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dependent changes in rat lacrimal gland anti-oxidant and

vesicular related protein expression profiles
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Purpose: Anti-oxidation and exocytosis are important for maintaining exocrine tissue homeostasis. During aging,
functional and structural alterations occur in the lacrimal gland (LG), including oxidative damage to proteins, lipids, and
DNA. The aims of the present study were to determine in the aging LG: a) the effects of aging on LG structure and secretory
activity and b) changes in the expression of oxidative stress markers.

Methods: To address these goals, tear secretion composition and corneal impression cytology were compared between
male Wistar rats of 2 (control) and 24 (aged) months. LG morphology and the expression levels of vitamin E and
malonaldehyde (MDA) were evaluated to determine the anti-oxidant activity and lipid peroxidation, respectively. RT—
PCR and western blot analysis were used for the analysis of Ras related in brain GTPase protein (Rab) and soluble N-
ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins of the secretory machinery (i.e.; Rab 3d,
Rab 27, vesicle-associated membrane protein-2 (Vamp-2), and syntaxin).

Results: Histological analysis of aged rats revealed a higher frequency of corneal epithelia metaplasia. In the acinar cells,
organelles underwent degeneration, and lipofucsin-like material accumulated in the cytoplasm along with declines in the
anti-oxidant marker vitamin E. Rab3d and Rab27b mRNA levels fell along with Rab3d protein expression, whereas
syntaxin levels increased.

Conclusions: These findings indicate that exocytotic and anti-oxidant mechanisms become impaired with age in the rat
LG. In parallel with these structural alterations, functional declines may contribute to the pathophysiology caused by tear
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film modification in dry eye disease.

During aging, some harmful chemicals accumulate that
can disrupt cell and tissue function. Such pathophysiological
changes have been suggested to increase the possibility of
illness and premature death [1]. The visual system is one of
those most affected by aging. Clinical and experimental
studies have shown that aging impairs tear secretion and
induces changes in the lacrimal gland (LG) function and
ocular surface properties [2]. However, there is limited
understanding of the underlying mechanisms accounting for
these changes.

In humans, the aging LG is at an increased risk of
periductal fibrosis, infiltrated atrophy to acinar cells, and
inflammation [3]. As shown in a rat experimental aging
model, after 12 months, acinar cells synthesize less lacrimal
film proteins, such as lipocalin, lysozyme, peroxidase,
lactoferrin, betalisin, and immunoglobulin [4]. In parallel,
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there is an impairment of metabolic and neurogenic processes,
which are critical for the function of several organs [5,6].
Other studies identified declines in insulin secretion and
parasympathetic signaling, in parallel with an increase in
hormone resistance and the accumulation of advanced
glycation end products in the aging LG [7-9]. Moreover, those
signaling pathway changes associated with age-related
increases in oxidative stress have been detected in aging LG
and are thought to contribute to tear dysfunction and dry eye
syndrome [8,10].

The increases in age-related LG oxidative stress also stem
from declines in oxidative stress scavengers and defenders, in
addition to falls in peroxidase [8]. Those agents include
enzymatic and non-enzymatic anti-oxidants, such as beta
carotene, vitamin C, vitamin E, and glutathione [11].The liver
plays a key regulatory role in storage and metabolism of anti-
oxidants for the whole body. However, their activities are not
affected by aging [12]. Among those anti-oxidants, vitamin E
is of special interest because it is available to be administered
systemically with therapeutic purpose and is being advocated
for treatment of dry eye secondary to DM and also for age-
related diseases [13,14].
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Another predictor of age-related LG changes is the
induction of exocytotic defects. This is evident since in non-
obese diabetic mice (NOD), and Sjogren’s syndrome, changes
occurred in secretory vesicles and exocytotic pathways as
early as the first month. As a consequence, exocrine glands
and tear function became impaired with age [5,15,16].

