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Abstract
Biotechnology has almost unlimited potential to change our lives in very
exciting ways. Many of the chemical reactions that produce these products can
be fully optimized by performing them at extremes of temperature, pressure,
salinity, and pH for efficient and cost-effective outcomes. Fortunately, there are
many organisms (extremophiles) that thrive in extreme environments found in
nature and offer an excellent source of replacement enzymes in lieu of
mesophilic ones currently used in these processes. In this review, I discuss the
current uses and some potential new applications of extremophiles and their
products, including enzymes, in biotechnology.
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Introduction
The impact of biotechnology on our lives is inescapable. Some 
of these impacts are well publicized, like the process of generat-
ing biofuels. However, there are numerous other applications 
that are not widely known outside of specialist circles that affect 
our daily life, such as food and drink (e.g. lactose-free milk1 and 
bioinsecticides2), how we make and wash our clothes (e.g. cellu-
lases to produce ‘stone-washed’ jeans3, lipases4, and proteases5 in 
detergents), and the medications we take to remain healthy, just to 
name a few examples.

Many of the reactions performed in the process of making these 
products are often not optimized because mesophilic enzymes 
are used at extremes of temperature, pressure, salinity, and 
pH6. The efficiency of these enzymes is often improved through 
genetic and/or chemical modification7,8 as well as immobilization 
strategies9, all of which are designed to produce biocatalysts with 
improved properties such as increased activity and/or stability to 
use in specific industrial processes. This can be a lengthy and (more 
importantly) costly enterprise, especially since nature provides 
many readily available alternatives in the form of extremozymes, 
which are found in organisms that thrive in extremes of tempera-
ture (as high as 122°C and as low as −12°C), pressure (as high as 
1000 atm), salinity (up to and including saturating levels), and pH 
(from 0 to 6 and 8 to 12)10–15. As such, their enzymes are already 
adapted to work under the extreme conditions of many industrial 
processes.

To date, few extremophiles/extremozymes have found their way 
into large-scale use in the field of biotechnology16; however, their 
potential is undeniable in many applications. Four success sto-
ries are the thermostable DNA polymerases used in the polymer-
ase chain reaction (PCR)17, various enzymes used in the process 
of making biofuels18, organisms used in the mining process19, and 
carotenoids used in the food and cosmetic industries20. Other 
potential applications include making lactose-free milk1; the pro-
duction of antibiotics, anticancer, and antifungal drugs6; and 
the production of electricity or, more accurately, the leaching of 
electrons to generate current that can be used or stored21.

This review initially focuses on the four success stories of 
extremozymes in biotechnology. Then it discusses the most promi-
nent sectors of the enzyme market (glycosyl hydrolases, lipases, 
proteases, and those of medical importance) where the applica-
tion of extremophiles/extremozymes could replace currently used 
enzymes to make reactions more efficient and/or cost effective.

DNA polymerases
It is difficult to overstate the success or impact the DNA polymer-
ases from the thermophiles Thermus aquaticus, Pyrococcus 
furiosus, and Thermococcus litoralis, otherwise known as Taq22, 
Pfu23, and Vent24, respectively, have had in biotechnology. Without 
a doubt, the automated version of the PCR would not have been 
possible without these enzymes. During its patent lifetime, PCR 
earned its rights holders over $2 billion in royalties25. It is difficult 
to imagine our lives without PCR, especially for a typical bench 
scientist. However, fields once thought to be far removed from 
science, like law enforcement, have also benefitted greatly from 

PCR by making it more readily possible to identify and rule out 
suspects on the basis of their DNA profile26. Even the entertainment 
industry, with its many movies, novels, and TV shows centered on 
forensic science and PCR-based technologies, has greatly benefit-
ted from PCR. The impact these three hyperthermophilic enzymes 
have had on biotechnology and our current culture can only be 
described as immense.

