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Blood circulation is the result of the beating of the heart, which provides the mechanical force to pump
oxygenated blood to, and deoxygenated blood away from, the peripheral tissues. This depends critically
on the preceding electrical activation. Disruptions in the orderly pattern of this propagating cardiac
excitation wave can lead to arrhythmias. Understanding of the mechanisms underlying their generation
and maintenance requires knowledge of the ionic contributions to the cardiac action potential, which is
discussed in the first part of this review. A brief outline of the different classification systems for
arrhythmogenesis is then provided, followed by a detailed discussion for each mechanism in turn,
highlighting recent advances in this area.
& 2015 Japanese Heart Rhythm Society. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The heart beat provides the mechanical force for the pumping of
oxygenated blood to, and deoxygenated blood away from, the per-
ipheral tissues [1]. This depends critically on the orderly activation
and recovery of electrical excitation through the myocardium.
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Disruptions of this can lead to arrhythmias. Understanding of the
mechanisms underlying their generation and maintenance requires
knowledge of the ionic contributions to the cellular action potential,
which is discussed in the first part of this review. A brief outline of
the different classification systems of arrhythmogenesis is then
provided, followed by a discussion of each mechanism in turn,
highlighting recent advances in this area.
Fig. 1. Enhanced pacemaker can occur via three mechanisms: a negative shift in
the threshold potential (TP), a positive shift in the maximum diastolic potential
(MDP), and an increased rate of phase 4 depolarization.
2. Cardiac action potential and its ionic contributions

The cardiac action potential results from the sequential open-
ing and closing of ion channel proteins that span the plasma
membrane of individual myocytes. Its conduction through the
heart depends on electrical coupling between these cells, which is
mediated by gap junctions [2]. Differences in the expression and
properties of ion channels result in heterogeneities in action
potential waveforms in different cardiac regions and cell types,
and in the normal unidirectional spread of the action potentials
through the heart [3]. The cardiac action potential in humans has
five different phases (from 0 to 4). Depolarization from the SA
node brings the membrane potential to the threshold, opening the
voltage-activated sodium channels [4]. This allows the sodium
ions to diffuse down their electrochemical gradient from the
extracellular space, across the membrane and into the cell. The
resulting sodium current, INa, produces a positive feedback loop
that causes further sodium channels to open, and depolarization of
the membrane proceeds until the sodium Nernst potential is
reached or when the channels are inactivated. This is responsible
for the rapid upstroke, termed phase 0, of the action potential.

Early rapid repolarization then results from the activation of
the fast and slow transient outward potassium currents, Ito,f and Ito,
s, and is responsible for phase 1 of the action potential. This is
followed by a prolonged plateau resulting from a balance between
the inward currents mediated by the voltage-gated L-type calcium
channel (ICa,L) and sodium–calcium exchanger (INCX), and the
outward currents mediated by the voltage-gated delayed rectifier
potassium channels (IK) [5]. The rapid and slow currents (IKr and
IKs, respectively) make up IK. There is also contribution from the
inward rectifying current (IK1). This plateau is responsible for
phase 2 of the action potential. The driving force for potassium
efflux remains high during the plateau phase due to a large dif-
ference between the membrane potential and the potassium
Nernst potential. As the calcium channels become inactivated, the
outward potassium currents predominate, causing further repo-
larization and bringing the membrane potential towards the
potassium equilibrium potential. This is responsible for phase 3 of
the action potential.

The membrane potential returns to its resting value after full
repolarization, which corresponds to phase 4 of the action
potential, and is normally polarized at values between �80 and
�64 mV relative to the extracellular space [6]. This resting state is
maintained mainly by the inward rectifier current, IK1. The weak
inward rectifying ATP-dependent potassium channels (IK,ATP),
activated by nucleotide diphosphates and inhibited by adenosine
triphosphate, are also active during this phase. They are thought to
provide a link between cellular metabolism and the membrane
potential.