Exocytosis of the components of tears from the LG
depends on a mechanism that is tightly controlled by local and
systemic receptor-mediated signaling pathways. They include
responses to cholinergic and adrenergic agonists that involve
cAMP-mediated entry of calcium in acinar cells [17-19].
Intracellular vesicular transport and exocytosis are regulated
by cytosolic protein families, called Rab GTPases and
receptors of synaptic vesicles (SNAREs). The former are
responsible for tethering vesicles to the target site, whereas in
neural, endocrine, and exocrine tissues, the latter ensures their
secretion across plasma membranes [20-23].

The SNARE and Rab proteins recently described in LG
include vesicle-associated membrane protein-2 (Vamp-2),
Ras related in brain GTPase protein-3 (Rab-3), and syntaxin.
They are responsible for the docking of molecules and driving
the fusion of vesicles with the plasma membrane [16,24]. The
vesicular protein contents are constitutively released into the
tears.

As both anti-oxidative and exocytotic functions are
essential for preserving LG homeostasis, impairment of
SNARE and secretory activity by age-related increases in
reactive oxygen species can lead to ocular surface disease
[25,26]. However, it is unclear in the rat LG if age-related
increases in oxidative stress byproducts underlie declines in
vesicular secretion.

We describe here in the rat LG the association between
age-related changes in expression levels of oxidative damage
markers and Rab and SNARE family proteins. These
alterations are correlated with LG secretory vesicle structural
modifications and ocular surface changes.

METHODS

Animal model: Two- and 24-month-old male Wistar rats
obtained from the Animal Breeding Center of the Faculty of
Medicine of Ribeirdo Preto, SP, Brazil were used after
approval by the university’s committee on animal
experimentation. The procedures adhered to the Principles of
Laboratory Animal Care (NIH publication no. 85-23).

Anesthesia with ketamine (5 mg/100 g b.w.; Unido
Quimica Faramacéutica S.A, Embu-Guagu, SP, Brazil) and
xylazine (2 mg/100 g b.w.; Laboratério Callier S.A.,
Barcelona, Spain) was used for comparative studies between
both groups.

Bodyweight was recorded and tear secretion was

measured in the right eye of rats in both groups using a
modified Schirmer test (Ophthalmos, Sdo Paulo, SP, Brazil),
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with a I-mm width and 20-mm-long strip of filter paper placed
in the conjunctival fornix of the eye for 5 min [27].
Impression cytology: Cornea epithelial cells were collected
from the temporal area with 45-pum filter paper (Millipore,
Billerica, MA), fixed with 70% ethanol glacial ascetic acid
70% and formalin, stained with periodic acid-Schiff (PAS)
and hematoxylin, and then transferred to microscope slides
(n=11 in control group and 12 in aging group). Squamous
metaplasia of epithelial cells was categorized in a masked
fashion according to a four-stage classification scheme from
0 (normal morphology) to 3 (squamous metaplasia). The
grading is based on the appearance of cytoplasm, presence and
size of nuclei, as follows: stage 0 (for normal cell number,
round morphology, and mucous staining), stage 1 (lower cell
number and mucous staining), stage 2 (lower cell number,
reduced size of nuclei, square shape of cells), and stage 3
(squamous metaplasia, showing lower cell number, higher
cytoplasmic volume, and pycnotic or absent nuclei) [28]. The
images were analyzed photographic documentation was done
using a light microscope (Olympus BX40; Olympus
Corporation, Tokyo, Japan) and a digital camera (Olympus Q-
color 5; Olympus Corporation).

Tissue collection and storage: Livers and LG collected (n=5/
group) were homogenized for biochemical and western blot
analysis. RNA from LG (n=5/group) were extracted by Trizol
after homogenization (Invitrogen, San Diego, CA), and stored
at —80 °C for later use.

LG samples for histology were collected, sectioned in the
middle, and half were frozen in Optimal Cutting Temperature
(OCT) compound (Sakura Fine Tek Inc., Torrance, CA), and
the other half of the samples were fixed in 2% glutaraldehyde
and 2% paraformaldehyde (EM Sciences, Hatfield, PA) in 0.1
M phosphate buffer, pH 7.4, for 40 min at room temperature
(RT), for transmission electron microscopy (TEM).

