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Most current genotype imputation methods are model-based and computationally intensive, taking days to impute one
chromosome pair on 1000 people. We describe an efficient genotype imputation method based on matrix completion.
Our matrix completion method is implemented in MATLAB and tested on real data from HapMap 3, simulated pedigree
data, and simulated low-coverage sequencing data derived from the 1000 Genomes Project. Compared with leading im-
putation programs, the matrix completion algorithm embodied in our program MENDEL-IMPUTE achieves comparable
imputation accuracy while reducing run times significantly. Implementation in a lower-level language such as Fortran or C
is apt to further improve computational efficiency.

[Supplemental material is available for this article.]

Modern genomics studies almost invariably deal with massive

amounts of data. Data sets collected on single nucleotide poly-

morphisms (SNPs), next-generation sequencing (NGS), copy num-

ber variations (CNV), and RNA-seq all fall into this category. In spite

of the universal occurrence of missing data, downstream analysis

methods usually depend on complete data. For instance, in ge-

nome-wide association studies (GWAS), genotype imputation is

essential not only for predicting the occasionally missing geno-

types in a SNP panel but also for combining data from different

panels typed on different platforms. Exploiting these in silico ge-

notypes can boost the power of association studies, encourage

finer-scale gene mapping, and enable meta-analysis.

Several software packages are available for genotype imputa-

tion, notably fastPHASE (Scheet and Stephens 2006), MaCH (Li

and Abecasis 2006; Li et al. 2009, 2010), IMPUTE2 (Marchini et al.

2007; Howie et al. 2009), BEAGLE (Browning and Browning 2009),

and Mendel (Ayers and Lange 2008). Recent reviews provide

comprehensive comparisons of these methods (Nothnagel et al.

2009; Marchini and Howie 2010). All existing packages rely on

a probabilistic model of linkage disequilibrium to construct and

connect underlying haplotypes. Genotype imputation is based on

either inferred haplotypes or a set of reference haplotypes read into

the programs. At the genomic scale, computation is highly in-

tensive. Imputing a single chromosome with about 105 SNPs typ-

ically takes hours for 100 individuals and days for 1000 in-

dividuals. Because NGS routinely yields at least a few orders of

magnitude more SNP data than genotyping chips, genotype im-

putation may well hit a computational wall in the near future.

In the machine learning community, matrix completion is

a popular and effective imputation tool in many domains outside

of genetics (Candès and Recht 2009; Cai et al. 2010; Mazumder

et al. 2010). Matrix completion aims to recover an entire matrix

when only a small portion of its entries are actually observed. In

the spirit of Occam’s razor, it seeks the simplest matrix consistent

with the observed entries. This criterion conveniently translates

into searching for a low rank matrix with a small squared error

difference over the observed entries. The celebrated Netflix Chal-

lenge represented a typical application to recommender systems

(Koren et al. 2009). The Netflix data consist of ratings (1, 2, 3, 4, or

5) of 480,189 customers on 17,770 movies. Each customer rated

only a small number of movies. The training set contains just

100,480,507 ratings. The goal of the challenge was to impute a

480,189-by-17,770 matrix with nearly 99% missing entries.

Imputing missing genotypes shares many features with

the Netflix Challenge. Genotypes can be coded as 0, 1, or 2 by

counting reference alleles and entering the counts into a matrix

whose rows are labeled by individuals and whose columns are la-

beled by SNPs. Despite matrix completion’s purely empirical na-

ture, it seemed natural to investigate its application to a central

problem in modern genetics research. At the outset, we hoped to

see gains in computational speed. We were pleasantly surprised to

discover that, with appropriate implementation, matrix comple-

tion can achieve good accuracy in an order of magnitude less time.

Haplotype reference panels from the HapMap and 1000 Ge-

nomes Project (1KGP) (1000 Genomes Project Consortium 2010)

improve the accuracy and computational efficiency of model-

based imputation. Unfortunately, standard reference panels are

unavailable for other genomes (fruit fly, mouse, and plants) and

other omics data such as CNVs. Explicit models enjoy the advan-

tage of delivering an inferred haplotype pair for each sample per-

son. Although it is likely that the same information is encoded in

the right singular vectors of matrix completion, it is currently

unclear how to extract haplotype information. With the exception

of BEAGLE (Browning and Browning 2009), which can handle

trios or duos, most model-based methods assume that sample

individuals are unrelated. Extending imputation models to full

pedigrees is apt to be extraordinarily challenging given the com-

plications of evaluating pedigree likelihoods (Lange 2002). Even

if pedigree methods can be derived, cryptic relatedness between

study participants may well undermine their effectiveness. In any

case, developing and implementing appropriate genetic models is
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a demanding enterprise. For instance, imputation of X-linked ge-

notypes currently cannot be handled in a straightforward way. In

contrast, matrix completion is simple to implement and requires

almost no changes to deal with a wide variety of data types.

Table 1 compares the virtues of model-based imputation

versus matrix completion. As just emphasized, the matrix com-

pletion method is off-the-shelf and model agnostic. It does not

require reference haplotypes, although it can exploit reference

individuals. In principle, it applies to imputation of any genetic

data, including human leukocyte antigen (HLA) alleles, CNVs, and

insertions and deletions (indels). Its success is predicated on a low

rank structure in the data. In the case of genotype data, this as-

sumption is valid over relatively short windows of contiguous

SNPs due to linkage disequilibrium. Our judicious implementation

of matrix completion in a sliding window yields an effective and

fast imputation algorithm. A full description of the algorithm and

our program MENDEL-IMPUTE implementing it appear in the

Methods section.

Before discussing our results in detail, we briefly review pre-

vious applications of machine learning algorithms in genotype

imputation. Yu and Schaid (2007) compared several off-the-shelf

statistical methods including least angle regression, a machine

learning technique that seeks to find the best compromise between

model fit and complexity. Matrix completion methods were not

among the methods investigated. They concluded that the model-

based package fastPHASE by Scheet and Stephens (2006) offered

the most accurate and efficient imputations. The gap observed in

performance between model-based and machine learning methods

may be due to the extreme simplicity of the methods chosen

from the latter category. Owing to computational concerns, Yu and

Schaid (2007) used only a handful of neighboring SNPs (on the

order of tens) to impute any given SNP. Our matrix completion

approach allows efficient exploitation of hundreds of neighboring

SNPs. We also tune our matrix completion more carefully at the

local level because some regions exhibit richer haplotype archi-

tectures than other regions. Thus, adaptive tuning is one key to

successful application of matrix completion.