Biofuel production
In an effort to supplement the planet’s dwindling supply of fossil 
fuels, there has been a concerted effort to generate similar fuels 
using biomass (e.g. corn, beets, wheat, and sugar cane). Depending 
on the specific source, biofuels can be categorized into first and 
second generation. First-generation biofuels are those derived from 
the ‘easily’ hydrolyzed sugars, starches, and oils of available crops, 
whereas second-generation biofuels are derived from lignocellu-
losic material, which is more resistant to hydrolysis.

Biofuels can also be categorized by the eventual end products: 
butanol, ethanol, hydrogen, methane, and biodiesel. Traditional 
methods of biobutanol and bioethanol production involve the use 
of a chemical process supplemented with the use of mesophilic 
microorganisms such as Saccharomyces cerevisiae and Clostridium 
species27. The production of hydrogen traditionally relies on a 
chemical/catalyst process28; however, larger-scale microorgan-
ism-based systems using the thermophiles Caldicellulosiruptor 
saccharolyticus and Thermotoga elfii have been developed 
recently29. In contrast to the other products, methane has always 
been produced using a consortium of microorganisms, which 
include methanogens (extremophiles that are the only known bio-
logic producers of methane)18.

Many of the steps in biofuel production involve high temperatures 
and extremes of pH; therefore, extremophiles are ideal candidates 
to replace the mesophilic organisms used in traditional methods. 
For example, Thermoanaerobacterium saccharolyticum is able to 
utilize hemicellulose and pentose sugars like xylose as a starting 
material to produce ethanol30. Engineered versions of this ther-
mophile have shown great promise in producing large quantities of 
ethanol and minimizing other side reactions/products31. There are 
also numerous applications for extremophiles in the production of 
hydrogen through anaerobic fermentation and hydrogenases. The 
use of strains of Caldicellulosiruptor, Thermoanaerobacterium32, 
Pyrococcus33, and Aeropyrum34 shows immense potential. The 
research is still very preliminary; however, recent advances such as 
the engineering of a hyperthermophile are quite promising35,36.

The two products produced by microorganisms that show the most 
commercial success are biodiesel and butanol. Biodiesel harvests 
the power of high lipid content (>75% dry weight) algae, most 
of which contain long-chain hydrocarbons like those found in 
petroleum. There are several extremophilic algae (e.g. Cyanidium 
caldarium37 and Galdieria sulphuraria38) that meet these require-
ments. Engineered halophilic algae also hold great promise, as they 
can be grown in open containers since the high salinity required for 
their growth inhibits other microbes. This means they can be grown 
in underutilized environments such as the oceans and arid/desert 
environments39.
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Butanol is quite inhibiting to the growth of microorganisms com-
pared with ethanol (most organisms cannot tolerate more than 
2%). As such, organisms need to be modified in order to overcome 
product inhibition and withstand large quantities of butanol. Cur-
rently, Green Biologics is producing biobutanol from corn stock 
by using thermophilic Clostridium. Other companies such as Gevo, 
Joule Unlimited, and Solazyme are also able to produce large-scale 
volumes of bioethanol and biodiesel as well as jet fuel for both 
civilian and military use. Additionally, Sapphire Energy has moved 
one step back in the process and generates what it calls ‘Green 
Crude’, which can act as a replacement for crude oil in the existing 
petroleum infrastructure.

Biomining
In addition to biofuels, another important application of 
extremophiles and their enzymes can be found in the mining 
sector40. This process, also known as bioleaching, is the removal 
of insoluble metal sulfides or oxides by using microorganisms41. 
It is a safer and more environmentally friendly way to extract met-
als compared with traditional heap leaching, which involves the 
use of several chemicals, including cyanide, to bind and separate 
specific minerals/metals from others.

In 1992, biomining accounted for 10% of worldwide copper 
production6, but current estimates place it at around 15% for 
copper and 5% for gold42. Extraction rates are around 90% from 
biomining compared with 60% for traditional heap leaching41. 
Biomining techniques have successfully been employed to 
mine metals such as gold, silver, copper, zinc, nickel, and ura-
nium. The organisms used in this process are acidophiles such as 
Acidithiobacillus and Ferroplasma. However, depending on 
the conditions, more thermophilic strains, like Sulfolobus and 
Metallosphaera40,41, may have to be employed. 