LG histology: OCT-embedded slides containing the 10th to
the 14th sections of the LG of both groups were submitted for
hematoxylin/eosin (H&E) staining (5 samples per animal,
n=5/group). Digital photos were obtained from the H&E-
stained and non-stained slides (for autofluorescence; Nikon
Eclipse E800; Nikon USA, Melville, NY).

Transmission electron microscopy (TEM): LG tissues (n=5/
group) fixed for EM were rinsed in 0.1 M phosphate buffer,
dehydrated through a graded ethanol series, rinsed in acetone,
and embedded in Embed 812 (EM Sciences). Sections (60—70
nm) were cut with a diamond knife and stained for 25 min
each in 2% uranyl acetate and 5 min in Reynolds’ lead citrate.
Sections were examined with EM (Jem 100cx; Jeol, Tokyo,
Japan). Pictures were taken and converted to digital files
(ORCA-HR Amtv542; Hamamatsu, Hamamatsu City, Japan).
Biochemical analysis of oxidative stress and anti-oxidant
markers: Malonaldehyde (MDA) was measured using the
thiobarbituric acid-reactive substances (TBARS) in the LGs
and livers of both groups [29]. Frozen LG and liver samples
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TABLE 1. RT-PCR PARAMETERS FOR SNARE ELEMENTS.

Gene Accession Primer sequence Number of  BP size Annealing
number cycles temperature
Actbh NM 031144 Sense: 5'-agagggaaatcgtgcgtgaca-3’ 33 202 59 °C
Antisense: 5'-cgatagtgatgacctgaccgtca-3'
Rab3D NM_080580 sense: 5'-actgatggtgacaatgatge-3’ 37 340 59 °C
antisense: 5'-acggaagtgaagaaagcaac-3’
Rab27b NM 053459 sense: 5'-cggagctcgagaagactaga-3' 37 225 60 °C
antisense: 5'-ggccaggagtttaatcaggt-3'
Vamp?2 012663 Sense: 5'-gcatctctectaccctttca-3' 34 141 58 °C

Antisense: 5'-tttaggggtctgagggtaca-3'

were homogenized in ice-cold 20% (w/vol) trichloroacetic
acid, gently shaken for 30 min, and centrifuged at 5,000 g
for 10 min. The supernatants (200 pl) were exposed to 0.7%
thiobarbituric acid, heated to 95 °C for 45 min and, after
cooling, absorbance was read at 530 nm in a Spectra Max 250
spectrophotometer against a blank sample (Molecular
Devices, Sunnyvale, CA). TBARS concentration in the
sample was calculated using a MDA calibration curve and
expressed as mM/mg of tissue.

Reduced glutathione (GSH) levels in liver samples of
both groups were determined as follows: frozen liver samples
were homogenized in ice-cold phosphate (100 mM)-EDTA
(1 mM) buffer (pH at 7.5) in a Potter tissue grinder with 4.0 ml
of buffer for LG and liver, respectively. A 4.0-ml aliquot of
the homogenate was removed and added to a tube containing
4.0 ml of deionized water and 1.0 ml of 50% trichloroacetic
acid. After 15 min with occasional shaking, tubes were
centrifuged at 3,000x g for 15 min at RT. A 2.0-ml aliquot of
the supernatant was separated and 4.0 ml of 0.4 M Tris buffer,
pH 8.9 and 0.1 ml of 0.01 DTNB in methanol were added to
it. Optical density was measured at 412 nm 5 min later, against
ablank solution with 0.02 M EDTA in place of the supernatant
(DU 640; Beckman Coulter Inc., Brea, CA). Concentration
was calculated using a standard GSH curve in EDTA (0.02
M). Data are expressed as nM/g of tissue [30].