Motivated by an earlier Li and Stephens (2003) model, Wen

and Stephens (2010) introduced a fast and accurate algorithm

based on modeling allele frequencies by a multivariate normal

distribution. Their new model relies on a sparse covariance matrix

derived by zeroing out weak correlations between SNPs. The gen-

eral idea is similar to matrix completion. The main difference

conceptually and practically is that Wen and Stephens seek parsi-

mony in the SNP domain, whereas we seek parsimony via a low-

rank approximation to the observed data. Nonetheless, both

methods demonstrate that accurate and fast estimates can be

achieved by imposing parsimony at the local level.

Results
We compared MENDEL-IMPUTE to several established software

packages in four realistic scenarios. The first two scenarios ignore

reference individuals. Scenario 1 relies on a panel of unrelated

individuals, while Scenario 2 relies on a moderately sized panel of

related individuals. We designed the first two scenarios to assess

the raw accuracy of different imputation schemes. The last two

scenarios exploit a reference panel from the 1KGP. Scenario 3 con-

siders imputation with a high-density SNP array, while Scenario 4

considers imputation with low-coverage sequencing data. The last

two scenarios allow assessment of imputation performance in

downstream association analysis. All computations under the four

scenarios were done on a multicore computer with four 3.2 GHz

Intel Core i7 processors and 12 GB of RAM. The matrix completion

algorithm was coded in MATLAB (R2011a). Running times are

recorded in seconds using the tic/toc functions of MATLAB.

GWAS without a reference panel

We compared MENDEL-IMPUTE to the popular MaCH software (Li

and Abecasis 2006; Li et al. 2009, 2010), considered by many to be

the gold standard for imputation accuracy, on the two HapMap

panels of 139 Han Chinese (CHB) and 209 Nigerians (YRI). We also

included a comparison with fastPHASE (Scheet and Stephens

2006) in Scenario 1, where we imputed genotypes of unrelateds in

the absence of a reference panel. In Scenario 1, our goal is to assess

imputation accuracy for genotypes missing sporadically. Modern

genotyping technology is very accurate, in excess of 98%, and such

missing genotypes are relatively rare (Browning and Browning

2007). However, missing values do occur, and it would be a shame

to remove individuals or typed markers with a small fraction of

missing entries simply as a quality control measure. Dropping such

people or SNPs can severely reduce the power of an association

study.

We used the unphased genotype data from HapMap. The CHB

panel contains only unrelated people, while the YRI panel con-

tains unrelateds plus parent–offspring duos and trios. These two

groups also diverge in linkage disequilibrium, with the CHB pop-

ulation exhibiting more and the YRI population exhibiting less.

The genotype file merges data from Phase I + II and III HapMap,

release 28, build 36 (International HapMap 3 Consortium 2010).

Since other popular methods such as BEAGLE and IMPUTE2 have

similar accuracy and efficacy trade-offs (Nothnagel et al. 2009),

it seemed fair to focus on MaCH as representative for this scenario

and the next. The latter two scenarios involving reference panels

consider BEAGLE and IMPUTE2 as well.

Because subjects were typed on different platforms, the

HapMap reference genotype data have almost 50% missing data.

To evaluate the performance of the imputation methods on spo-

radic genotyping errors, however, we randomly masked 1% of the

genotyped entries on four randomly selected chromosomes in

each group. We then ran the three imputation algorithms on the

masked panel and compared imputed entries with masked entries.

We defined a genotype error as failing to impute both alleles cor-

rectly. Details on experimental setup can be found in the Methods

section. Tables 2 and 3 show the accuracy and timing results for

MaCH, fastPHASE, and MENDEL-IMPUTE, respectively. MENDEL-

IMPUTE uniformly displays lower error rates. What is perhaps even

more remarkable is that such accuracy is achieved with a 18-fold to

45-fold reduction in run times compared with MaCH and 16-fold

to 60-fold reduction in run times compared with fastPHASE. Note,

Table 1. Comparison of model-based imputation and matrix
completion

Properties
Matrix

completion
Model-based

methods (MaCH)

Require haplotype
reference panels

No Yes (fast) or no (slow)

Does phasing No Yes
Handle related samples Yes No (unless treated as

unrelated)
Dosage output Yes Yes
Impute other omics data Yes No
Implementation Easy Complicated
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however, that MaCH can obtain better accuracies by increasing the

size of the latent state space and increasing the number of MCMC

rounds. Thus, the discrepancy in accuracy is a computational

issue reflecting MaCH’s trade-offs between accuracy and speed.

fastPHASE provided lower error rates, but not necessarily sig-

nificantly better speeds even in comparison to MaCH. In fact,

fastPHASE was much slower on CHB chromosome 5 than MaCH

compared with the other CHB chromosomes and also uniformly

slower than MaCH on all the YRI chromosomes. Understand-

ing the performance differences requires more detailed under-

standing of fastPHASE, which is given in Supplemental Note 2.

The overall better trade-off between accuracy and speed exhibited

by MENDEL-IMPUTE follows from the fact that both fastPHASE

and MaCH fix the size of the latent haplotype state space that they

use for all points along a chromosome. In contrast to these two

methods, MENDEL-IMPUTE dynamically adjusts the model com-

plexity or matrix rank as it moves along the chromosome. BEAGLE

also enjoys speedups due to taking a similar strategy of adapting

state space complexity as it proceeds along a chromosome.

A pedigree sample without a reference panel

We also compared the performance of MaCH and MENDEL-

IMPUTE on a sample of moderately sized pedigrees. In the MaCH

runs, the subjects are treated as unrelated. The data constitute

a subset of 518 individuals spread over 62 pedigrees from a gene

mapping study of high plasma angiotensin-1 converting enzyme

(Keavney et al. 1998). Genotypes from the original study were

ignored. Supplemental Figure 1 displays the distribution of pedi-

gree sizes in our reconfigured sample. Each of the 170 founders in

the 62 pedigrees was assigned two unique chromosome 22 hap-

lotypes from the JPT + CHB sample in HapMap 3. Thus, the data

reflect realistic genetic assumptions encoded by inferred reference

haplotypes rather than observed reference genotypes. We removed

SNPs with minor allele frequency below 1% in the 170 founders.

