernandez, A.F.; Arozamena, J.; Pascual-Carra, M.A.; Rodriguez-Rey, J.C.;
Fraga, M.F.; Bonewald, L.; Riancho, J.A. DNA methylation contributes to the regulation of sclerostin expression in
human osteocytes. J. Bone Min. Res. 2012, 27, 926–937. [CrossRef] [PubMed]

49. Hannon, R.; Blumsohn, A.; Naylor, K.; Eastell, R. Response of biochemical markers of bone turnover to
hormone replacement therapy: Impact of biological variability. J. Bone Min. Res. 1998, 13, 1124–1133.
[CrossRef] [PubMed]

50. Morse, A.; McDonald, M.M.; Kelly, N.H.; Melville, K.M.; Schindeler, A.; Kramer, I.; Kneissel, M.;
van der Meulen, M.C.; Little, D.G. Mechanical load increases in bone formation via a sclerostin-independent
pathway. J. Bone Min. Res. 2014, 29, 2456–2467. [CrossRef] [PubMed]

51. Tatsumi, S.; Ishii, K.; Amizuka, N.; Li, M.; Kobayashi, T.; Kohno, K.; Ito, M.; Takeshita, S.; Ikeda, K. Targeted
ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007, 5, 464–475.
[CrossRef] [PubMed]

52. Sevetson, B.; Taylor, S.; Pan, Y. Cbfa1/RUNX2 directs specific expression of the sclerosteosis gene (SOST).
J. Biol. Chem. 2004, 279, 13849–13858. [CrossRef] [PubMed]

53. Loots, G.G.; Kneissel, M.; Keller, H.; Baptist, M.; Chang, J.; Collette, N.M.; Ovcharenko, D.; Plajzer-Frick, I.;
Rubin, E.M. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease.
Genome Res. 2005, 15, 928–935. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.bone.2011.04.015
http://www.ncbi.nlm.nih.gov/pubmed/21550429
http://dx.doi.org/10.1098/rsob.160120
http://www.ncbi.nlm.nih.gov/pubmed/27558933
http://dx.doi.org/10.1517/14712598.2014.895808
http://www.ncbi.nlm.nih.gov/pubmed/24665957
http://dx.doi.org/10.1002/jbmr.2351
http://www.ncbi.nlm.nih.gov/pubmed/25196993
http://dx.doi.org/10.1089/ten.tea.2014.0585
http://www.ncbi.nlm.nih.gov/pubmed/25837159
http://dx.doi.org/10.1016/j.bone.2004.04.019
http://www.ncbi.nlm.nih.gov/pubmed/15268896
http://dx.doi.org/10.1002/jbmr.465
http://www.ncbi.nlm.nih.gov/pubmed/21735478
http://dx.doi.org/10.1038/nrd4286
http://www.ncbi.nlm.nih.gov/pubmed/24751816
http://dx.doi.org/10.1016/j.bone.2016.10.008
http://www.ncbi.nlm.nih.gov/pubmed/27742499
http://dx.doi.org/10.1158/1078-0432.CCR-13-2281
http://www.ncbi.nlm.nih.gov/pubmed/24297863
http://dx.doi.org/10.1038/leu.2016.260
http://www.ncbi.nlm.nih.gov/pubmed/27677740
http://dx.doi.org/10.3892/or.2016.5037
http://www.ncbi.nlm.nih.gov/pubmed/27573714
http://dx.doi.org/10.1002/jbmr.1491
http://www.ncbi.nlm.nih.gov/pubmed/22162201
http://dx.doi.org/10.1359/jbmr.1998.13.7.1124
http://www.ncbi.nlm.nih.gov/pubmed/9661076
http://dx.doi.org/10.1002/jbmr.2278
http://www.ncbi.nlm.nih.gov/pubmed/24821585
http://dx.doi.org/10.1016/j.cmet.2007.05.001
http://www.ncbi.nlm.nih.gov/pubmed/17550781
http://dx.doi.org/10.1074/jbc.M306249200
http://www.ncbi.nlm.nih.gov/pubmed/14739291
http://dx.doi.org/10.1101/gr.3437105
http://www.ncbi.nlm.nih.gov/pubmed/15965026


Int. J. Mol. Sci. 2018, 19, 3332 14 of 14

54. Weivoda, M.M.; Oursler, M.J. Developments in sclerostin biology: Regulation of gene expression,
mechanisms of action, and physiological functions. Curr. Osteoporos. Rep. 2014, 12, 107–114. [CrossRef]
[PubMed]

55. Dallas, S.L.; Bonewald, L.F. Dynamics of the transition from osteoblast to osteocyte. Ann. N. Y. Acad. Sci.
2010, 1192, 437–443. [CrossRef] [PubMed]

56. Baertschi, S.; Baur, N.; Lueders-Lefevre, V.; Voshol, J.; Keller, H. Class I and IIa histone deacetylases have
opposite effects on sclerostin gene regulation. J. Biol. Chem. 2014, 289, 24995–25009. [CrossRef] [PubMed]

57. Imhof, A.; Yang, X.J.; Ogryzko, V.V.; Nakatani, Y.; Wolffe, A.P.; Ge, H. Acetylation of general transcription
factors by histone acetyltransferases. Curr. Biol. 1997, 7, 689–692. [CrossRef]

58. Kramer, I.; Baertschi, S.; Halleux, C.; Keller, H.; Kneissel, M. MEF2C deletion in osteocytes results in increased
bone mass. J. Bone Min. Res. 2012, 27, 360–373. [CrossRef] [PubMed]

59. Leupin, O.; Kramer, I.; Collette, N.M.; Loots, G.G.; Natt, F.; Kneissel, M.; Keller, H. Control of the SOST
bone enhancer by PTH using MEF2 transcription factors. J. Bone Min. Res. 2007, 22, 1957–1967. [CrossRef]
[PubMed]

60. Wein, M.N.; Spatz, J.; Nishimori, S.; Doench, J.; Root, D.; Babij, P.; Nagano, K.; Baron, R.; Brooks, D.;
Bouxsein, M.; et al. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J. Bone Min. Res.
2015, 30, 400–411. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11914-014-0188-1
http://www.ncbi.nlm.nih.gov/pubmed/24477413
http://dx.doi.org/10.1111/j.1749-6632.2009.05246.x
http://www.ncbi.nlm.nih.gov/pubmed/20392270
http://dx.doi.org/10.1074/jbc.M114.564997
http://www.ncbi.nlm.nih.gov/pubmed/25012661
http://dx.doi.org/10.1016/S0960-9822(06)00296-X
http://dx.doi.org/10.1002/jbmr.1492
http://www.ncbi.nlm.nih.gov/pubmed/22161640
http://dx.doi.org/10.1359/jbmr.070804
http://www.ncbi.nlm.nih.gov/pubmed/17696759
http://dx.doi.org/10.1002/jbmr.2381
http://www.ncbi.nlm.nih.gov/pubmed/25271055
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	NMP Has No Toxic Effect on Osteocyte Like Cells 
	NMP Decreases Sclerostin Expression in Osteocyte Like Cells 
	NMP Prevents BMP-2 Induced Increase in Sclerostin Expression 
	Increased Sclerostin Expression in Osteoporosis Induced Animals Can Be Prevented by NMP 
	Bromodomain Inhibition Decreases Sclerostin Expression 

	Discussion 
	Materials and Methods 
	Cell Culture: Cell Lines 
	Cell Viability Assay 
	Quantitative Real-Time RT-PCR 
	Western Blot 
	Osteoporosis Rat Model 
	Immunohistochemistry (IHC) 
	Statistical Analysis 

	References

