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ABSTRACT

Motivation: The network architecture of physical protein interactions

is an important determinant for the molecular functions that are carried

out within each cell. To study this relation, the network architecture

can be characterized by graph topological characteristics such as

shortest paths and network hubs. These characteristics have an im-

portant shortcoming: they do not take into account that interactions

occur across different scales. This is important because some cellular

functions may involve a single direct protein interaction (small scale),

whereas others require more and/or indirect interactions, such as

protein complexes (medium scale) and interactions between large

modules of proteins (large scale).

Results: In this work, we derive generalized scale-aware versions of

known graph topological measures based on diffusion kernels. We

apply these to characterize the topology of networks across all

scales simultaneously, generating a so-called graph topological

scale-space. The comprehensive physical interaction network in

yeast is used to show that scale-space based measures consistently

give superior performance when distinguishing protein functional cate-

gories and three major types of functional interactions—genetic inter-

action, co-expression and perturbation interactions. Moreover, we

demonstrate that graph topological scale spaces capture biologically

meaningful features that provide new insights into the link between

function and protein network architecture.

Availability and implementation: MatlabTM code to calculate the

scale-aware topological measures (STMs) is available at http://

bioinformatics.tudelft.nl/TSSA

Contact: j.deridder@tudelft.nl

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Understanding the living cell as a system of interconnected com-

ponents is one of the key challenges of the post-genomic era

(Kitano, 2002; Westerhoff and Palsson, 2004). To address this,

many high-throughput screening techniques are used that chart

the physical protein interaction network (PIN) of the living cell

(e.g. Krogan et al., 2006; Ptacek et al., 2005; Zhu et al., 2009).

Yeast, for instance, has one of the most comprehensive experi-

mentally verified physical PINs (Stark et al., 2011). The inter-

actions captured in these PINs entail the full range of chemical

bonds between cellular components, ranging from protein

complex formation and kinase signaling activity to transcription

factor binding and DNA modifications.

Physical interactions give rise to functional interactions. These

can be broadly categorized into (i) serial function interactions,

such as the (causal) effects of a gene perturbation on downstream

transcription, i.e. regulatory network interactions (Hughes et al.,

2000), (ii) parallel function interactions, such as those arising

from synthetic lethality (a genetic interaction; Costanzo et al.,

2010; Phillips, 2008) and (iii) collaborative function interactions,

such as co-expression in protein complexes.

Although some functional interactions are the result of a single

physical interaction, most functional interactions arise as a result

of a complex interplay between a collection of physical inter-

actions. Consequently, analysis of the network architecture is

important for understanding the functionality that it orchestrates

(Barab�asi and Oltvai, 2004; Fuxman Bass et al., 2013). For this

purpose, several graph topological measures have been pro-

posed. These topological characterizations have, for instance,

been used to uncover homology relations between proteins

(Patro and Kingsford, 2012) or make predictions on protein

function (Milenkoviæ and Pr�zulj, 2008). Moreover, it has been

demonstrated that deletion of hub proteins—i.e. proteins with

high network degree—is more often lethal than deletion of non-

hub proteins (He and Zhang, 2006). This observation was

explained by the observation that essential genes cluster in

hub-enriched essential modules (Zotenko et al., 2008).

Similarly, bottleneck proteins—i.e. proteins with high network

betweenness—were found to be more essential and evolutionary

conserved (Joy et al., 2005) and exhibit different expression

dynamics than proteins with low betweenness (Yu et al., 2007).
Common graph topological measures, such as shortest-path

length, Jaccard index, clustering coefficient and centrality meas-

ures, only capture topology in the direct vicinity of the node

under investigation. They thus operate at a fixed ‘zoom level’,

i.e. they do not take topological scale into account. This also

holds for measures that characterize the centrality of a node

with respect to the whole network. These include closeness

centrality, betweenness centrality (Freeman, 1977), subgraph

centrality (Estrada and Rodr�ıguez-Vel�azquez, 2005), katz cen-

trality (Katz, 1953) and eigenvector centrality (Bonacich, 1972).
The concept of topological scale is, however, important for

studying how functional interaction emerges from the structure

of the physical PIN (Fig. 1A). For instance, at the smallest scale,

links in the PIN may directly implicate a functional relation be-

tween two proteins. At a medium scale, one could find functional

relations that are characterized by a number of physical inter-

actions, such as a small signaling cascade. In terms of graph
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topology, this could be captured by a small, linearly connected,

graph structure. Finally, at larger scales, the network topology

that describes complete protein complexes and pathways is im-

portant and should be captured to relate proteins functionally at

a module level. The topology that describes this scale may consist

of several densely connected subgraphs.
Because network topology occurs across a range of scales,

traditional topological measures are inadequate to capture func-

tional relations in the network. Instead, measures that include

some kind of zoom parameter on topological scale are required.