Pacemaker cells are distinct from other cell types in showing
automaticity, a property resulting from both voltage- and calcium-
dependent mechanisms [7]. The former involves the funny current
(If) carried by hyperpolarization-activated cyclic nucleotide-gated
(HCN) channels [8], which have several unusual characteristics,
such as activation on hyperpolarization, permeability to both
sodium and potassium ions, modulation by intracellular cyclic
AMP, and a small single channel conductance. The latter involves
spontaneous calcium release from the sarcoplasmic reticulum [9],
which activates INCX. Its crucial role was demonstrated in mice
with complete atrial-specific knockout of NCX, which showed no
pacemaker activity [10]. Both mechanisms result in spontaneous
depolarization that is responsible for the rising slope of the
membrane potential.
3. Mechanisms of arrhythmias

Several schemes have been used to classify the mechanisms of
cardiac arrhythmias. Traditionally, these have been divided into
nonreentrant and reentrant activity [11]. An alternative scheme
divided them into those occurring at the cellular and tissue levels
[12]. A dynamics-based classification, focusing on the trigger-
tissue substrate interactions, divided arrhythmogenic mechan-
isms into unstable calcium cycling, reduced repolarization reserve,
and excess repolarization reserve [13].
4. Focal activity

Focal activity can arise from enhanced automaticity or trig-
gered activity (Fig. 1).

4.1. Enhanced automaticity

Pacemaker cells are present in the SA node, atria, AV node, and
the His-Purkinje system. In the human heart, the normal rate of
discharge of the SA node is between 60 and 100 beats per min
(bpm). Subsidiary pacemakers discharge at slower rates. They are
usually latent and reset by the dominant pacemaker with the
highest intrinsic rate of discharge (i.e., the SA node). For example,
the AV node discharges at 40–60 bpm and the Purkinje system
discharges at 20–40 bpm. Enhanced automaticity of pacemaker
cells can increase the rate of action potential discharge (Fig. 1). This
can result from three main mechanisms: a negative shift in the
threshold potential (TP, top broken arrow), a positive shift in the
maximum diastolic potential (MDP, bottom broken arrow), and an
increased rate of phase 4 depolarization [14]. When this occurs in
the SA node, it can lead to an increase in heart rate, termed sinus
tachycardia. This can be physiological, due to increased sympa-
thetic tone during exercise, or pathophysiological, due to hypo-
volemia, ischemia, or electrolyte disturbances. Moreover, tachy-
cardia–bradycardia syndrome is alternating bradycardia and
tachycardia, seen in patients with atrial fibrillation and sick sinus
node syndrome [15]. Its underlying molecular mechanisms have
not been fully elucidated. Recent evidence suggests a possible role
of HCN channel downregulation in the SA node with a consequent



Fig. 2. Protected pacemaker. Entrance block of the dominant pacemaker allows exit
conduction of the subsidiary pacemaker, which can generate action potentials that
excite the rest of the myocardium.

Fig. 3. Afterdepolarization phenomena: early afterdepolarization (EAD) occurs
early (phase 2) or late (phase 3), and delayed afterdepolarization (DAD) occurs
during phase 4 of the action potential.
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decrease in If [16]. Furthermore, experiments in NCX knockout
mice have demonstrated burst pacemaker activity, suggesting a
possible contributory role of NCX in tachycardia–bradycardia
syndrome [17]. Both HCN and NCX are responsible for the “voltage
clock” of pacemaker activity. It is possible that dysfunctions of the
proteins involved in the “calcium clock” mechanism, for example,
ryanodine receptor and sarcoplasmic reticulum Ca2þ-ATPase, may
also contribute [18].

Enhanced automaticity can also occur in the AV node, under
conditions of acute myocardial infarction, digitalis toxicity, iso-
prenaline administration, and recent cardiac surgery. When the
discharge rate of the AV node is higher than the sinus rate, it can
lead to abnormal rhythms called accelerated junctional rhythms
[19]. These rhythms can occur at sites close to the atria, such as the
pulmonary veins, superior vena cava, crista terminalis, coronary
sinus, atrial septum, and the para-Hisian region that includes the
tricuspid and mitral cannulae, leading to focal atrial tachycardia.