This filtering step reduced the original 20,085 typed SNPs to

15,598 SNPs. Finally, we applied the gene dropping option of

Mendel 12.0 (Lange et al. 2001) to create synthetic genotypes in

the nonfounders consistent with the genotypes of the founders.

Gene dropping ignores mutation but includes recombination

assuming no interference.

We assessed timing and accuracy for both MaCH and MENDEL-

IMPUTE on validation sets formed by holding out a 1% random

sample of the data. Details on the parameters used in running MaCH

appear in the Methods section. Due to the lengthy run times of

MaCH, we report results from just three replicates. For matrix com-

pletion, we report results on the same three replicates; timing and

error rates were similar on additional replicates. The same set of

synthetic genotypes is used in all replicates, and replicates differ

only in which entries were masked. Table 4 summarizes our find-

ings. Once again, we see that MENDEL-IMPUTE has a slight edge in

imputation accuracy. Both methods may benefit from the perfect

typing assumption and the lack of mutation. There is, however,

a drastic difference in run times. MENDEL-IMPUTE is more than

400 times faster than MaCH. Compared with Scenario 1, the dis-

crepancy in accuracy is smaller. This scenario is more complicated

due to the pedigree structure, but also simpler because we con-

sidered a much smaller set of SNPs. In Scenario 1, we considered

between 50,000 and 250,000 SNPs. MaCH’s improved perfor-

mance is most likely due to imputing a relatively less diverse set of

individuals and also allowing a longer running time for better

numerical convergence.

There are, of course, ways of imputing missing genotypes in

pedigrees that avoid evaluating pedigree likelihoods. The Goradia-

Lange algorithm (Lange and Goradia 1987) incorporated in Mendel

but not MENDEL-IMPUTE achieves precisely this goal SNP by

SNP. The long-range phasing (LRP) algorithm of Kong et al. (2008)

exploits whole haplotypes that are identical by descent (IBD).

However, pedigree inferences are incapable of resolving all missing

genotypes. Methods such as LRP should be viewed as complemen-

tary rather than competitive to linkage-disequilibrium methods. In

the presence of low genotyping error, the best strategy is apt to

be imputation of some genotypes by pedigree methods followed

by imputation of remaining genotypes by linkage-disequilibrium

methods. In low-coverage sequencing studies, pedigree-based

methods may be too error prone to be of much value.

High-coverage genotyping microarray

We next considered the common scenario in GWAS of imputing

SNPs from a reference panel typed on a different chip from the

study sample. Specifically, we assumed that GWAS data were

generated by a high-coverage genotyping microarray, the Illu-

mina’s Infinium 2.5M Duo product, which features ;2.4 million

SNPs present in the reference haplotype panel but absent from

the chip. The previous two scenarios assessed accuracy at im-

puting sporadically missing genotype entries, whereas this sce-

nario considers imputing genotypes that are missing because

they were not typed.

Both the study panel and the reference haplotypes reflect the

1KGP haplotypes from the March 2012 release of Phase 1. We ac-

cordingly downloaded the haplotypes of 1092 1KGP individuals

from the IMPUTE2 website (Howie et al. 2009) and split them into

a study panel and a reference panel. This division was performed so

that the distribution of ethnicities was preserved across both

groups. We restricted our attention to 60,000 SNPs from a ran-

domly selected 12-Mb region on chromosome 22 and masked ge-

notypes of all SNPs that were not listed in Illumina’s manifest file

Table 2. Accuracy and timing results for MaCH (MA), fastPHASE
(FP), and MENDEL-IMPUTE (MI) on four different chromosomes
from the CHB samples from HapMap

CHB

Error rate (%) Time (min) Speedup

Chr MA FP MI MA FP MI MA FP
4 4.02 1.65 2.15 474 447 26 18 17
5 3.75 1.63 2.15 482 1574 27 18 58
18 4.28 1.84 2.37 296 220 13 23 17
21 4.49 1.86 2.51 193 97 6 32 16

Table 3. Accuracy and timing results for MaCH (MA), fastPHASE
(FP), and MENDEL-IMPUTE (MI) on four different chromosomes
from the YRI samples from HapMap

YRI

Error rate (%) Time (min) Speedup

Chr MA FP MI MA FP MI MA FP
5 6.55 2.18 2.13 1702 3040 52 33 58
8 6.38 2.15 2.04 1497 2681 45 33 60
14 6.89 2.34 2.36 1173 1417 26 45 54
15 7.79 2.73 2.87 768 1239 22 35 56

Genotype imputation via matrix completion
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for the 2.5M Duo. This turned out to be 51,192 SNPs. We then ap-

plied MENDEL-IMPUTE, MaCH, BEAGLE, and IMPUTE2 to impute

untyped SNPs. We also applied IMPUTE2 after pre-phasing with the

rapid haplotype estimator SHAPEIT (Delaneau et al. 2012).

We compared genotype imputation quality in two ways. One

reasonable measure is the squared correlation r2 between the im-

puted dosage and the true genotyped dosage at the masked loci.

While the unprocessed output of MENDEL-IMPUTE is often suf-

ficient to serve as the imputed dosage for downstream analysis, the

immediate estimates are biased toward zero. This is a side effect of

the nuclear norm shrinkage applied in our matrix completion al-

gorithm. In cases in which the shrinkage is more pronounced,

better performance can be attained by fitting a Gaussian mixture

model to the immediate outputs and imputing dosages from the

resulting densities. An added benefit of the mixture model is

that uncertainty for the imputed values can be assigned. See the

Methods section for more details. Here we report results using

the mixture model to estimate dosages. The mean r2 for MENDEL-

IMPUTE was 0.683, while it was 0.751 for MaCH, 0.755 for BEAGLE,

0.801 for IMPUTE2, and 0.779 for SHAPEIT-IMPUTE2. At first blush

it appears that MENDEL-IMPUTE is inferior. While imputation

inaccuracy does reduce the power of association tests (Pritchard and

Przeworski 2001), we provide simulation results that indicate that

the loss in power is tolerable given the gains in computational

speed. We simulated a quantitative trait arising from a single SNP

and checked to see what SNPs came up in an association analysis

using the imputed dosages. Details are described in the Methods

section.

