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a b s t r a c t

With the rapid development of society and the economy, population aging has become a common
challenge faced by many countries in the world today. Structural and functional changes in the cardio-
vascular system can occur with age, increasing the incidence and severity of cardiovascular diseases in
older adults. Due to the limited regenerative capacity of myocardial cells, myocardial infarction and its
resulting heart failure and congenital heart disease have become the number one killer of human health.
At present, the treatment of cardiovascular diseases includes drug therapy and nondrug therapy.
Nondrug therapy mainly includes minimally invasive interventional therapy, surgical diagnosis and
treatment, and cell therapy. Long-term drug treatment may cause headache due to vasodilation, lower
blood pressure, digestive system dysfunction and other side effects. Surgical treatment is traumatic,
difficult to treat, and expensive. In recent years, stem cell therapy has exhibited broad application
prospects in basic and clinical research on cardiovascular disease because of its plasticity, self-renewal
and multidirectional differentiation potential. Therefore, this paper looks at stem cell therapy for dis-
eases, reviews recent advances in the mechanism and clinical transformation of cardiovascular aging and
related diseases in China, and briefly discusses the development trend and future prospects of cardio-
vascular aging research.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Cardiovascular aging is the most important factor leading to
cardiovascular diseases, and the incidence and severity of cardio-
vascular events tend to increase with age. According to the China
Cardiovascular Health and Disease Report 2021, cardiovascular
diseases are the leading cause of death for Chinese residents [1]. In
2019, rural and urban center cardiovascular disease (CVD)
accounted for 46.74 % and 44.26 % of the causes of death, respec-
tively. China is facing the double pressure of population aging and
the continued prevalence of metabolic risk factors, and the number
of CVDs will continue to increase [2]. This not only increases the
burden on patients and their families but also poses a huge chal-
lenge to the health care system. Therefore, it is important to find
effective treatments for cardiovascular disease. At present, treat-
ment schemes including drug therapy and surgical treatment are
typical strategies for treating these diseases [3]. However, the use of
some drugs may lead to side effects and adverse reactions. In
addition, surgery can cause recurrence of some complications and
diseases [4], so the prevalence of cardiovascular diseases is grad-
ually increasing every year. In recent years, stem cell therapy as a
treatment for cardiovascular disease has developed rapidly. Many
animal experiments and clinical studies have shown that stem cells
are safe and effective in treating cardiovascular diseases [5], which
brings new hope to patients with cardiovascular disease and their
families. The ideal stem cells must be able to successfully differ-
entiate into cardiomyocytes, vascular endothelial cells and smooth
muscle cells or to exert effects through paracrine action, they must
be easily extracted and separated, and the transplantation must be
safe and effective. This review summarizes and discusses the
application of different types of stem cells in cardiovascular dis-
eases and future challenges and examines the development trend
and prospects of cardiovascular aging research on this basis. To
further elucidate the molecular and cellular regulatory network of
cardiovascular aging and related diseases (Fig. 1), we searched for
coping strategies for cardiovascular aging and related diseases to
provide a reference for the application of stem cells in the treat-
ment of cardiovascular diseases and to promote the in-depth
development and clinical transformation of cardiovascular aging
and related disease research.
2

2. Materials and methods

2.1. Data sources

The authors used “cardiovascular disease, embryonic stem cells,
induced pluripotent stem cells, mesenchymal stem cells, retro-
spective study, cohort study, case study, clinical trial, meta-anal-
ysis” as the search term to search the China National Knowledge
Network (CNKI), Wanfang Medical Database, PubMed, WHO,
USFDA, and Clinical Trials.Gov to retrieve related reviews and
studies published in the past 10 years.

2.2. Inclusion criteria

The inclusion criteria were as follows: ① articles on the classi-
fication of stem cells and the mechanism of action in the treatment
of cardiovascular diseases; ② related experiments and clinical
studies on the application of exosomes from different stem cells in
the treatment of cardiovascular diseases; and ③ documents that
strictly explain facts and ideas.