Although biomining is generally safe, it does need to be tightly 
controlled, since it can result in acid mine drainage (AMD), which 
occurs when acidic water, generated by the oxidation of sulfides 
from the mine, begins flowing or leaching out of the mine. Since 
the acidophiles employed in biomining thrive in acidic and usually 
heavy-metal environments, AMD results in an environment that is 
not only very acidic but also rich in heavy metals. Copper, zinc, and 
nickel mines are the most common sources of AMD41. Interestingly, 
mesophilic and sometimes psychrophilic acidophiles are the main 
culprits of AMD41. However, when thermophiles are used in bio-
mining, the possibilities of AMD are reduced and costs associated 
with the cooling of processing tanks are kept to a minimum.

Carotenoids
Carotenoids are natural pigments and in extremophiles are most 
often associated with the halophilic archaea and algae43. Most caro-
tenoids cannot be synthesized/extracted from organisms at levels 
that are useful for industry; however, there are three exceptions to 
this: bacteriorhodopsin, canthaxanthin, and β-carotene44.

Bacteriorhodopsin is a membrane-bound retinal pigment as well 
as a proton pump that functions as a rudimentary form of photosyn-
thesis. It is a very stable molecule and harvested from the extreme 
halophilic archaeon Halobacterium salinarum43. It has been 

adapted for use in a wide range of applications from holography, 
artificial retinas, photochromic dyes, spatial light modulators, and 
the renewal of biochemical energy45.

Canthaxanthin is a lipid-soluble antioxidant used as a food dye and 
a feed additive. As a feed additive, it is used in fish, crustacean, and 
poultry farms. It is also used in the cosmetics industry and usually is 
the primary ingredient in tanning pills46. As with bacteriorhodopsin, 
halophilic archaea are the producers of choice with Haloferax 
alexandrinus being the preferred strain47.

β-carotene is a red/orange pigment and the primary colorant in 
carrots, pumpkins, and halophilic microorganisms. The halo-
philic alga Dunaliella salina is the major source for β-carotene, 
as its commercial-scale growth results in 30–40 g dry weight/m2 
per day39. Due to its chemical nature, it is a lipid/oil- and water- 
soluble molecule, which makes it excellent as an additive in the 
baking process (e.g. food coloring) and emulsions (e.g. confection-
ery and prepared foods). However, its primary use is probably as a 
food supplement39.

Proteases/lipases
Proteases and lipases, combined with the gylcosyl hydrolases, 
account for more than 70% of all enzymes sold48 while proteases 
alone are the most widely used class of enzyme. Proteases have 
numerous applications in diverse fields; however, the largest appli-
cation is in laundry detergents, where they have been a standard 
component since 1985 and are used to break apart and remove 
protein-based stains49. The other major uses for proteases are 
in the fields of cheese making, brewing, and baking. Typically, 
the microbial proteases used are mesophilic and derived from 
Bacillus species and produced by companies such as Novozymes 
and Genencor. However, explorations using psychrophilic pro-
teases to enhance cold water washing have taken place. Unfortu-
nately, most psychrophilic enzymes have proven to be unusable due 
to low stability at room temperature. However, through directed 
evolution, a chimeric psychrophilic/mesophilic protease was gener-
ated that improved performance during cold water washing50.

Lipases are a billion-dollar industry51 and very attractive for use in 
industrial settings because of their broad range of substrates, high 
degree of specificity, and stability52. Although their applications in 
laundry detergents (i.e. low temperatures and alkaline conditions) 
and organic synthesis (i.e. low water activity) require lipases to be 
active under extreme conditions, most lipases used are mesophilic. 
Many mesophilic lipases, which typically come from organisms 
like Bacillus and Aspergillus species, are active at high tempera-
tures. As a result, extremophilic lipases are often overlooked; 
however, lipases from thermophilic Bacillus species have been 
shown to be more efficient than currently used enzymes53.