Alternatively, parasystole occurs when a latent pacemaker is
protected from the dominant pacemaker by entrance block and
becomes ectopic, discharging action potentials independently
(Fig. 2). A region of entrance block can occur when the dominant
pacemaker is surrounded by ischemic, infarcted, or otherwise
compromised tissues that prevent conduction of action potentials
to the latent pacemaker. When this happens, action potentials
generated by the latent pacemaker can exit and activate the rest of
the myocardium. Thus, a parasystolic focus is formed when there
are both compromised conduction into the ectopic pacemaker and
exit conduction [20].

Modulated parasystole is a variant of the above [21]. It results
from incomplete entrance block of the ectopic pacemaker. In this
situation, the dominant pacemaker or other cardiac tissues can
exert electrotonic influences on the parasystolic focus. Electrotonic
influences arriving early in the pacemaker cycle delay the firing of
the parasystolic focus, whereas those arriving late in the cycle
accelerate its firing. A special case of modulated parasystole occurs
when the action potentials of the parasystolic focus exert elec-
trotonic influence on the focus itself. This is termed automodula-
tion [22]. As has been shown in the atria, a parasystolic impulse
exerts electrotonic influences on the parasystolic focus itself dur-
ing the supernormal phase, where the focus accelerates rather
than delaying its discharge. Repetition of this mechanism would
then result in a tachycardia [23].

4.2. Triggered activity

Triggered activity results from the premature activation of
cardiac tissues by afterdepolarizations, which are depolarizations
triggered by one or more preceding action potentials [24,25].
4.2.1. Early afterdepolarizations
Early afterdepolarizations (EADs) can develop before full

repolarization, corresponding to phase 2 or phase 3 of the cardiac
action potential in humans (Fig. 3). They are usually but not
exclusively associated with prolonged action potential durations
(APDs), which occur when the inward current is greater in
amplitude than the outward current. Several factors can tip the
balance towards the inward direction. These include increases in
the late sodium current (INa), the calcium current (ICa), or INCX, or
decreases in the repolarizing potassium currents (IKr, IKs, IK1). Two
mechanisms have been proposed for the EADs that are associated
with prolongations in APDs and occur during phase 2 of the action
potential. Firstly, depolarizing shifts in the membrane potential
can reactivate the L-type calcium channels [26], resulting in
increased ICa,L that further depolarizes the membrane. This sets up
a positive feedback loop, triggering an action potential. Secondly,
at membrane potentials negative to the threshold of ICa,L activation
(but before full repolarization), spontaneous calcium release from
the sarcoplasmic reticulum can activate INCX [27], resulting in
membrane depolarization. The intermittent nature of EADs has
recently been examined, demonstrating that it is due to slow
changes in [Naþ]i and potentially explaining why arrhythmias do
not occur all the time [28].

EADs have also been associated with shortening in APDs,
occurring late in phase 3 of the action potential [29]. Here, an
abbreviated APD permits normal calcium release from the sarco-
plasmic reticulum. If the intracellular calcium concentration
([Ca2þ]i) remains elevated when the membrane potential is
negative to the equilibrium potential for NCX, INCX can be acti-
vated, causing membrane depolarization. These late EADs are
clinically relevant, as they can occur immediately after termination
of other types of tachycardia, such as atrial flutter, AT, VT, and VF
[30]. In such instances, repolarization time is shortened and a
transient increase in sarcoplasmic calcium release can be induced
when reverting to sinus rhythm.

Whatever be the underlying mechanism, if the change in
membrane potential brought about by the EAD is sufficiently large,
it will activate INa, resulting in triggered activity. EADs and their
resulting triggered activity are thought to underlie the arrhyth-
mogenesis observed in heart failure and long QT syndromes [31].