2.3. Exclusion criteria

The exclusion criteria were: ① repeated studies ② stale paper.

2.4. Data extraction and literature quality evaluation

The titles and abstracts were read to screen and exclude dupli-
cate reports and Chinese and English literature irrelevant to the
inclusion criteria. The full texts were checked, 75 articles were
retained, and each dedication, introduction and summary were
studied.

3. Overview of stem cells

Stem cells (SCs) are cells with self-renewal and multidirectional
differentiation potential. Under certain conditions, they have the
functional potential of regenerating into various cells, tissues, or-
gans and human bodies [6](Fig. 2). According to their stage of
development, they can be divided into embryonic stem cells and



Fig. 1. Different types of stem cells in cardiovascular aging.
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adult stem cells (Fig. 2). Embryonic stem cells (ESCs) are undiffer-
entiated cells with high differentiation potential in the cell mass of
the blastocyst that can differentiate into any type of cell, tissue, and
organ needed in the body and finally develop into complete in-
dividuals, which make them totipotent stem cells. Adult stem cells
(ASCs) can be separated from bone marrow, adipose tissue,
placental cord blood and other human tissues and organs. ASCs
have lower differentiation potential than ESCs and can only
differentiate into several or one kind of cell, including pluripotent
stem cells and multipotent stem cells [7](Fig. 2). Stem cell therapy
involves transplanting healthy stem cells into patients to repair
diseased cells or rebuild normal cells and tissues. In recent years,
stem cell therapy for cardiovascular disease has become a prom-
ising frontier of scientific research. For the effective treatment of
CVD, it is very important to improve the treatment efficiency based
on SCs. At present, stem cells used to treat cardiovascular diseases
mainly include induced pluripotent stem cells (iPSCs), mesen-
chymal stem cells (MSCs), cardiac stem cells (CSCs) and embryonic
stem cells (ESCs) (Fig. 2).

4. Application of stem cells in cardiovascular disease

Cardiovascular disease is a serious threat to human life and
health and not only has a high mortality rate in the acute phase but
also has a poor long-term prognosis. At the same time, any serious
loss of myocardial cells (such as myocardial injury) is irreversible,
which leads to the decline in cardiac function and the progressive
heart failure worsens. Cardiovascular diseases cause a series of
cellular and molecular disorders, leading to apoptosis, necrosis and
hypertrophy of myocardial cells; damage to new blood vessels;
3

myocardial fibrosis and inflammatory reactions; decreased
contractility; and subsequent pathological remodeling. Therefore,
regeneration and repair therapy play a crucial role in cardiovascular
diseases. Scientists are eager to use stem cells to replace damaged
heart cells and fundamentally repair the function of the heart, that
is, to introduce new cells into the heart, induce cells to proliferate in
situ, or allow cells to settle in the heart so that they can be con-
verted into muscle cells with myocardial function. Stem cells pro-
vide the body with new cells as it grows and replace damaged or
lost specialized cells. They have the same properties (for example;
They can divide repeatedly to produce new cells, and after division,
they can transform into other types of cells that make up the body
and show immunosuppressive abilities). Stem cells are undiffer-
entiated or partially differentiated in nature. But they have the
ability to produce undifferentiated cells. They can multiply and
produce more and more stem cells. Scientists are eager to use stem
cells to replace damaged heart cells and fundamentally repair the
heart's function, introduce new cells into the heart, induce cell in-
situ proliferation, or allow cells to settle in the heart so that they can
be converted into myocardial muscle cells. In recent years, SCs have
attracted extensive attention in the field of cardiovascular disease
repair and regeneration. After years of exploration, scientists have
made remarkable achievements in the treatment of cardiovascular
diseases with stem cells. At present, stem cell therapy is considered
a promising method to treat cardiovascular diseases. A large
number of reports have shown that a variety of stem cells, including
embryonic stem cells, induced pluripotent stem cells, mesen-
chymal stem cells and cardiac stem cells, can be used to treat cor-
onary artery disease, myocardial infarction and heart failure
through intravenous or intramyocardial injection; promote the