Table 5 shows the resulting comparisons for 10 different

trials with different SNPs serving as the trait’s major gene. After

Bonferroni correction, we checked to see

what SNPs were deemed significantly as-

sociated with the trait at a significance

level of 10�3. We refer to the total tally of

SNPs deemed significant as ‘‘hits.’’ Table 5

shows that MENDEL-IMPUTE trades a

minor dropoff in performance for big

reductions in computation time. Thus,

despite the excellent agreement in down-

stream analysis, there is a sizable dis-

crepancy in run times (Table 6). Figure 1

displays the transformed P-values for the

60,000 SNPs when the trait is actually

caused by SNP 40,938. For the record,

note that MENDEL-IMPUTE may at times

produce more hits than the other methods

and possibly more false positives. See, for

example, the last row in Table 5. There is

room for future work in improving how

we map MENDEL-IMPUTE’s raw output to

estimated dosages. We note that SHAPEIT

provided noticeable improvement over using IMPUTE2 alone in

terms of timing with a small dropoff in accuracy as measured in r2.

Moreover, although it supports multithreading, we ran SHAPEIT

using a single thread for more straightforward comparison with

all the other algorithms.

Low-coverage sequencing

We also compared MENDEL-IMPUTE in calling genotypes from

low-coverage sequencing data. Pasaniuc et al. (2012) demonstrated

that high calling accuracy can be achieved in such data using im-

putation programs with likelihood scores as inputs. They further

demonstrated that the power of imputed genotypes to identify

associations in downstream analysis was comparable to that of

high-density SNP arrays. Within this framework, we examined

how MENDEL-IMPUTE can improve genotype calling of low-cov-

erage sequencing data. In the previous examples, the input to

MENDEL-IMPUTE was a matrix with entries drawn from the set

{0, 1, 2, missing}. In this scenario, an entry is missing if no reads are

recorded for that individual at that locus. Missingness is sporadic

as in the first two scenarios but occurs at a much higher rate; in

this example, about three-quarters of the entries are missing. The

nonmissing input consists of posterior mean dosages with entries

in the interval [0, 2]. Dosage levels were computed from paired read

counts of the major and minor alleles at each SNP. Details are given

in the Methods section.

We used the same study and reference panels as in the pre-

vious example, the same 60,000 SNPs on chromosome 22, and the

same trait simulations. See the Methods section for details on how

the read counts were simulated from the study panel and how

posterior mean dosages were computed for input to MENDEL-

IMPUTE. As in the previous scenario, accuracy is measured in terms

of the r2 between the true dosage levels and the estimated dosage

levels. In this scenario, since the estimation bias was not as pro-

nounced, we did not re-estimate the dosages via mixture models

and instead used the raw MENDEL-IMPUTE output as the esti-

mated dosage. This time the discrepancy in r2 was not as drastic as

it was 0.854 for MENDEL-IMPUTE, 0.938 for BEAGLE, and 0.80 for

IMPUTE2. Tables 7 and 8 report accuracy and timing results for the

various programs. MaCH has an extension Thunder for calling ge-

notypes from low-sequencing data, but we did not include it in this

Table 4. Accuracy and timing results for MENDEL-IMPUTE and
MaCH on synthetic pedigree data

MACH MENDEL-IMPUTE

SpeedupError rate (%)
Time
(min) Error rate (%)

Time
(min)

Min 1.923 2819 1.840 6.6 427
Mean 1.941 2820 1.843 6.7 421
Max 1.971 2821 1.848 6.8 415

Table 5. Association analysis results based on Illumina 2.5M microarray data using the 1KGP
reference haplotypes

SNP MAF

r2 True positive Hits

MI MA BE IM2 Gt MI MA BE IM2 Gt MI MA BE IM2

474 0.05 0.39 0.41 0.50 0.54 0 0 0 0 0 0 0 0 0 0
24,534 0.11 0.36 0.43 0.50 0.51 1 0 0 0 0 2 0 0 0 0
12,798 0.15 0.32 0.52 0.50 0.55 1 0 0 0 0 1 0 0 0 0
16,769 0.25 0.49 0.50 0.49 0.47 1 0 0 0 1 2 1 1 1 2
30,799 0.05 0.54 0.74 0.74 0.80 0 0 0 0 0 0 0 0 0 0
31,071 0.11 0.64 0.78 0.75 0.84 1 0 1 0 1 2 0 1 0 2
44 0.15 0.72 0.78 0.76 0.83 1 1 1 1 1 9 8 9 10 8
40,938 0.25 0.69 0.74 0.76 0.80 1 1 1 1 1 22 23 25 25 22
32,002 0.10 0.90 0.90 0.90 0.93 1 1 0 1 1 26 23 16 15 26
3563 0.28 0.90 0.92 0.91 0.91 1 1 1 1 1 91 137 108 103 106

(Gt) True underlying genotype; (MAF) minor allele frequency; (MA) MaCH; (MI) MENDEL-IMPUTE;
(BE) BEAGLE; (IM2) IMPUTE2.
SHAPEIT-IMPUTE2 results are not shown; they were similar to IMPUTE2 without pre-phasing. ‘‘Hits’’
tallies the total number of SNPs flagged as significant at an a level of 0.001 after a Bonferroni correction
for 60,000 tests.
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example. While it supports input of genotype penetrances, it does

not accommodate reference haplotypes. Again, we also assessed

the imputation methods on a simulated association testing prob-

lem. Compared with BEAGLE and IMPUTE2, MENDEL-IMPUTE

suffers marginal decline in association testing and retains a sub-

stantial edge in computation time.

Discussion
We have posed genotype imputation as a matrix completion

problem and developed an imputation strategy exploiting fast

matrix completion algorithms. Numerical experiments dem-

onstrate remarkable accuracy and efficiency for an off-the-shelf

method compared with more polished model-based methods.

The same strategy readily extends to the imputation of other

kinds of omics data such as CNV and RNA-seq. Haplotyping is

currently an exception.

Comparing the computational speed of matrix completion to

the speed of model-based imputation is complicated by the fun-

damental differences between the methods. MENDEL-IMPUTE

estimates singular vectors that only loosely correspond to a state

space of unobserved haplotypes, while model-based methods ex-

plicitly invoke haplotypes. The various model-based methods mainly

differ in how they simplify their state space. MaCH, IMPUTE2,

BEAGLE, and fastPHASE all operate within a hidden Markov model

(HMM) framework. The haplotypes that make up the latent state

space in MaCH and IMPUTE2 are imper-

fect mosaics of one another. The com-

plexity of the forward–backward algorithm

used to infer latent states scales quadrati-

cally in the number of states. IMPUTE2

judiciously chooses a subset of these

haplotypes and discards the rest. MaCH

chooses a random subset of haplotypes.