Glycosyl hydrolases and sugars
Glycosyl hydrolases hydrolyze the glycosidic bond between a car-
bohydrate and another moiety and are categorized into well over 
100 families. The hydrolysis generally takes place with the use of 
only two amino acids—a proton donor and a nucleophile/base—
and results in retention or inversion of the anomeric configuration 
of the resulting carbohydrate.
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Roughly 70% of the world’s population54 suffers from lactose intol-
erance resulting from a lack or loss of β-galactosidase activity. For 
this majority of the population, the best way to avoid the often 
embarrassing symptoms of lactose intolerance is through the con-
sumption of lactose-free milk and other dairy products, which are 
generated via the use of the lactase (β-galactosidase) from organ-
isms like Kluyveromyces lactis54. However, for the enzyme to be 
active, the temperature of the dairy product must be raised (from 
about 5°C to 25°C). This elevation in temperature creates the poten-
tial for pathogens to grow as well as for altering the flavor profile of 
the milk. A simple solution to both issues is to use a β-galactosidase 
from a psychrophile1. This enzyme would be active at low tempera-
ture and hydrolyze lactose throughout the entire process from pro-
duction to shipment and storage by the consumer55. This approach 
could save significant amounts of money by eliminating the heat-
ing step as well as achieve a high percentage of lactose hydrolysis. 
Currently, several cold-adapted enzymes have been characterized 
and developed that perform on par with the currently used mes-
ophilic enzymes when compared at their respective temperature 
optima (i.e. 15°C and 37°C)1,55,56.

Similar to the industrial-scale hydrolysis of lactose, that of starch 
traditionally uses mesophilic enzymes. Starch-hydrolyzing enzymes 
comprise about 25% of the worldwide enzyme market; however, 
several adjustments in temperature and pH are needed for most of 
the reactions to ensure optimal conditions.

Since the industrial processes involved in hydrolyzing starch 
require high temperatures (95°C for one step and 60°C for the 
other) and high pH, polyextremophilic (thermophilic and alka-
liphilic) enzymes would be ideal. Currently, an α-amylase from 
Bacillus acidicola57, glucoamylases from Picrophilus58, and a 
pullulanase from Thermococcus kodakarensis59 show great prom-
ise in replacing their mesophilic counterparts. However, amy-
lases have also been isolated from halophiles, such as Halomonas 
meridian and Natronococcus amylolyticus, that could be useful 
in the process of producing high-fructose corn syrup, which is 
produced by hydrolyzing corn starch43.

In addition to sugar hydrolysis, another promising application for 
extremophiles is the production of carbohydrates like trehalose and 
ectoine, which can be used as stabilizers for products like antibod-
ies and vaccines60,61. The production of trehalose from Sulfolobus 
solfataricus in a bioreactor has been perfected and could easily 
replace the currently used mesophilic enzymes from Arthrobacter 
species Q3643. Another example is ectoine, which has been shown 
to protect skin from UVA-induced damage. RonaCare™ Ectoin, 
produced by Merck KGaA (Darmstadt, Germany) is used as a mois-
turizer and comes from halophilic microorganisms39. In addition to 
trehalose and ectoine, several other carbohydrates are produced 
by halophiles as compatible solutes that can also be employed as 
preservatives62.

Medical applications
Surprisingly, microorganisms, including extremophiles, are produc-
ers of a host of antibiotics, antifungals, and antitumor molecules63. 
In truth, this should come as little surprise, as microorganisms have 
been killing each other and fighting for survival for billions of years. 

After that long a time, it should be clear that microorganisms have 
perfected the art of warfare, but it is up to us to take advantage of it.