Fig. 2. Principle of stem cell therapy for cardiovascular diseases. Stem cells from a variety of sources (bone marrow mesenchymal stem cells, adipose mesenchymal stem cells,
umbilical cord blood mesenchymal stem cells, cardiac stem cells, induced pluripotent stem cells, and embryonic stem cells) have self-renewal, multidirectional differentiation,
immune regulation, paracrine and other effects and can have therapeutic effects on cardiovascular diseases such as congenital heart disease, heart failure, and myocardial infarction.
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repair and regeneration of myocardial cells; and improve myocar-
dial contractile function [8].

4.1. Embryonic stem cells

ESCs are pluripotent cells that can remain undifferentiated
when cultured in vitro and have the potential to differentiate into
specific somatic cells, including cardiomyocytes. ESCs can provide a
large number of differentiated myocardial cells for the treatment
and regeneration of damaged myocardial layers. ESCs are mainly
derived from early developing embryos and have totipotency and
the ability to differentiate into three types of embryonic cells:
ectoderm, endoderm and mesoderm. In 1998, Thomson and col-
leagues first isolated and cultured them from human blastocysts
[9], and ESCs exhibit several advantages over adult stem cells,
including pluripotent differentiation potential, which is virtually
unlimited in vitro due to their self-renewal capacity, and they can
generate CMs similar in structure and function [10]. ESCs have been
observed to have the ability to differentiate into functional heart,
neuronal, and pancreatic cells [11]. ESCs-differentiated car-
diomyocytes have cell morphology and physiology similar to adult
cardiomyocytes. Currently, due to ethical concerns, application to
large non-human primates has been reported less, but it has still
been reported. Studies have found thatmodels of ESCs transplanted
in vivo can muscularized substantial amounts of the infarcted
monkey heart and global left ventricular ejection fraction improved
[12,13]. Another Study found lack of Remuscularization Following
4

Transplantation of human ESC-derived Cardiovascular Progenitor
Cells in cynomolgus monkeys [14]. In addition to large non-human
primate trials, a trial in small animals has also demonstrated the
efficacy of ESCs in the treatment of cardiovascular diseases.
Johannes Bargehr et al. tested the ability of human ESC-derived
epicardium to augment the structure and function of engineered
heart tissue in vitro and to improve efficacy of human ESC-
cardiomyocyte grafts in infarcted athymic rat hearts. Importantly,
cross transplantation improved systolic function compared with
hearts receiving either cardiomyocytes alone, epicardial cells alone
or vehicle [15]. Qiang Wu et al. found extracellular vesicles from
human ESC-derived cardiovascular progenitor cells promote car-
diac infarct healing through reducing cardiomyocyte death and
promoting angiogenesis [16]. ESCs are very promising for the
treatment of CVD, and their isolation and purification are relatively
easy to carry out, but because the origin is mostly from embryos or
aborted fetal embryos, especially very early embryos such as mul-
berry embryos, there is controversy in medical ethics, and the
possibility of forming teratomas and immune rejection in the hu-
man body, which limits its clinical application [17] (Table 1).

4.2. Adult stem cells

4.2.1. Bone marrow mesenchymal stem cells
MSCs are a heterogeneous population of adherent, fibroblast-

like multipotent cells, which can differentiate into several cell
types of the mesodermal lineage, such as osteoblasts, adipocytes,



Table 1
Advantages and disadvantages of stem cell types used for cardiovascular diseases.