4.2.2. Delayed afterdepolarizations
Delayed afterdepolarizations (DADs) were first described as oscil-

latory afterpotentials [32]. They can develop after full repolarization,
corresponding to phase 4 of the cardiac action potential in humans
(Fig. 3). DADs are observed under conditions of intracellular calcium
overload, which can result from exposure to digitalis, catecholamines,
hypokalemia, and hypercalcemia, and in hypertrophy and heart failure.
The proposed mechanism for the genesis of DADs is as follows: high
levels of intracellular calcium induce spontaneous calcium release
from the sarcoplasmic reticulum, activating three calcium-sensitive
currents—the nonselective cationic current, INS, the sodium–calcium
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exchange current, INCX, and the calcium-activated chloride current, ICl,
Ca. Together, these constitute the transient inward current (ITI) that is
responsible for membrane depolarization [33]. If the depolarization
produced by the DAD is sufficiently large, INa is activated, leading to
triggered activity. DAD-induced triggered activity is thought to
underlie the arrhythmogenesis observed in catecholaminergic poly-
morphic ventricular tachycardia (CPVT) [34].

It is worth noting that DADs and late EADs are somewhat
similar [30]. Both occur under conditions of intracellular calcium
overload and involve spontaneous release of calcium from the
sarcoplasmic reticulum. The difference appears to be the timing of
this release [35], which occurs during the repolarizing phase of the
action potential in the case of late EADs, and at the resting
membrane potential for DADs. Indeed, for atrial fibrillation, both
EADs and DADs have been implicated as the mechanisms of
arrhythmogenesis [36].
5. Reentry

Re-entry occurs when an action potential fails to extinguish
itself and reactivates a region that has recovered from refractori-
ness [37]. It can be divided into two types: (i) reentry that occurs
in the presence of an obstacle, around which an action potential
can travel (circus-type); and (ii) reentry that occurs without an
obstacle (reflection or phase 2).

5.1. Reentry involving an obstacle (circus-type)

This occurs when an action potential travels around an anato-
mical or functional obstacle and reexcites its site of origin (Fig. 4).

5.1.1. Anatomical obstacle
The ring model was the first example of circus-type reentry

involving an anatomical obstacle. It emerged from experiments
using disks made from sub-umbrella tissue of a jellyfish [38].
Mayer made the following observations. The disks were paralyzed
when they were separated from their sense organs. They did not
pulsate in seawater, but did so when ring-like cuts were made on
the tissue. Upon mechanical stimulation, the disks then showed
“rhythmical pulsations so regular and sustained as to recall the
movement of clockwork” [38]. Later, Mines used a ring-like pre-
paration of the tortoise heart, demonstrating that it was possible
to initiate circus-type reentry by electrical stimulation [39]. If an
excitation wave has a high propagation rate and a long duration,
the whole circuit would be excited at the same time, causing the
excitation to die out. In contrast, one with slower conduction and a
shorter duration would permit the tissue ahead of the excitation
wave to recover from refractoriness, which can therefore be
reexcited, resulting in circus-type reentry. Mines predicted, “A
circulating excitation of this type may be responsible for some
cases of paroxysmal tachycardia as observed clinically.” He also
proposed three criteria for this type of reentry: (a) an area of
Fig. 4. Circus-type reentry requires a structural or functional obstacle (gray center)
around which an action potential can circulate.
unidirectional block must exist; (b) the excitation wave propagates
along a distinct pathway, returns to its point of origin, and starts
again; and (c) interruption of the circuit at any point would ter-
minate this circus movement.

It was recognized that conduction of the excitation must be
sufficiently slow to allow the tissue ahead in the circuit to recover
from refractoriness so that it can be reexcited. Thus, both the
conduction velocity (CV) and the refractory period determine
whether reentrant arrhythmogenesis occurs. It is useful to
describe this excitation as a propagating wave, with a wave front
that represents action potential depolarization, and a tail that
represents repolarization [40]. The length of this excitation wave is
given by the product of its CV and refractory period [41], and must
be smaller than the length of the circuit in order for reentry to be
successful. Often, it is assumed that the end of the refractory
period coincides with the end of the APD.