Vitamin E was measured in LG of control and aged
groups. Analysis was conducted by high-performance liquid
chromatography (HPLC) with a column C-18 type (4,6
Shimpack CLCODSx 25 c¢m; Shimadzu Co. Kyoto, Japan),
daily pay-column 4 mmx1 cm and 2.0 flow of ml/min [31].
Briefly, samples of LG were homogenized with 100% ethanol
and hexane and then centrifuged for 15 min at 1,000x g.
Aliquots of 1.0 ml were dried using nitrogen flow. The dried
residue of each sample was resuspended in the mobile phase
of acetonitrile/methanol/dichloromethane, submitted to
HPLC, and read at 292 nm. Concentrations were calculated
by comparison with standard samples of a-tocopherol and
expressed in pM.

RT-PCR for Rab3d, Rab 27b, and Vamp-2.: Rab3d, Rab 27b,
and Vamp-2 mRNA expression levels were compared in the
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LG of both groups and B-actin (4cth) mRNA was used for
internal normalization. The resulting RNA was quantified by
measuring OD at 260 nm. RNA integrity was evaluated in
6.6% formaldehyde, 1% agarose (Gibco/BRL, Gaithersburg,
MD) gels. Reverse transcriptase, oligo dT priming, and the
Advantage RT-for-PCR kit from Clontech Laboratories Inc.
(Palo Alto, CA) were used for cDNA transcription.

PCR amplification of cDNA was performed with a
GeneAmp PCR System 9700 (Applied Biosystems, Foster
City, CA) using 1.5 units of Taqg DNA polymerase (Gibco/
BRL), 0.3 mM each of dATP, dCTP, dGTP, and dTTP
(Invitrogen), PCR buffer (Tris-Hcl 60 mM, MgCl,
1.5 mM,NH;4 15 mM SO4, pH 10; Invitrogen), and 10 mM of
5" and 3' primers (Life Technologies, Gaithersburg, MD)
corresponding to rat Rab3d, Rab 27b, Vamp-2, and Actb
cDNA (Table 1). Positive (pancreatic islets) and negative
(without reverse transcriptase or cDNAs) controls were run in
parallel.

The PCR program used the following cycle profile:
denaturation for 1 min at 94 °C, annealing for 1 min at
indicated temperatures, extension for 1.5 min at 72 °C, and
maximization of strand completion for 7 min at 72 °C.
Following amplification, the cDNA fragments were analyzed
on 1% agarose gels containing a 100-base pairs (bp) DNA
molecular weight ladder (Gibco/BRL) and post-stained with
ethidium bromide.

The results were resolved in Gel Doc (Bio-Rad
Laboratories, Richmond, CA) and analyzed by Scion Image
Analysis Software (Scion Corp, Frederick, MD).

Western blot analysis: LG from both groups were solubilized
in 1 ml buffer containing 100 mM 2-amino-2-hydroxymethyl-
propane-1,3-diol (Tris; pH 7-5), 10 mM sodium
pyrophosphate, 100 mM sodium fluoride, 10 mM EDTA,
10 mM sodium vanadate, 2 mM phenylmethylsulfonyl
fluoride, and 1% Triton-X 100 and homogenized using a
Polytron PT 1200C homogenizer (Brinkmann Instruments,
Westbury, NY). The extracts were then centrifuged at 40,000
g at 4 °C for 5 min to remove insoluble material. Protein
concentration in the supernatant fractions was assayed with
the Bradford method [32]. The samples were treated with a
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TABLE 2. WESTERN BLOTTING ANTIBODIES USED TO COMPARE SNARE EXPRESSION LEVELS IN AGING AND CONTROL RAT LG.