In addition to the typical antibiotics known from mesophilic 
microorganisms64,65, extremophiles are known to generate antimi-
crobial peptides and diketopiperazines66. Antimicrobial peptides 
have been found in the Halobacteriaceae (phylogenetic family 
containing all halophilic archaea) as well as Sulfolobus species. 
These peptides (halocins) from halophilic archaea are thought to 
be found in all species of the family. Each halocin has a specific 
range of activity, and some act on a broader range of microorgan-
isms than others39. Halocins have been shown to be effective at kill-
ing archaeal cells; however, there are no data to show that halocins 
kill microorganisms pathogenic to humans. Interestingly, there is 
evidence that they assist canines in recovering from surgery67.

Diketopiperazines (also known as cyclic dipeptides) have been 
shown to affect blood-clotting functions as well as having 
antimicrobial, antifungal, antiviral, and antitumor properties. 
They are found in halophiles like Naloterrigena hispanica and 
Natronococcus occultus45 and have been shown to activate and 
inhibit quorum-sensing pathways66. These pathways are important 
in pathogens such as Pseudomonas aeruginosa, which is one of 
the causative agents of pneumonia and a typical infection found 
in patients with cystic fibrosis68,69. Therefore, this could be an 
alternative treatment for the tens of thousands of drug-resistant 
Pseudomonas aeruginosa infections that occur each year (http://
www.cdc.gov/hai/organisms/pseudomonas.html).

In addition to molecules that kill other organisms and tissues, 
extremophiles can also play a role in the medical field through the 
use of bioplastics. Several species of extremophiles produce poly-
hydroxyalkanoates (PHAs), which are a heterogeneous group of 
polyesters; however, they are most commonly found in the halo-
philic archaea39. For example, it has been shown that Haloferax 
medeterrani can be grown with 65% of its dry weight as PHAs, 
which translates into 6 g/L of culture when grown in media sup-
plemented with starch45. PHAs are often used as carbon storage for 
microbial cells but have been harnessed to generate bioplastics and 
have been lauded for their biocompatibility, resistance to water, and 
biodegrading properties, all of which make them an attractive alter-
native to petroleum-based plastics45.

Finally, a very interesting extremophile contribution to the field 
of medicine comes in the form of an alternative vaccine delivery 
system70. Several microorganisms produce internal gas vesicles, 
small gas-filled proteinaceous structures, the best-studied coming 
from the halophilic archaea. These structures have been engineered 
in Halobacterium species NRC-1 to generate a recombinant form 
that expresses portions of the simian immunodeficiency virus on 
the external surface71. Once collected, these recombinant vesicles 
have shown a strong antibody response and immune memory when 
injected into mice. Typically, vaccines derived from recombinant 
methods require the addition of adjuvants (e.g. cholera toxin B) 
to elicit a large enough immune response71. However, in the case 
of the recombinant gas vesicles from Halobacterium species 
NRC-1, the organism’s own polar lipids can be used as an adjuvant, 
as they raise a large immune response since they are ether linked 
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as opposed to the more typical ester-linked molecules. Experi-
ments using NRC-1’s polar lipids and recombinant gas vesicles 
as a nasal-delivered vaccine in mice were quite encouraging and 
showed no toxicity71.

Conclusions
With established commercial success in the DNA polymerase,  
biofuels, biomining, and carotenoid sectors of biotechnology, 
extremophiles and their enzymes have an extensive foothold in the 
market that is expected to keep growing. However, to fulfill this 
great potential, innovative methods will have to be developed to 
overcome current roadblocks. The most significant is a current 
lack of ability to produce most extremophiles/extremozymes on 
the large scale required by industrial processes. Some recombinant 
extremozymes can be produced in large quantities by mesophilic 
organisms like Escherichia coli; however, this is not true for most. 
Therefore, new expression systems will have to be developed with 
extremophilic organisms as the host to achieve high expression 
of soluble proteins. Another significant roadblock is the general 
lack of partnerships among academia, industry, and government. 
More opportunities for ties between all three groups should be 

encouraged, nurtured, and supported from all sides. For it is only 
with all three working together that the most progress will be 
made.
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