5.1.2. Functional obstacle
The possibility of circus-type reentry occurring without an

anatomical obstacle was later suggested [42]. Direct evidence for
this came from experiments demonstrating that premature elec-
trical stimuli can induce tachycardia in isolated rabbit atrial pre-
parations [43]. Electrical stimulation was applied at the center of
the atrial tissue. Electrical activation initiated by regular stimuli
spread normally throughout the tissue. In contrast, an impulse
initiated by premature stimuli only propagates in the direction of
shortened refractory periods and does so at a reduced CV. The
unidirectional block of the premature impulse is caused by spatial
dispersion in the refractory periods [44]. Furthermore, it was
proposed that the center of the tissue was held above threshold by
the electrotonic influences of the depolarization wave front, which
revolved around this area, rendering it inexcitable. The excitation
wave would then continue to revolve around this functional
obstacle. Subsequent experiments then obtained transmembrane
potential recordings, which led to the leading circle model [45].
Here, the circuit is defined entirely by the electrophysiological
properties of the tissue. The smallest circuit permitting successful
reentry, which was called the leading circle, is one in which the
circulating wave front can just reexcite the tissue ahead that is still
in the relative refractory period.

The CV of the propagating action potential depends on the
wave curvature. For a planar wave, each cell activates one cell
downstream. For a wave front curving inwards (concave), each cell
will be activating less than one cell downstream. This source–sink
mismatch will increase the depolarizing current available for each
downstream cell, resulting in a greater rate of voltage rise, and
therefore, a higher CV compared to that of a planar wave. The
opposite is true for a wave front curving outwards (convex), where
each cell will be activating more than one cell downstream, and
thus the CV will be smaller than that of a planar wave. If the
curvature is sufficiently convex, conduction block can result [46].
The point where the activation and repolarization wave fronts
meet is called the phase singularity [47]. This corresponds to a
nonexcited point because all phases of the wave meet here.

A variation of functional reentry termed spiral wave reentry
was later described. A spiral wave is a two-dimensional wave of
excitation emitted by a self-organizing source of functional reen-
trant activity, termed a rotor. The three-dimensional equivalent of
a spiral wave is a scroll wave. Spiral waves were described earlier
in the Belousov–Zhabotinsky chemical reaction, in which cerium
ions catalyze the oxidation of malonic acid by bromate. In this
reaction, the ratio of cerium (IV) to cerium (III) undergoes repeated
temporal oscillations, generating spiral waves with alternating
colors. Spiral waves have been subsequently reproduced in models
of cardiac tissue and demonstrated in thin slices of epicardial
muscle using a potentiometric dye, which changes its spectral



G. Tse / Journal of Arrhythmia 32 (2016) 75–81 79
properties in response to voltage changes. Experiments have
shown that the phase singularity is excitable but remains nonex-
cited, and therefore acts as a functional obstacle around which the
spiral wave can circulate [48].

Spiral waves are not fixed in space but can drift through the
tissue [49]. This drift phenomenon is accompanied by a Doppler
effect, in which the frequency of excitation at a given measure-
ment site depends on the location of this site relative to the
drifting spiral wave [50]. Thus, the sites in front of the wave are
excited faster than those behind the wave. This may be the
underlying mechanism of torsade de pointes [51], in which the
periodic torsion of the QRS axis has been attributed to two widely
separated foci discharging at different frequencies. Two counter-
rotating spiral waves separated by a small distance can produce
reentry in a figure-of-eight configuration, which was first
demonstrated in the canine heart using a healed myocardial
infarction model [52].

5.2. Reentry not involving an obstacle

Reentry can also occur without circus movement. This can be
divided into reflection and phase 2 reentry.