Stem cell type Methods of stem cell therapy for
cardiovascular diseases

Advantages Shortcomings

ESCs Expression of a variety of heart-specific
genes and transcription factors; react to
drugs through cardiac cell-specific
receptors

Clear source and easy purification;
multifunctional differentiation and self-
renewal; easy to produce cell lines;
electromagnetic binding to host
myocardium

Immune rejection; ethical issues are
only allogeneic; teratoma formation;
genomic instability; lack of availability

BM-MSCs Upregulate nuclear membrane proteins
and transcription factors, and finally
activate downstream signaling
pathways, such as Notch1 and WNT

Less ethical considerations, less
tumorigenic risk and lower
immunogenicity

No obvious shortcomings and have
been applied in clinical practice

UCMSCs Secrete growth factors, cytokines and
chemokines to improve different cell
repair mechanisms

More primitive than adult stem cells Ethical problems arising from human
umbilical cord

AMSCs The paracrine activation of AMSCs on
fibroblasts can regenerate damaged
cardiomyocytes by directly
transforming endogenous cardiac
fibroblasts into induced cardiomyocyte-
like cells to restore cardiac function

Wide range of sources and is easy to
prepare; can be maintained and
expanded in culture for a long time
without losing differentiation ability

No obvious shortcomings and have
been applied in clinical practice

iPSCs Adult cells (such as fibroblasts) can
differentiate into cardiomyocytes by
reprogramming transcription factors
(such as octamer binding transcription
factor Oct4, sex determining region Y
box protein Sox2, nuclear transcription
factor Klf4 and proto-oncogene c-Myc)

Multifunctional differentiation and self-
renewal; minimal ethical issues; easily
accessible source organization; strong
cardiac muscle generating ability

Teratoma formation; immune
rejection; limited genome editing
technology; possible genomic
instability; not tested in the clinical
environment

CSCs Parasecretory effect can promote the
migration, proliferation, differentiation
and angiogenesis of cardiac
endogenous stem cells; promote the
recruitment of endogenous CSCs;
inhibit the apoptosis of infarct cells; and
resist myocardial remodeling, thus
improving cardiac function

Autotransplantation; multipotential;
practicability in clinical trials; low
tumorigenic risk; a short culture period
is required to produce CMs (weeks)

The cost of in vitro proliferation before
transplantation is high; the number of
cells is limited; obtained from invasive
myocardial biopsy; cell characteristics
are not sufficient; the stem cell pool
seems to experience aging
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and chondrocytes, due to their immunomodulatory and anti-
inflammatory properties, MSCs have been the most studied stem
cells for the treatment of cardiac injury [18]. Apart from their direct
effect on cardiac tissue repair and regeneration [19], MSCs may also
play important roles through the secretion of trophic factors [18],
which improve cardiac function by tissue injury reduction, inhibi-
tion of fibrotic remodeling, angiogenesis, activation of host tissue
stem cells niches, and reducing inflammation. Cells isolated from
bone marrow are called bone marrow mesenchymal stem cells.
Bone marrow mesenchymal stem cells (BMSCs) are subtypes of
nonhematopoietic stem cells that are localized in the bone marrow.
Although they only account for 0.001%e0.01 % of the total number
of monocytes in bone marrow, they can be amplified 1 million
times or for 6 generations in vitro [20]. Friedenstein et al. estab-
lished the first method for isolating bone marrow mesenchymal
stem cells [21]. In 2002, Shake et al. first observed the beneficial
effect of bone marrow stromal stem cell transplantation in a pig
model of myocardial infarction (MI), and they found that the wall
thickness at the end of diastole/systole was significantly increased
after autologous bone marrow mesenchymal stem cell trans-
plantation [22]. In 2004, Chen et al. randomly divided 69 patients
with acute ST segment elevation myocardial infarction within 12 h
of onset into two groups [23]. The patients were injected with
either autologous bone marrow MSCs or normal saline into the
coronary artery. The follow-up for 6 months showed that the
myocardial function of the patients in the stem cell therapy group
was improved compared with that of the control group. Since then,
BM-MSC therapy has been widely discussed for the treatment of a
wide range of cardiovascular diseases [24,25]. In 1999, a research
team at Keio University successfully produced cardiomyocytes
from bone marrow stromal cells through in vitro treatment with
5