Measures that characterize ‘meso-scale’ topology have been pro-

posed before (Jord�an and Scheuring, 2002; Winterbach et al.,

2013b). Of particular interest is the scale-aware version of the

subgraph centrality, proposed by Estrada, that resulted in super-

ior ability to identify essential proteins (Estrada, 2010). However,

the method used to incorporate scale does not extend to other

topological measures and, moreover, was discrete in nature.

Here, we address this issue by introducing a scale-invariant

description of the topology around or between proteins. These

scale-aware topological measures (STMs) are built on the

framework of diffusion kernels (Kondor and Lafferty, 2002),

which can be seen as a network smoothing operation by means

of diffusion. The level of smoothing determines the scale and can

be tuned using a scale parameter. Application of kernel diffusion

to a physical interaction network for a range of scales yields a

graph topological scale-space. In spirit, such a scale-space is simi-

lar to image scale spaces used in computer vision applications.

There, smoothing is used to obtain a family of derived images

that describe the relevant image structure across all scales.

We derive a range of STMs that can be applied to this graph

topological scale-space. STMs can be defined to characterize a

single protein, such as the degree centrality STM, as well as to

characterize the network connecting two proteins, such as the

shortest-path STM. As our main focus is on functional inter-

actions, we additionally derive link descriptors from the node-

based STMs.
In the remainder of this article, we explore the use of STMs

when applied to the comprehensive physical PIN of

Saccharomyces Cerevisiae (yeast). Using supervised learning to

predict three classes of functional interactions, i.e. genetic

A
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E

F

Fig. 1. (A) Schematic depection of a physical PIN in which topology dictates functional interactions. (B) Flowchart of data integration steps and

application of the STMs. (C) Intuitive explanation of the shortest-path STM. For � ! 0, the STM behaves similar to the standard shortest-path

measure. For higher values of �, it will start to take into account the number of shortest paths (bundle of paths) that connect x and y. Moreover, when �
increases, paths that are longer than just the shortest path are considered. In this way, the overall network connectivity between two nodes is

characterized. For � !1, the measure will approach the logarithm of the number of nodes in the graph component containing x and y. (D) The

Jaccard measure, which normally determines the fraction of common neighbors of two nodes, will take into account more extended neighborhoods with

increasing scale. (E) Similar to the Jaccard, the centrality and clustering coefficient do not just take into account their direct neighbors but with increasing

scale also the neighbors of neighbors. (F) The betweenness centrality measure (measuring the number of shortest path going through a specific node) is

expanded so that it, with increasing scale, also takes into account longer paths. That is, although node z has a betweenness value of zero using the

standard measure, the STM version still captures its role in linking x and y throughout a non-shortest path
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interactions, perturbation interactions and co-expression inter-

actions, we find that non-linear classifiers trained on STM fea-
tures can reach area under the receiver-operating characteristic

(ROC) curve (AUC) performances as high as 85%. Moreover,

we demonstrate that clustering based on STM features reveals a

pronounced substructure within each of the functional inter-

action classes that exhibit clearly distinct characteristics with bio-

logically meaningful interpretations.

2 APPROACH

2.1 Constructing the physical PIN

Physical protein–protein (PP) interactions are obtained from

BioGrid (Stark et al., 2006) and Phosphogrid (Stark et al.,

2010) and collected in graph GPP with adjacency matrix APP.

Protein–DNA (PD) interactions are obtained from

YEASTRACT (Teixeira et al., 2006) and collected in graph

GPD with adjacency matrix APD. All interactions reported in

each of these databases were included. Both APP and APD were

made symmetric, thereby transforming directed interactions into

undirected interactions. The resulting adjacency matrices contain

60 770 and 46 857 unique interactions (excluding self-inter-

actions), respectively. To obtain the physical PIN, both graphs

are combined in a linear fashion: A�PIN=� � APD+ð1� �Þ � APP,

where � is the mixing parameter.