5.2.1. Reflection
The possibility of reflection was first suggested by a report that

investigated the role of slowed action potential conduction in
reentrant excitation using excised canine Purkinje fibers [53].
Depressed excitability in discrete segments of the fibers was pro-
duced by increasing the extracellular potassium concentrations.
The authors made the following observations. An action potential
traveling in the forward direction was sometimes followed by a
return extrasystole that traveled in the backward direction
through the original route. This only occurred when the initiating
impulse reached an area of depressed excitability. It was noted
that the return extrasystole could arise from circus movement
within the depressed segment, a mechanism proposed earlier [54].

Later, reflection was demonstrated as a mechanism of reentrant
arrhythmogenesis using the sucrose gap model [55]. Experiments
used ion-free isotonic sucrose solution to create a central inexci-
table gap in canine Purkinje fibers, thereby dividing them into
three segments (Fig. 5). Electrical stimulation at the proximal
segment elicits an action potential. This excitation is transmitted
across the gap to the distal segment after a delay. However, this
cannot be active in the form of action potentials because the
extracellular space is ion-free, but instead involves passive spread
of the local current (electrotonic current) across the low-resistance
intracellular pathway. When depolarization reaches threshold, an
action potential is initiated in the distal segment. This in turn
Fig. 5. Reflection. Stimulation of the proximal segment elicits an action potential.
Its conduction across the middle segment cannot take place actively as the extra-
cellular region is ion-free. Instead, it involves electrotonic current spread intra-
cellularly. After a delay, when the membrane potential reaches threshold at the
distal segment, another action potential is generated.
generates electrotonic currents in the retrograde direction. With a
further delay, the proximal region can be reexcited when it has
recovered from refractoriness, resulting in a return extrasystole,
completing reflection [55]. Successful segment-type reflection
requires a balance between the conduction delay and the cellular
membrane excitability [56]. A slightly different model of reflection
involved immersion of the Purkinje fibers in a solution containing
high concentrations of potassium and lactic acid to mimic the
extracellular milieu that is present during ischemia [57]. This also
renders the central segment inexcitable. Segment-type reflection
has been demonstrated in isolated atrial [58] and ventricular [59]
tissues.

Recently, a different type of reflection, called the expansion-
type, has been demonstrated [60]. Antegrade propagation of an
impulse occurs from a narrow isthmus region to an expanded
distal region. The activation wave front has an outward curvature
(convex) and stimulates a higher number of cells in the expanded
region, where the source–sink mismatch is greatest. This causes
the direction of electrotonic currents to be reversed, in turn
prolonging the action potential. This in turn initiates retrograde
propagation along the same path.

5.2.2. Phase 2 reentry
Phase 2 reentry is another mechanism that does not depend on

circus-type movement [61]. Its concept emerged from experi-
ments that introduced pinacidil, an activator of the ATP-regulated
potassium current, IK,ATP, to canine ventricular tissues. The canine
ventricular action potentials have a “spike and dome” morphology.
Pinacidil increases IK,ATP, resulting in the shortening of APDs and
thus loss of the action potential dome. However, this effect is much
more prominent in the epicardium than in the endocardium,
possibly because of a smaller endocardial Ito, and any changes
produced there by pinacidil would be less dramatic. Propagation of
the action potential dome from sites where it is maintained to sites
where it is abolished can then result in an extrasystole [62].
Electrotonic currents can flow from sites with longer APDs to sites
with shorter APDs, and can cause reexcitation when the latter sites
have recovered from refractoriness [63]. The arrhythmogenesis in
Brugada syndrome is thought to involve phase 2 reentry, where
the resulting premature beat initiates spontaneous polymorphic
VT. Heterogeneity in action potential repolarization between car-
diac regions leading to phase 2 reentry occurs following exposure
to the sodium channel inhibitor flecainide and under conditions of
raised [Ca2þ]i and ischemia [64]. Phase 2 reentry, e.g., from
ischemia, can also initiate circus-type reentry [65].