Protein Catalog number Isotype Molecular Concentration
weight
GAPDH Santa Cruz SC 25778 Rabbit polyclonal 37 kDa 200 pg/ml
Rab 3D Santa Cruz SC 26392 Goat polyclonal 25 kDa 200 pg/ml
Syntaxin 1A Santa Cruz SC 12736 Mouse polyclonal 35 kDa 200 pg/ml
Vamp 2 Calbiochem # 627724 Rabbit polyclonal 12 kDa 1 pg/ml

TABLE 3. DIFFERENCES IN STRUCTURAL LG AND LIVER PARAMETERS CONTROL (2 MONTHS) AND AGED (24 MONTHS) RATS (DATA
ARE EXPRESSED AS MEAN =+ STANDARD ERROR).

Parameter

Body Weight (g) *

LG Weight (mg) *

LG Weight/Body Weight ratio (mg/g)
Liver Weight (mg)

* p<0.05, Mann—Whitney U test.

2 months 24 months p value
272.0+11.6 551.7+£62.1 0.0043
108.6+11.4 166.2+10.3 0.0079

40.2+4 .4 29.8£1.9 0.2222
502.8+0.9 738.7+0.9 0.2468

TABLE 4. IMPRESSION CYTOLOGY OF CORNEAL EPITHELIAL CELLS OF AGED (24 MONTHS) AND CONTROL (2 MONTHS) RATS.

Classification 2 month 24 month
Grade 0 3 0
Grade 1 6 3
Grade 2 1 7
Grade 3 1 2

Cells were harvested with filter paper, transferred to slides, and stained with PAS. They were graded in a masked fashion
according to a four-stage classification scheme from 0 (normal morphology) to 3 (squamous metaplasia), based on the color
and format of the cytoplasm, presence and size of nuclei, and presence of mucous secretion (* p=0.032, Fisher Test).

Laemmli sample buffer and after heating at 95 °C for 5 min,
the proteins were separated by SDS gel electrophoresis
(100 pg protein/lane, 10% gels) and transferred to
nitrocellulose membranes. The membranes were blocked with
5% non-fat dried milk, 10 mM-Tris, 150 mM-NaCl, and
0-02% Tween-20 overnight and were subsequently incubated
with rabbit polyclonal anti-Rab3d, Vamp-2, Syntaxin, and
GAPDH antibodies. GAPDH was used to validate protein
loading equivalence (Table 2). Visualization of specific
protein bands was made by incubating the membranes for 2 h
with a peroxidase-conjugated secondary antibody (1:10,000;
Zymed Laboratories, Inc., San Francisco, CA), followed by
detection with enhanced chemiluminescence reagents (Pierce
Biotechnology, Rockford, IL) and exposure to X-ray film
(Kodak, Manaus, AM, Brazil). Band intensities were
quantified by densitometry (Scion, Image, Frederick, MD).

Statistical analysis: Data are reported as meantSEM.
Comparisons were made using the Mann—Whitney U test for
continuous data and the Fisher exact test for categorical data
and the level of significance was set at p<<0.05 (GraphPad 5.0
software; Prism, San Diego, CA). Densitometry values are
reported as a ratio of Actb in RT-PCR and GAPDH in western
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blot assays, respectively. The ratio of densitometric values of
one control sample of each blot was defined as 1.0 (100%),
and the subsequent values were expressed as a ratio relative
to its control value and submitted to statistical analysis.

RESULTS

Body and LG weight were significantly higher in the aging
group, as previously reported in this rat strain [9] (Table 3).

A modified Schirmer test showed that tear secretion did
not decline during aging since it was 8.8+1.0 mm in the control
group and 7.3+1.4 mm in the aging group (p=0.5145, Mann—
Whitney U).

Impression cytology (IC) to evaluate aging changes in the
epithelial layer of the cornea presented a significantly higher
frequency of alterations of the epithelial cells, with
metaplastic keratinization in the aging group, in contrast with
the control group, which presented samples of corneal
epithelia with bigger nuclei area and round borders (p=0.032,
Fisher test; Table 4 and Figure 1).

H&E staining to compare the morphology of aging and
control LG revealed similar acinar and ductal structures in
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nucleus, and the presence of mucus (Scale bar=25 pum).