BEAGLE makes several simplifications to

increase scalability: namely, substituting

local clusters of haplotypes for latent

states, restricting states to emitting only

a single type of allele, and restricting the

number of possible transitions between

states. fastPHASE also simplifies matters

by using local haplotype clusters. Thus,

the common theme of simplifying the

latent state space pervades these HMM

programs. MENDEL-IMPUTE adopts an

analogous strategy by performing matrix

completion over small overlapping win-

dows. The computational complexity of

matrix completion scales quadratically in the higher dimension

(sample size). This suggests that imputation in large studies be

carried out by partitioning the study participants. If good reference

haplotypes are provided for each partition, then accuracy may

suffer little. In any case, parsimony is achieved by seeking a low-

rank approximation over a limited interval of SNPs. For the in-

terested reader, we discuss in Supplemental Note 3 additional

illustrative simulation examples that provide some intuition on

when MENDEL-IMPUTE is expected to perform both poorly and

well. Regardless of the method, however, the moral of the story is

that intelligent imposition of parsimony increases speed with little

penalty in accuracy.

A possible drawback of matrix completion is that estimated

dosages can be biased toward zero. To negate the bias, one can fit

mixture models to MENDEL-IMPUTE’s immediate output and re-

estimate dosages. Doing so also provides estimates for the un-

certainty in the estimated dosages. Bias reduction is particularly

warranted in imputing untyped SNPs. This is not surprising since

the matrix-completion theory gives reconstruction guarantees

only when entries are missing at random, which is certainly not

the case with untyped SNPs (Candès and Recht 2009). Fortunately,

MENDEL-IMPUTE works well after correcting for bias even in

a missingness regime not covered by current theory.

Classical quantitative genetics has benefited from rigorous

mathematical and statistical models built on Mendelian laws of

inheritance and basic principles of population genetics (Elandt-

Johnson 1971; Cavalli-Sforza and Bodmer 1999; Lange 2002).

These models proved their worth in the era of linkage analysis

when data sets were small and matched model assumptions well.

As we transition to ever larger and more complex genomics data, it

is worth rethinking traditional approaches to statistical analysis.

The major stumbling blocks are computational rather than viola-

tions of the laws of population genetics. Pedigree data, in partic-

ular, will present enormous challenges. Fortunately, the emerging

disciplines of data mining and machine learning offer tools for

fast prediction, classification, and feature selection in messy high-

dimensional data. These tools are desperately needed to fully

harvest the fruits of the revolution in experimental data. The bal-

ance between modeling and computational feasibility is a delicate

one. Fortunately, the information content of modern genomics

Table 6. Timing results on high-coverage genotyping microarray
data

Program Run time (h:min)

MaCH 12:40
BEAGLE 10:20
IMPUTE2 07:10
SHAPEIT-IMPUTE2 02:17
MENDEL-IMPUTE 00:58

EM clustering was applied on the MENDEL-IMPUTE output, adding two
additional minutes. The pre-phased output of SHAPE-IT was fed into
IMPUTE2. The total time for pre-phasing and imputation is reported. The
time spent in IMPUTE2 after pre-phasing was 9 min.

Figure 1. The negative logarithm of P-values for association when the true signal depends on SNP
40,938. (MI) MENDEL-IMPUTE.
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data is so great that sacrificing some statistical efficiency for finite

computation times is not apt to lead geneticists astray.

Methods

Matrix completion
We review the matrix completion problem and describe the algo-
rithm we use to solve it. For the sake of generality, assume that
there are p genotyping platforms and that Xi 2 R

m3n lists the
genotyping results for platform i, where m is the number of in-
dividuals and n is the number of SNPs. For the sake of simplicity,
we assume that all platforms contain the same number of SNPs
and that SNPs not typed on a given platform are flagged as
missing. Missing entries of Xi arise from several sources. For in-
stance, genotypes can be missing for some entries due to poor
genotyping quality. More importantly, a specific platform usually
types only a subset of the available SNPs. Thus, many column
entries of Xi will be systematically missing. Similarly, many row
entries of Xi will be systematically missing because most in-
dividuals are typed on only a single platform.

Matrix completion looks for linkage-disequilibrium structure
in the matrices Xi over a narrow genomic region. In practice, only
a handful of haplotypes occur within a given population over
a short region. Accordingly, we expect each Xi to have low rank.
One way to impute missing genotypes is to find a low-rank matrix
that approximates all Xi well. This suggests the optimization
problem

min
rank Zð Þ#r

f Zð Þ= 1

2
+
p

i =1

PVi
Xi
� �

� PVi
Zð Þ

�� ��2

F
; ð1Þ

where r denotes an upper bound on the possible rank of Z 2 R
m3n,

Yk kF¼ +i;j y2
ij

� �1=2

denotes the Frobenius norm of a matrix Y = (yij), the set Vi indexes
the entries that are observed on platform i, and PVi

Yð Þ is the pro-
jection operator

PV Yð Þij =
yij if i; jð Þ 2 V;

0 otherwise:

�

Besides imputing missing entries in Xi, the optimal Z also effec-
tively resolves inconsistent genotypes among different platforms.
Unfortunately, the optimization problem (1) is nonconvex and
beset by local minima. Instead, we solve the convex relaxation

min f Zð Þ + l Zk k�;
where the nuclear norm

Zk k� = +i si Zð Þ
(sum of the singular values of Z) serves as a surrogate for the rank
function rank(Z), and l is a positive parameter that tunes the trade-
off between model fit and model complexity.

Of the many possible strategies for solving problem (2), we
settled on the Nesterov method (Beck and Teboulle 2009) due to its
implementation simplicity and good scaling with the dimension
of the data. To put its performance in context, the Nesterov
method performed slightly better than a close competitor, based
on the majorization–minimization (MM) principle (Lange et al.
2000). MM algorithms are widely used in the machine learning,
statistics, and signal processing communities because of their nu-
merical robustness, good scaling, and simplicity. Details of our
comparison are given in Supplemental Note 1.