5-azacytidine (5-aza) [26]. At present, several methods have been
established to induce BM-MSCs to differentiate into cardio-
myocyte-like cells in vitro. These methods include coculture of
aggregates, treatment with demethylating agents, incubation with
growth factors and treatment with oligosaccharides [27,28]. In
addition, several research teams reported that BM-MSCs differen-
tiated into heart cells that express various cardiac markers in vivo,
such as desmin, b-MHC and b-actin. The levels of actin, CTn-T and
phosphoprotein are almost the same as those of endogenous
myocardial cells [29]. The molecular mechanisms of this differen-
tiation include upregulation of nuclear membrane proteins and
transcription factors and ultimately activation of downstream
signaling pathways, such as Notch1 and WNT [30e33]. A multi-
center randomized clinical trial of bone marrow MSCs in the
treatment of acute myocardial infarction showed that the treat-
ment of acute myocardial infarction with bone marrow MSCs via
coronary artery transplantation could improve the myocardial
blood flow perfusion and left ventricular ejection fraction of pa-
tients, that the feasibility and safety of treatment were high, and
that no related ventricular arrhythmia or other major adverse car-
diac events occurred [34]. In 2023, Li H et al. reported that CD133þ/
Lin�/CD45- cells derived from swine bone marrow were success-
fully isolated and amplified, laying a good foundation for further
research on this promising therapeutic cell. The effect of exosomes
may be a promising potential treatment strategy for cardiac fibrosis
[35]. Zhou P et al., suggest that bone marrow-derived c-kitþVEGFR-
2þ MSCs have the potential to differentiate toward cardiovascular
cells. The cells can effectively repair the infarctedmyocardium after
transplantation [36]. These cells show great potential and prospects
in the treatment of cardiovascular diseases (Table 1). Despite the
potential of MSCs, clinical trials have shown conflicting results on
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their effect in the treatment of CVDs [37](Table 1). These differences
can be due to several causes, including the protocols used for the
manipulation of the MSCs, which might influence the viability and
therapeutic potential of the cells, the administration route used to
transplant them, as well as the intrinsic differences in functional
cardiac parameters and severity among participants.

4.2.2. Adipose-derived mesenchymal stem cells
ADSCs are isolated from adipose tissue. Recently, direct cardiac

reprogramming has become a new technology that can regenerate
damaged cardiomyocytes by directly transforming endogenous
cardiac fibroblasts into induced cardiomyocyte-like cells to restore
cardiac function. Fibroblasts replace dead cardiomyocytes, leading
to the formation of fibrosis and myocardial remodeling. There are
studies on the interaction between ADSCs and fibroblasts. ADSC-
conditioned medium promoted the proliferation of fibroblasts,
which indicated that ADSCs activated the paracrine secretion of
fibroblasts. It was found that the same fibroblasts cultured in ADSC-
conditioned medium secreted increased type I collagen. These
findings suggest that these interactions may play an important role
in myocardial protection. On the other hand, ADSCs may be of great
interest in cardiovascular research, and these cells have been
studied in many clinical trials in the past decade. ADSCs were
directly injected into the myocardial tissue of MI or ischemic heart
failure patients without related events, and ADSCs were used to
improve cardiac function safely and effectively [37,38]. In animal
models, ADSCs have demonstrated efficacy regardless of whether
they are administered by intracoronary, intracardiac, intra-
myocardial, or intravenousmethods [39](Table 1). One recent study
suggested that ADSC-to-cardiomyocyte mitochondrial transfer oc-
curs both in vitro and in vivo, thereby contributing to the recovery
of early cardiac function after ADSC transplantation in ischemic
cardiomyopathy. Thus, enhancement of the mechanisms of mito-
chondrial transfer is proposed to enhance the efficacy of cell ther-
apy [40]. In 2023, one study was novel in the role of exosomes from
adipose-derived stem cells and related microRNAs in Atheroscle-
rotic cardiovascular disease (ASCVD). Therapeutic potentials of
adipose-derived stem cell exosomes in terms of their impact on
macrophage polarization, endothelial effect, anti-apoptosis inter-
vention, and angiogenesis. Adipose tissue now tops the list of stem
cell sources in terms of its availability, abundance and less painful
collection process compared to other sources [41] (Table 1). It
contains AMSCs that can be maintained and expanded over long
periods of time in culture without losing their ability to differen-
tiate, leading to the increasing use of large numbers of AMSCs for
cell therapeutic purposes.