Figure 1. Impression cytology of the corneas of control (A) and aged (B) rats. Grades from 0 to 3 were given for each sample, based on size,
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both groups (Figure 2A,B). Autofluorescence indicated
greater accumulation of lipofucsin-like material, which is a
marker of age-related oxidative damage, in histological
samples of the aging group LG compared to controls (Figure
2C,D).

Transmission electron microscopy, used here to compare
details of cytoplasmic and nuclear structure of LG acinar cells
between aging and control rats, revealed a reduced number of
structured organelles, possible autophagic vacuoles, but an
otherwise normal nuclear appearance without chromatin
condensation in LG acinar cells of the aging group. In contrast,
there were abundant secretory granules of diverse sizes and
well structured organelles in the control group, suggesting
preserved secretory machinery (Figure 2E,F).

Since oxidative stress has been implicated in the
pathogenesis of dry eye in the elderly, our study compared the
levels or oxidant and anti-oxidant markers in LG of aging and
young rats. MDA, a marker of lipid peroxidation and oxidative
stress, was similar in the control and aged groups. In contrast,
in the aged group, vitamin E levels, indicators of anti-oxidant
capacity, were lower in LG, suggesting a lower capacity of
oxidative stress defense (Table 5).

Considering that Rab and SNARE are major cytoplasmic
proteins involved in vesicular transport and exocytosis, the
impact of aging on the LG secretory machinery was evaluated
based on changes in gene and protein level expression of some
mediators of this response. The ones chosen were shown to
be affected by oxidative damage and are impaired in animal
models of dry eye [24,26]. RT-PCR results revealed that
Rab3d and Rab27b mRNA expression was 25 and 40%,
respectively, lower in LG of the aging group, compared to
Actb; however, Vamp-2 was similar in both groups (Figure 3).

Western blot analysis of LG whole cell lysates revealed
disparate changes in Rab3d, Syntaxin, and Vamp-2
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expression levels. In the aging group, Rab3d declined by 34%
(p=0.008), whereas Syntaxin increased by 44% (p=0.0159).
On the other hand, Vamp-2 expression did not change
(p=0.69; Figure 4). Together, those data suggest that aging
changes the expression of proteins related to exocytosis and
biomarkers of oxidative stress in LG, and these may regulate
the expression of their downstream signaling connectors,
affecting lacrimal secretion.

DISCUSSION

The present work extends previous findings of structural and
biochemical changes in LG aging [8,9]. Aging affects
secretory and anti-oxidant mechanisms, which are two major
functions for proper physiology and homeostasis of LG. These
changes implicate extended exposure to oxidative stress as a
possible cause for a reduction in the lacrimal gland secretory
function. Such a decline may play a role in development of
age-related dry eye [5].

Unlike previous findings, we could not detect that aging
results in a fall in tear secretion and a 60% decline in protein
content. Our failure to identify a decline in tear secretion could
be due to a difference in methodology. We used a modified
Schirmer test, which is probably less sensitive than using tears
collected from the conjunctival fornix to measure their protein
content [8,33].

Markers of oxidative stress increased based on
biochemical and histological analyses from aging rats.
Moreover, levels of the anti-oxidant alpha-tocopherol fell in
parallel, suggesting that a reduced anti-oxidant capacity
contributes to aging dysfunction. If such a change also occurs
in dry eye patient tears, it may contribute to the elevations in
tear lipid peroxide levels and increases in ocular surface
damage measured in their tears [34]. This suggestion is
supported by our finding of higher levels of MDA and
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Figure 2. LG histology in the control and aged groups. Control (A) and aged (B) samples stained with H&E (Scale bar=100 pm). Unstained
samples of control (C) and aged (D), to demonstrate autofluorescence of LG (white arrows: lipofucsin-like deposits; Scale bar=100 um). TEM
(Scale bar=2.5 pm) of control (E) and aged (F) samples revealing details of LG acinar cells.
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TABLE 5. COMPARISON BETWEEN THE BIOCHEMICAL PARAMETERS OF THE LG AND LIVER OF THE CONTROL (2 MONTHS) AND (24 MONTHS) AGED RATS.