Nesterov algorithm

We now describe how we applied Nesterov’s algorithm to the
matrix completion problem. It simplifies matters to work with
a slightly different form of the loss function. Expanding each
square in definition (1), it is easy to see that the loss can be re-
written up to an irrelevant constant as

f Zð Þ = 1

2
+
j;k

wjk zjk � �xjk

� 	2
;

where

�xjk = w�1
jk +p

i =11 j;kð Þ2Vif gx
i
jk

and

wjk = W½ �jk = +p
i =11 j;kð Þ2Vif g:

This formulation has the advantage of permitting incorporation of
genotyping quality scores in the model through the weights wjk.
The Nesterov algorithm as summarized in Algorithm 1 consists of
two steps per iteration: (a) predicting a search point Sk based on the
previous two iterates (line 4); and (b) performing gradient descent
from the search point Sk, possibly with a line search (lines 6–11).
We first describe Step b. The gradient descent step effectively
minimizes the local surrogate function

gðZjSk; dÞ= f ðSkÞ + Æ=f ðSkÞ;Z� Skæ +
1

2d
Z� Sk
�� ��2

F
+ l Zk k�

=
1

2d
Z� Sk + d =f ðSk)
�� ��2

F
+ l Zk k� + c k; ð2Þ

where c k is again an irrelevant constant. The first two terms of the
surrogate g(Z|Sk, d) correspond to a linear approximation of f(Z)
around the k-th search point Sk. The third term penalizes de-
partures of Z from Sk. This is done to ensure that searching over Z
remains within the region for which the linearization of f(Z) is
accurate. The nuclear norm penalty is unchanged in moving from
f(Z) to g(Z).

The solution to Equation 2 is given by thresholding the sin-
gular values of the intermediate matrix Sk � d=f(Sk) at ld. The
positive constant d equals the reciprocal of the Lipschitz constant

Table 7. Accuracy results on synthetic low-coverage sequencing
data

SNP MAF

r 2 True positive Hits

MI BE IM2 Gt MI BE IM2 Gt MI BE IM2

474 0.05 0.56 0.73 0.32 0 0 0 0 0 0 0 0
24,534 0.11 0.78 0.84 0.59 1 1 1 0 2 2 2 0
12,798 0.15 0.63 0.86 0.58 1 0 0 0 1 0 0 0
16,769 0.25 0.71 0.69 0.47 1 1 1 0 2 1 2 2
30,799 0.05 0.94 0.95 0.76 0 0 0 0 0 0 0 0
31,071 0.11 0.86 0.95 0.84 1 1 1 0 2 2 2 1
44 0.15 0.78 0.90 0.74 1 1 1 1 9 9 9 8
40,938 0.25 0.91 0.98 0.97 1 1 1 1 22 23 22 23
32,002 0.10 0.94 1.00 0.84 1 1 1 0 26 32 26 12
3563 0.28 0.93 0.97 0.93 1 1 1 1 91 110 95 95

(MAF) Minor allele frequency; (MI) MENDEL-IMPUTE; (BE) BEAGLE; (IM2)
IMPUTE2; (Gt) true genotype.
‘‘Hits’’ tallies the total number of SNPs flagged as significant at an a level
of 0.001 after a Bonferroni correction for 60,000 tests.

Table 8. Timing results on synthetic low-coverage sequencing
data

Program Run time (h:min)

BEAGLE 23:27
IMPUTE2 31:02
MENDEL-IMPUTE 03:18
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L(f) associated with the gradient of the loss function f(Z). Because
this gradient amounts to the Hadamard product

=f Zð Þ= W � Z� �X
� �

;

it follows that

=f Zð Þ � =f Yð Þk k2 # L fð Þ Z�Yk k2

withL( f ) = maxjkwjk. Consequently, we take d = (maxjkwjk)
�1. With

this specific choice, the linear search described in Algorithm 1
terminates in a single step. Using a larger d leads to a bigger gra-
dient descent step (line 6), which sometimes must be contracted to
send the penalized loss h(Z) = f(Z) + lkZk� downhill.

We now discuss Step a of Algorithm 1. The search point Sk is
found by an extrapolation based on the previous two iterates Zk

and Zk�1. The Nesterov algorithm accelerates ordinary gradient
descent by making this extrapolation. If the global minimum of
the penalized loss h(Z) occurs at the point Z*, then the following
nonasymptotic bound for the convergence of the objective values

h Zk
� �

� h Z�ð Þ #
4L fð Þ Z0 � Z�

�� ��2

F

k + 1ð Þ2

applies (Beck and Teboulle 2009). Without extrapolation, Nesterov’s
method collapses to a gradient method with the slow non-
asymptotic convergence rate of O(k�1) rather than O(k�2). Re-
markably, the Nesterov method requires essentially the same
computational cost per iteration as the unaccelerated gradient
method. In practice, convergence is quick for the typical scenarios
considered in this study. For example, in the pedigree scenario, the
maximum and mean numbers of iterations for a given l over all
imputed windows were 18 and 2.17 iterations.

Matrix completion via MENDEL-IMPUTE

We now describe our strategy for applying matrix completion to
genotype imputation. The essential ingredients are imputing ge-
notypes along a sliding window and tuning the penalty constant l

by holding out validation entries of the data matrix.
SNP studies typically consist of 104–106 SNPs and 102–104

individuals. Since linkage disequilibrium occurs within narrow
genomic segments, we apply matrix completion along a sequence
of overlapping windows. Each window consists of three sub-
windows of w SNPs each. Thus, a typical window spans 3w total
SNPs. Algorithm 1 is applied to the entire window, but only the
middle block of w SNPs is imputed. The window is then shifted
over by w SNPs, and the process repeated. The sliding window
strategy permits information to propagate from the left and
right thirds into the middle third where imputation is per-

formed. The first, second, and last windows are handled some-
what differently. In the first window, the first and middle thirds
are simultaneously imputed. The last window encompasses
three thirds plus a leftover piece less than w SNPs in length. In
the last window, the right third plus the leftover piece are si-
multaneously imputed.