4.2.3. Umbilical cord mesenchymal stem cells
Umbilical cord mesenchymal stem cells (UCMSCs) are sepa-

rated from umbilical cord blood. These cells can be separated from
different parts of the UC, including the Wharton's jelly, umbilical
cord lining and perivascular areas. However, almost all studies
used bone marrow mesenchymal stem cells from cord blood and
Wharton's jelly [42,43]. Compared with BM, the frequency of MSCs
in UCB is reduced [44], while their versatility is maintained for a
longer time [45]. The expression of the aging markers p53, p21
and p16 in UCMSCs was significantly decreased. They are slightly
positive for the markers Oct4, Nanog, Sox2 and KLF4 of embryonic
stem cells, indicating that these cells are more primitive than adult
stem cells [46]. (Table 1) A recent discovery showed that MSCs
isolated from Wharton's jelly of male origin show higher gene
expression levels of Oct4 and DNA methyltransferase 1 (DNMT1),
thus correlating stem cell characteristics with sex differences [47].
Their ability to differentiate into three mesodermal lineages (adi-
pocytes, chondrocytes and osteocytes) is controversial [44,48];
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however, they have shown the maximum proliferation rate and
clonogenic activity, as well as high cartilage differentiation ability
[45,49]. Similar to their counterparts, UCMSCs are known to
secrete growth factors, cytokines and chemokines to improve
different cell repair mechanisms [44]. However, they are widely
used, especially due to their low expression of MHCII antigens;
inhibition of the proliferation of T cells, B cells and NK cells; and
inactivation of monocytes and dendritic cells [50,51]. When
transplanted into animal models, these cells can also differentiate
into spinal cord tissue with an increasing number of GAP43þ fi-
bers and more residual gray matter in a dose-dependent and
repeated manner [52]. Parkinson's disease, myocardial infarction
and diabetes also benefit from the differentiation ability of these
cells [53e55]. A promising clinical report showed that the
muscular activity of patients with muscular dystrophy after infu-
sion of UCMSCs was improved [56,57]. However, the paracrine
activity of these MSCs is more likely to improve cardiac function
by enhancing angiogenesis and anti-apoptosis, rather than directly
differentiating into cardiomyocytes [58,59]. As the source of um-
bilical cord mesenchymal stem cells is more primitive than adult
stem cells, they are more capable of differentiating into fully
functional heart cells and have broad prospects in the treatment of
diseases by stem cells. However, their clinical application is limited
due to the medical ethical problems caused by their origin from
the human umbilical cord. Despite the potential of mesenchymal
stem cells, clinical trials have shown conflicting results for their
efficacy in treating cardiovascular disease (Table 1). These differ-
ences may be caused by some uncertain parameters such as route
of administration, optimal timing, stem cell source, and necessary
dose, which may affect cell viability and therapeutic potential,
limiting the routine use of mesenchymal stem cell therapy in
clinical practice [37].