Parameter 2 months
LG MDA pM/mg tissue 11.0+0.9
LG Vitamin E puM* 4.9+0.5
Liver GSH puM/g tissue 4.8+0.4
Liver MDA uM/mg tissue 240 £ 28

Data expressed on mean+standard error. * p<0.05.

24 months p
24.6x1.7 0.0571
1.9+0.2 0.0159
3.5+0.8 0.2468
200 + 30 0.6623
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lipofucsin in LG of aging rats. On the other hand, in the same
aging rats as those used for assessing changes in LG function,
their liver levels of oxidative stress markers were unchanged.
This invariance is in agreement with previous publications
[12,35].

Aging had no impact on LG histology. Furthermore,
unlike in humans and mice, but in agreement with previous
studies in rats, there was no obvious inflammatory infiltration
into the LG [3,7,36]. However, the marked appearance of
autofluorescence that we detected was reported in aging mice
and diabetic rats, suggesting a correlation between metabolic
impairment, lipofucsin accumulation, and functional
disruption [7,9,37].

Our results showed that declines in tear anti-oxidant
capacity with aging were associated with alterations in corneal
epithelial impression cytology. This association has also been
observed previously in dry eye models related to
hypothyroidism [27]. Similarly, higher levels of pro-
inflammatory or oxidant mediators could explain the higher
frequency of corneal metaplasia and declines in epithelial
turnover [8,34]. Such changes that we identified may also be
explained by declines in corneal innervation and deterioration
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of limbal cell function [38,39]. Another possible outcome of
aging is its correlation with declines in K10 cytokeratin
expression, which is associated with increases in proliferation
and migration of corneal epithelial cells. Such changes could
be associated with higher levels of corneal epithelia
metaplasia [40]. Therefore, declines in anti-oxidant capacity
and increases in pro-inflammatory mediators may have
numerous effects associated with suppression of corneal
epithelial function and turnover.

The presence in aging LG of lipofucsin-like bodies in
autofluorescence and structures suggestive of autophagic
vacuoles in acinar cells in combination with higher expression
of syntaxin, a member of the SNARE family, would not
appear to be suggestive of declines in LG function with age
[41,42]. However, recent studies revealed that members of the
SNARE family and, in particular syntaxin-5, are necessary for
the clearance of autophagic products [43,44]. As autophagic
vacuoles are the result of organelle degradation to remove
lipofucsin-like products related to aging oxidative stress, the
unchanged or increased levels of members of the Rab and
SNARE family may have adaptive value in supporting
removal of those ROS byproducts [45,46]. Another possible
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explanation for differences in aging LG between Rab and
SNARE expression levels is that it is a compensatory response
in the later signaling steps (i.e.; Vamp and Syntaxin) to
declines of Rabs, secretory vesicles, and secretory activity.
Further studies focused on details of secretory pathways are
necessary to test these hypotheses.

Caloric restriction (CR) is the only known mechanism
that modulates the aging process [47]. This finding is
consistent with a report on the LG, in which a decline in caloric
intake of only 35%, initiated in adult life, reduced the impact
of aging on LG function [48]. Such an observation has
potential clinic relevance, but reducing caloric intake should
exclude a fall in vitamin intake; otherwise, it could affect
several organs, including decreases in exocrine function [14,
49,50].

Further studies are needed to determine whether vitamin
E supplementation can offset declines in LG function during
aging even though it is currently advocated therapeutically for
certain conditions including dry eye [13].

In conclusion, our data show that some of the anti-oxidant
and secretory mediators’ expression levels become impaired
in the aging LG. Although the underlying mechanisms for
these changes leading in some cases to dry eye are not fully
clarified, some of the protective mediators that would appear
not to be supportive of LG function were identified. Such
insight may lead to the identification of novel strategies that
protect or at least delay the onset of age-related LG
dysfunction.
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