2.2 Obtaining functional interactions

We derive three classes of functional interactions: co-expression,

perturbation and genetic interactions. Throughout the text,

these will be represented by symmetric binary adjacency matrices

Acoe; Apt and Agen, respectively.
Co-expression interactions are calculated from the

MegaYeast expression dataset (Gasch, 2012), which contains

501 yeast microarray experiments measuring expression during

stress responses, sporulation and different cell cycle phases. A co-

expression interaction between two proteins is counted if their

encoding genes are among the top 100000 correlating gene pairs

(Pearson’s �40.67).
Perturbation interactions are obtained from four datasets

(Chua et al., 2006; Hu et al., 2007; Hughes et al., 2000; van

Wageningen et al., 2010). A perturbation interaction is counted

if one of their encoding genes exhibits a significant differential

expression upon perturbation (knockout or overexpression) of

the other. Differential expression is based on a P-value threshold

of 0.01 as determined by the respective authors. A total of 80 654

perturbation-effect pairs are obtained, covering 622 perturbed

genes. For the genes that were perturbed in different datasets,

the resulting interactions are combined.
Finally, we obtained all genetic interactions reported by

BioGrid (Stark et al., 2006), totaling 120 580 interactions.

2.3 STMs and topological scale spaces

A wide range of graph topological measures exists (Fuxman Bass

et al., 2013; Winterbach et al., 2013b). Here we focused on the

following six measures: shortest-path length, Jaccard index,

degree centrality, closeness centrality, betweenness centrality

and clustering coefficient.

STMs are based on diffusion kernels (Kondor and Lafferty,

2002). The diffusion kernel function k�ðAÞ= e�ðA�degðAÞÞ, with

deg(A) the degree matrix of A, applied to the adjacency matrix

A�PIN will result in the kernel matrix

K�;�=k�ðA
�
PINÞ ð1Þ

The formulation of diffusion kernels ensures that K�;�=ðK�;�ÞT

and K�;0=I.

One element in K�;�x;y gives the diffusion strength between node

x and y and is a measure of their connectivity. Graph diffusion

can be seen as network smoothing, as for increasing levels of

diffusion �, the edge weights in the graph become more and

more similar. Note that, in the continuous limit of a regular

grid-based graph, taking the diffusion kernel corresponds to con-

volution with a Gaussian kernel (Kondor and Lafferty, 2002).

Gaussian convolution is also used to construct scale spaces on

images (Witkin, 1984). Importantly, for graphs, this smoothing

process is dependent on the local topology and, moreover, can be

used to describe it.
To construct a graph topological scale-space, we vary � across

a range of values, which can be regarded as a scale parameter.

K�,� captures the evolution of the edge weights between all nodes

across all scales. Using this representation, we can generalize the

standard topological measures to work across different scale

levels. In Section 5, we give a derivation for each STM, and in

Figure 1C–F, we give an intuitive explanation for a few of them.
Some STMs characterize the topology around nodes (the clus-

tering coefficient, centrality and betweenness STM), whereas

other capture interactions within the network (the shortest-

path and Jaccard STM). Node-based STMs can also be used

to characterize network interactions by taking the average or

difference between the scores at two connected nodes. In this

fashion, we arrive at eight STMs for network interactions.

Conversely, interaction-based STMs can also be converted to

node-based STMs by taking the weighted average of the meas-

ures for all connections the node is involved in. Because the

clustering coefficient is already defined as the weighted average

of the Jaccard measure (see Section 5), this results in four unique

STMs for nodes.

3 RESULTS

3.1 Supervised analysis

We evaluate the efficacy of the proposed STMs in a supervised

setting, allowing us to compare them with the standard topo-

logical measures. To this end, we used the random neural net-

work classifier (RNNC), combined with forward feature

selection to determine the optimal set of features. A double-

loop cross-validation was used to prevent selection bias and over-

training. Classifier performance was based on the AUC. More

details can be found in Section 5.

3.1.1 STMs capture network structure useful for determining
protein function To determine if STMs capture useful network
structure that can contribute to the task of protein function

prediction, we classified proteins to specific functional categories

from the Munich Information Center for Protein Sequences

(MIPS) catalog (Mewes et al., 2004). Figure 2A reports the
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one-versus-one AUC, averaged across all functional categories.

It is apparent that STMs increase performance significantly.