4.2.4. Cardiac stem cells
The adult heart was once considered a terminally differentiated

organ that was unable to regenerate after myocardial infarction
Cardiomyocytes (CMs) are thought to be post-mitotic cells and
therefore exhibit very limited regenerative capacity after birth. It
wasn't until 2009 that Bergmann and his colleagues discovered that
CMs did update, but with low turnover. In fact, they showed that
approximately 50 % of CMs are exchanged throughout life, thus
supporting the existence of CMs reproduction over a lifetime [60].
The origin of CSCs remains unknown, but there are many different
types including CKITþ cells, Isl 1þ cells, cardio sphere-derived cells
(CDCs) and epicardium-derived cells, lateral population cells, etc.
CSCs can be extracted from the cardiac appendages of adults, and
in vitro these cells are more efficient at expressing cardiovascular
markers than bonemarrowMSCs. In vivo, CSCs are injected into the
rat myocardium after myocardial infarction, and CSCs can differ-
entiate into cardiomyocytes more efficiently. In another study
comparing subcutaneous adipose tissue-derived MSCs with
pericardium-derived CSCs, pericardium-derived CSCs were better
at expressing intrinsic transcription factors that contribute to car-
diomyocyte differentiation [61]. Animal studies have shown that
CSCs have a greater ability to differentiate into cardiac cells and can
more efficiently acquire structural properties of cardiomyocytes
and blood vessels [62]. Some studies have used CDCs to treat
myocardial infarction. Trans endocardial myocardial needle biopsy
obtains tissue, cultures cardioglobulocytes in culture medium, and
proliferates in vitro to produce more CDCs prior to transplantation.
In 2022, �Angel Arenal et al. evaluated the effect of cardio sphere-
derived cells (CDC) on ventricular tachycardia (VT) substrates in a
post-infarction monomorphic VT pig model. They investigated the
effect of CDC on the electrophysiological properties and histological
structure of dense scars and heterogeneous tissues (HT). Allogeneic
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CDC in the early post-myocardial infarction alters the structure and
electrophysiology of post-infarction scars. These findings suggest
that the CDC has a new therapeutic role. Therefore, CSCs are ideal
for the treatment of cardiovascular diseases in the future, and the
disadvantage of CSCs is the high cost of in vitro proliferation before
transplantation [63] (Table 1). How to improve its ability to divide
into cardiomyocytes, replace necrotic cardiomyocytes to play a role,
because there is still a very slow cell division ability in adult car-
diomyocytes, after the appearance of myocardial ischemia, how to
improve its ability to divide into cardiomyocytes, replace necrotic
cardiomyocytes to play a role, improve cardiac function, or will be a
hot spot in future research.