The tuning constant l is selected anew for each window by
validation in its left and right thirds. In these flanking thirds, we
hold out some fraction of entries (typically 10% of the observed
entries) and compute the imputation error rate on the masked
entries over a grid of l values. The initial grid always contains
k points lmax, rlmax, . . ., rk�1lmax determined by a maximum value
lmax and a multiplier r 2 (0, 1). Setting r = 1/2 works well in
practice. At each of the grid points, we warm start parameter fitting
using the values from the previous round of imputation. The grid
point with the lowest error rate is then chosen for imputation in
the middle third of the window. In practice, a relatively large range
of l yields good accuracy, and a conservative choice of k suffices.
Nonetheless, as a safeguard against the possibility that a pre-
specified k is too small, we always check whether the error rate
bottoms out before we reach the end of the grid rk�1lmax. If this is
not the case, we keep extending the grid downward in a geometric
fashion until we see no significant improvement in the error rate. In
the results presented in this study, we use k = 11 for our initial grid.
Solving Equation 2 for a sequence of l values suggests using the
solution to the problem when l = rklmax as the initial matrix Z0 for
solving the problem when l = rk+1lmax. The benefits of using these
warm starts are discussed in more detail in Supplemental Note 1.

Determining the SVD is the most computationally expen-
sive step in the Nesterov algorithm. The Golub-Kahan-Reinsch
SVD algorithm implemented in LINPACK/LAPACK and used in
MATLAB has computational complexity 4m2n + 8mn2 + 9n3 for an
m 3 n matrix (Golub and Van Loan 1996). In our sliding window
scheme, we have to choose whether to compute the SVD on a
given window or its transpose. The complexity count suggests we
should orient matrices so that they are tall and skinny (large m and
small n). In our setting, this criterion typically dictates orienting
the data matrix so that rows correspond to subjects and columns
correspond to SNPs. In this orientation, m is the sample size, and
n = 3w is the window width.

Finally, it remains to determine w. The SVD computation per
window takes on the order of 4m2n operations and effectively
scales linearly in w rather than cubically. At the same time, how-
ever, it takes fewer windows to cover the entire chromosome when
windows are wider. Also, imputation accuracy depends on w. To
assess the complex trade-offs in accuracy versus run time, we per-
formed a battery of comparisons on HapMap 3 panels over six
values of w ranging from 75 to 200. Figure 2 shows results for the
Nesterov matrix completion algorithm for the chromosome 4 CHB
data from HapMap 3. Error rates are estimated from a 1% hold-out set.
Details on the data appear in the next section, where we discuss
comparisons with MaCH. Results for additional chromosomes
and other ethnic groups are summarized in Supplemental Figures
2 and 3. The bottom line is that model-free imputation is re-
markably accurate over a very wide range in w. Both run time and
accuracy slightly decrease as w increases over the range in-
vestigated. For comparison, the dashed line shows the error rate
for MaCH on the same data.

Posterior probabilities, dosage estimates, and estimation error

In this section, we describe how to assign posterior probabilities,
and consequently dosage estimates, to the raw output from
MENDEL-IMPUTE. Suppose we measure a random scalar attribute
xi for each of n objects 1, . . ., n. Each object must be assigned to one

Algorithm 1. Nesterov method for minimizing Equation 2

1 Pre-compute �X = p�1+i PVi
ðXiÞ and W = wjk

� �
= +i1 j;kð Þ2Vif g.

2 Initialize Z0, d > 0, a0 = 0, a1 = 1

3 Repeat

4 Sk)Zk +
ak�1 � 1

ak


 �
Zk � Zk�1� �

5 Repeat

6 Atemp)Zk � d½W�ðSk � �XÞ�
7 Compute SVD Atemp = Udiag(a)VT

8 z ) (a � ld)+

9 Ztemp ) Udiag(z)VT

10 d ) d/2

11 until f(Z)temp # g(Ztemp|Sk, d)

12 Zk+1 ) Ztemp

13 ak + 1) 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2akð Þ2

q
 �
2

14 until objective value converges
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of k latent clusters. Let Cij denote the event that object i belongs
to cluster j, hj(x|u) the density of the attribute conditional on the
object belonging to cluster j, and pj the probability that any ob-
ject belongs to cluster j. Further suppose that (p1, . . ., pk) has
Dirichlet(a1, . . ., ak) prior. If zij is the indicator function of the
event Cij, then joint likelihood of the data and parameters is
proportional to

Yn
i =1

Yk

j =1

pjhj xið Þ
� 	zij

Yk

j =1

p
aj�1

j :

If we further assume that the conditional densities hj(x|u) are nor-
mally distributed with means mj and common variance s2, then the
EM algorithm for obtaining maximum a posteriori estimates of the mj,
pj, and s2 proceeds by cyclically applying the following four updates:

wij)
pjhj xið Þ

+k
j = 1pjhj xið Þ

pj)
+n

i = 1wij + aj � 1

n + +k
j = 1aj � k

mj)
+n

i = 1wijxi

+n
i = 1wij

s2)
1

n
+
n

i

+
k

j = 1

wij xi � mj

� �2

until convergence. See the discussion on EM clustering in Lange
(2012) for a derivation of these updates. Additional details such as
how to initialize the EM algorithm and how to choose the pa-
rameters aj can be found in Supplemental Note 4. With these
posterior probabilities in hand, one can then impute the refer-
ence allele dosages at a given SNP by computing posterior mean
counts of the reference allele. A genotype can be assigned to the
cluster with the greatest posterior probability. Moreover, the
posterior probabilities calibrate the uncertainty in the imputed
dosages. An example, comparing the raw MENDEL-IMPUTE
output and the final imputed dosage for a SNP, appears in Sup-
plemental Figure 4.

Experimental details

All reported results for matrix completion rely on a fixed window
size of w = 100 and kmin = 11 regularization parameter grid points.

As just mentioned, the performance of
the matrix completion algorithm is very
stable with respect to these settings.
Higher efficiency with little compromise
in accuracy can be achieved using a larger
window size.

HapMap 3

Note that the SNPs reported in HapMap
have already undergone quality control
screening, including removal of SNPs
with low call rates and extreme de-
viations from Hardy-Weinberg equilib-
rium. Aside from removing relatively rare
indel SNPs, we did no further pre-pro-
cessing before applying the two imputa-
tion methods. Details on quality control
screening in the HapMap panels appears
in the supplementary section of Interna-
tional HapMap 3 Consortium (2010).