The concept of prolonged repolarization-dependent reexcita-
tion (PRDR) proposed earlier [66] is also similar to that of phase
2 reentry. PRDR requires an area of myocardium with prolonged
repolarization connected to another area with a normal repolar-
ization time-course. For example, EADs can prolong repolarization
and the resulting triggered activity in Purkinje fibers can conduct
to the connecting ventricular muscle [67]. However, in PRDR,
prolonged APDs per se do not cause reexcitation of the regions
with shorter APDs, as they do in phase 2 reentry. Rather, secondary
depolarizations such as EADs or their resulting triggered activity in
the affected region provide an additional current source. Together,
the local circuit currents generated by the APD difference and by
the EAD provide the necessary depolarizing currents for an
extrasystole in the affected region. Furthermore, in PRDR, the
interaction is between sites with prolonged and normal APDs,
whereas in phase 2 reentry, it is between sites with normal and
shortened APDs [64]. Nevertheless, both mechanisms require an
increased transmural heterogeneity in the time courses of
repolarization.
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6. Trigger versus substrate?

Traditional views have considered trigger and substrate as
independent entities [68]. Examples of triggers are EADs and
DADs, which can induce ectopic beats. Substrate refers to elec-
trophysiological abnormalities predisposing to reentry, including
increased dispersion of conduction or repolarization, and abnor-
mal restitution [69]. However, evidence suggests that the trigger
itself can produce the necessary substrate for reentry, e.g., DADs
inducing unidirectional block [70]. Conversely, reentry may be the
triggering event for an arrhythmia. Thus, phase 2 reentry can
produce closely coupled ectopic beats capable of initiating circus-
type reentry in Brugada syndrome [64].
7. Future directions

Novel antiarrhythmic agents that have been developed are
mainly for the management of atrial fibrillation, targeting atrial-
specific ion channels [71]. An example is vernakalant, a multi-
channel blocker of the ultra-rapid (IKur) and acetylcholine-
activated (IK, ACh) potassium currents. This has minimal effects
on the ventricles [72], and is thus less likely to induce malignant
ventricular arrhythmias. However, there has been no recently
licensed drug for the treatment of ventricular arrhythmias,
although ranolazine, a late INa inhibitor licensed for angina, has
demonstrated efficacy in experimental studies [73]. There is a
need to develop new drugs for several reasons. First, implantable
cardioverter-defibrillators (ICDs) are not able to prevent the
occurrence of ventricular arrhythmias, but can only terminate
them, and are not without significant morbidity. Yet, they are the
only form of treatment shown to increase life expectancy. Sec-
ondly, current pharmacological agents possess significant cardiac
and extracardiac side effects, the most concerning of which are
their proarrhythmic properties [74].

A potential solution is the rational design of agents that target
the abnormal proteins concerned. Thus, EADs observed in long QT
syndrome type 3 could be prevented by drugs inhibiting the late
INa [75]. DADs underlying CPVT may be abolished by blocking the
ryanodine receptors, which mediate calcium release from the
sarcoplasmic reticulum [76], or the sodium–calcium exchanger
[77]. Cardiac-specific KATP channels, which are activated by ATP
depletion during ischemia, are currently under investigation [78].
Furthermore, understanding the physiology of arrhythmogenesis,
for example, the substrates that sustain reentry, can guide drug
development. Thus, heterogeneities in action potential conduction
or repolarization, observed in a number of ion channelopathies,
may be reduced by gap junction openers [79].

In summary, this article reviewed the physiological mechan-
isms of non-reentrant and reentrant arrhythmias. Their generation
and maintenance are important in both congenital and acquired
arrhythmic syndromes. In the future, antiarrhythmic drugs have
the potential to match device-based therapy and catheter ablation
in terms of efficacy. Research efforts on their development there-
fore warrant further exploration.
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