4.3. Induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) are produced byadult cells
(such as fibroblasts) through reprogramming transcription factors
(such as octamer binding transcription factor Oct4, sex determining
region Y box protein Sox2, nuclear transcription factor Klf4 and
proto-oncogene c-Myc) and can differentiate into various human
cell types [64] (Table 1). iPSCs and ESCs have similar morphology,
surface markers, gene expression, teratoma formation and other
characteristics in vivo, and have the same cell culture conditions as
ESCs (Table 1) (Fig. 2). Some researchers have effectively reprog-
rammed other somatic cells such as keratinocytes, peripheral blood
mononuclear cells, or squamous epithelial cells collected from urine
[65]. Therefore, iPSCs are considered an alternative resource for CVD
cell therapy. The advantage of iPSCs over adult stem cells and ESCs is
that they are easy to generate and avoid ethical and immune
rejection issues associated with the use of ESCs. In addition, similar
to ESCs, iPSCs can differentiate into three germ layer cells, including
(cardiomyocytes)CMs, and due to their self-renewal ability, they
represent an unlimited source of CMs. IPSCs may develop into ter-
atomas and malignancies during differentiation, reprogrammed
cells may retain epigenetic characteristics of their somatic cells of
origin, and accumulation of chromosomes and/or mutations may
exhibit genomic instability [66]. Therefore, the main research di-
rection on iPSCs is how to improve reprogramming techniques to
detumor cellulatization during induction (Table 1). Since iPSC-
derived cardiomyocytes have successfully treated heart failure in
animals such as monkeys. One study data demonstrate that allo-
geneic iPSC-CM transplantation is sufficient to regenerate the cyn-
omolgusmonkey heart researchers are excited about human clinical
studies of such innovative therapies [67]. Recently, the top inter-
national academic journal Nature reported on a clinical treatment
study by Wang Dongjin's team at Nanjing Gulou Hospital, in which
two Chinese men received experimental heart disease treatment
based on “reprogramming” stem cells and successfully recovered a
year later. It is reported that this is the world's first known clinical
application of iPSC technology for the treatment of damaged hearts
[68]. Clinical trials using human iPS cell-derive cardiac tissue sheets
have been also conducted in Japan [69]. In combination with an
efficient and simultaneous differentiation of various cardiac lineages
from hiPSCs and cell sheet technology, they generated clinical-sized
large cardiac tissue sheets (L-CTSs) and to evaluate the therapeutic
potential in porcine infarct heart. Japan's Ministry of Health
approved a clinical research project at Keio University that trans-
plants cardiomyocytes made from iPSCs into heart patients that
Improves cardiac function and reverses fibrosis in chronic myocar-
dial infarction [70]. At the same time, In Chain, Beijing – Nanjing Alp
Regenerative Medicine Technology Co., Ltd. announced that the
new drug clinical trial (IND) of the company's self-developed heart
failure cell therapy product “human iPSC-derived cardiomyocyte
injection” has been granted implied clinical trial authorization by
the Center for Drug Evaluation (NMPA) of the National Medical
7

Products Administration (ClinicalTrails.gov:NCT03763136). A study
called Treating Congestive Heart Failure Patients With Human
iPSC-derived Cardiomyocytes Through Catheter-based Endocardial
Injection has entered phase I clinical trials (ClinicalTrails.gov:
NCT04982081). Although iPSCs have been initially effective in the
treatment of cardiovascular diseases, it is still necessary to contin-
uously develop new programming schemes and new technical
methods to minimize potential risks and improve efficiency, so as to
ensure the safe and effective application of iPSCs technology in
clinical practice [71].

5. Conclusion

Cardiac aging is a risk factor for cardiovascular diseases and the
pathological basis of cardiovascular diseases such as heart failure
and atrial fibrillation. In recent years, with the in-depth study of
cardiovascular diseases, various treatment methods have emerged,
but most methods can only control the development of the disease,
and there are some drawbacks. The advantages of stem cell therapy
have attracted increasing attention from the scientific and medical
communities and may provide a good technical platform for gene
therapy, tissue and organ transplantation, and even cell replace-
ment therapy. The clinical application of stem cell therapy is still at
the exploratory stage. How to effectively harvest a large number of
purified cells and ensure their stability and safety in the process of
transplantation therapy remains to be studied in the future. In
summary, although there are many experiments, preclinical trials
and follow-up data indicating that stem cells have good clinical
application prospects in the treatment of cardiovascular diseases,
there is still a lack of sufficient and reliable clinical evidence for
their tumorigenicity, safety and effectiveness, which requires
further in-depth research. The limitations of immune rejection,
tumorigenicity and infusion toxicity should not be ignored. In
addition, we need to continue to study the pathogenesis of car-
diovascular aging and related diseases and the mechanism of stem
cell transplantation driving injury to provide more evidence and
scientific support for stem cell therapy. At present, a preliminary
understanding of the biological characteristics of stem cells has
been obtained, which provides a solid foundation for their further
clinical application. However, the research field of cardiovascular
aging and related diseases still faces a series of challenges in
strengthening the transformation and application of basic cardio-
vascular research and promoting the prevention and treatment of
cardiovascular diseases through scientific research.
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