Table 9 summarizes the number of
SNPs in each of the four randomly se-

lected chromosomes in our comparisons. For each SNP, a reference
allele is given in the HapMap panel. These do not necessarily
correspond to the minor or major allele. For our matrix completion
algorithm, we used a dosage model based on the reference allele to
code entries in the data matrix, namely, 0 for homozygosity in the
reference allele, 1 for heterozygosity, and 2 for homozygosity in the
nonreference allele. While assigning the minor allele to be the
reference allele is a natural choice, doing so is not necessary.
Since the matrix completion algorithm returns real values, we
mapped these back to elements in the set {0, 1, 2} by simply
rounding to the closest integer in the set. Applying the EM-
clustering algorithm gave similar results. We ran MaCH using the
option flags -geno, -mle, and -compact and omitting a reference
panel. We ran fastPHASE 1.4.0 using the option flags -H-4 -T10
-C25 to turn off haplotype estimation, limit the number of ran-
dom starts and EM iterations, and thus ultimately save on com-
putation time.

Synthetic pedigree

To assess the performance of MaCH in the synthetic pedigree
example, we applied the two-stage procedure recommended for
large data sets. Thus, we used a random subsample of 200 in-
dividuals to estimate the crossover and error rates. We ran MaCH
again over the entire set of 518 individuals, passing in the two
parameters estimated from the first stage. In both stages, we used
50 rounds of Monte Carlo sampling and 200 hidden haplotype
states.

Figure 2. Accuracy versus time trade-off for the Nesterov algorithm on chromosome 4 from the
Chinese Han group in HapMap 3. The numbers indicate the subwindow size w. (Dashed line) Error rate
for MaCH on the same data set.

Table 9. Summary of SNP counts from HapMap 3 used to compare
model-based imputation by MaCH and MENDEL-IMPUTE

CHB YRI

Chr Number of SNPs Chr Number of SNPs

4 248,463 5 246,557
5 251,314 8 215,363
18 121,041 14 122,705
21 52,425 15 106,573

Four chromosomes from the CHB and YRI subgroups were selected
randomly.
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High-coverage genotyping microarray

The simulated quantitative trait yi for individual i depends on the
dosage xi of a single SNP according to the model:

yi = m + bxi + sei;

where m = 160, b = 3, s = 5, and the ei are i.i.d. standard normal. Ten
different SNPs are used to generate the trait signals for 10 different
trials. SNPs vary in reference allele frequency and squared corre-
lation r 2 between their imputed dosages and their true dosages.
MaCH, BEAGLE, IMPUTE2, and SHAPEIT-IMPUTE2 were applied
using their default values.

Low-coverage sequencing

We calculate the likelihoods of genotype dosages using a standard
binomial model (Sampson et al. 2011; Pasaniuc et al. 2012). To
explain the model, let Gij denote the latent genotype at SNP i for
individual j, A and B the major and minor alleles at the SNP, and
Rij = (aij, bij) the read count pair for i over A and B, respectively. If
there is a fixed per-base per-read error rate of e, and nij = aij + bij,
then the conditional likelihoods of Rij amount to

Pr Rij = aij; bij

� �
jGij = A=A

� 	
=

nij

aij


 �
1� eð Þaij ebij

Pr Rij = aij; bij

� �
jGij = A=B

� 	
=

nij

aij


 �
1=2ð Þaij + bij

Pr Rij = aij; bij

� �
jGij = B=B

� 	
=

nij

aij


 �
eaij 1� eð Þbij :

Sampson et al. (2011) observed that the distribution of cov-
erage was observed to be well described empirically by a negative
binomial distribution. They therefore advocated modeling the
number of reads Nij ; Poisson(m 3 gi), where m denotes the average
coverage and gi ; G(a, b) with shape parameter a and scale pa-
rameter b = 1/a. In the simulation studies, we sample the number
of reads at locus i as Poisson with gi ; G(3.8, 0.8) and m fixed at 1.
This procedure gave coverage statistics in line with those observed
in Phase 1 1KGP.

To convert the sequence data into a form suitable for
MENDEL-IMPUTE, we constructed a matrix of posterior mean
dosages based on the Hardy-Weinberg priors:

Pr Gij = A=A
� �

= p2
A

Pr Gij = A=B
� �

= 2pApB

Pr Gij = B=B
� �

= p2
B;

where pA and pB are the empirical allele frequencies from the ref-
erence panel. The Bayes rule implies that the posterior probabilities
Pr(Gij|Rij, nij) can be recovered via

Pr Gij = A=AjRij = aij; bij

� �� 	
= 1� eð Þaij ebij p2

A

�
Z

Pr Gij = A=BjRij = aij; bij

� �� 	
= 2 1=2ð Þaij + bij pApB

.
Z

Pr Gij = B=BjRij = aij; bij

� �� 	
= eaij 1� eð Þbij p2

B

.
Z;

with normalizing constant

Z = 1� eð Þaij ebij p2
A + 2 1=2ð Þaij + bij pApB + eaij 1� eð Þbij p2

B:

Finally, if A is the reference allele, then the posterior mean dosage is
expressed as

xij = 2Pr Gij = A=AjRij = aij; bij

� �� 	
+ Pr Gij = A=BjRij = aij; bij

� �� 	
:

For low coverage sequencing data, the total reads nij at SNP
i for person j served as a weight wij in the matrix completion
criterion:

f Zð Þ = 1

2
+
ij

wij xij � zij

� �2
+ l Zk k�:

Reference haplotypes were incorporated in a matrix H with
entries hij 2 {0, 1}, and the data matrix X was expanded to

X
2H


 �
. MENDEL-IMPUTE was then applied to the data matrix

X
2H


 �
with weight matrix

W
WH


 �
, where wH

ij = maxklwkl.

For each SNP, a gamma distributed random variable g was
drawn. To determine the number of reads, a Poisson deviate
with intensity g was then drawn. Each haplotype was sampled
with equal probability, and errors were introduced in reading with
probability e = 0.01. Read data were converted to posterior
mean dosages to obtain the matrix X. We then applied MENDEL-

IMPUTE to the composite matrix
X

2H


 �
using the weights just

described. Finally, we projected the estimated entries zij onto the
interval [0, 2].

Software availability

Our MATLAB code implementing MENDEL-IMPUTE is freely
available at http://www.genetics.ucla.edu/software/. MENDEL-
IMPUTE will also be available as an option in the comprehen-
sive genetic analysis software Mendel distributed on the same
website.
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