This is surprising, as others (Winterbach et al., 2013a) have

noted that the fine details captured by more complex topo-

logical descriptors [e.g. graphlets Milenkoviæ and Pr�zulj (2008)

and graph spectra Patro and Kingsford (2012)] do not signifi-

cantly contribute to predictive performance, and that competi-

tive performances could be obtained using simple topological

measures.

Note that the poor performance obtained with a classifier

trained on the diffusion kernel directly (middle bar) illustrates

that the diffusion step alone is insufficient to capture the import-

ant topological structure in the network. Apparently, it is the

combination of diffusion combined with a topological descrip-

tion that is important.

We reason that the observed performance gain is obtained

because STMs incorporate information on the meso-scale top-

ology, instead of adding additional fine-grained descriptions of

the local topology. As a result, they describe how the local top-

ology is embedded in the overall network. The improved classi-

fication suggests that this higher-level description of the network

topology contains useful information for the task of protein

function prediction.

3.1.2 Three classes of functional interaction can be distinguished

using physical network topology Three main classes of func-
tional interactions (co-expression, perturbation and genetic inter-

actions) have extensive measurement coverage in yeast. We

evaluated if these functional (positive) interactions could be dis-

tinguished from an equal number of randomly selected (negative)

gene pairs for which there is no evidence of functional inter-

action. For all three datasets, we derived the previously described

set of eight interaction-based STMs and used the RNNC com-

bined with forward feature selection to discriminate them from

the negative interactions.
The classification performances are summarized in the first

three groups of four bars in Figure 2B. These results show that

the three classes of functional interactions are accurately cap-

tured by the topological descriptions of the physical PIN, with

a marked performance improvement for the STMs. This con-

firms earlier results that show that co-expression is linked to

protein co-membership (Jansen et al., 2002) and that genetic

interactions are linked to between-pathway and within-pathway

PP interaction signatures (Kelley and Ideker, 2005). Moreover, it

corroborates the observation that perturbation effects are infor-

mative in predicting the activation and inhibiting characteristics

of PP and PD interactions (Ourfali et al., 2007).
The last three groups of four bars in Figure 2B depict the

results when the classifier was used to discriminate between a

combination of two functional classes. We found that the classes

could be distinguished with surprisingly good performance, in

the order of 0.9 AUC. This suggests that the interaction classes

have different realizations in the underlying physical topology,

and that the topological characteristics are accurately captured

by the STMs. This may also explain why different classes of

functional interactions have little overlap (Fig. 1B). For instance,

the 80 654 perturbation and 100 000 co-expression interactions

have only 390 interactions in common, which is just slightly

more than one would expect by chance (375). Moreover, co-

expression and perturbation interactions, which have a larger

overlap, were easier to distinguish than genetic interactions and

perturbation interactions.
Combining STMs with standard measures, results in only

minor increase in performance for both protein function predic-

tion (0.0082 on average) and functional interaction prediction

(0.0021 on average). At the same time, performance is severely

reduced if a simple linear classifier, the nearest mean classifier, is

used. This indicates that STMs are able to capture most of the

relevant network structure that can also be obtained with stand-

ard measures but need an advanced classifier to do so.

The learning curves and classification performance for the in-

dividual STMs are included in Supplementary Figure S1. The

learning curve shows that the classifier requires more than a

single topological descriptor to attain the best performance. On

average, 23 topological descriptors were required, ranging across

different STMs as well as different � and � levels, to attain max-

imum performance. Close-to-optimal performance was already

reached using five topological descriptors. Combining STMs

A B

Fig. 2. (A) Classification performances for node-based STMs compared with kernel diffusion-based features and standard measures for 16 MIPS

categories. (B) Classification performances for interaction-based STMs for three functional classes versus negative interactions and for pairs of the

functional classes
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outperforms the single STMs, indicating that the STMs augment

each other, albeit to a small extent. Apparently, STMs can sub-

stitute each other to some degree. This may be a sign that fine

details in the topology, of which different STMs capture different

aspects, are not as important as the larger-scale topological struc-

ture, which is captured by every STM.

3.1.3 Topological signatures of functional interactions To deter-

mine which descriptors are the most important for each classifi-

cation task, we performed feature selection. The robustness of

the selected features was investigated by dividing the datasets in

five non-overlapping subsets, and performing feature selection in

each of them, ensuring five completely independent feature se-

lections. Surprisingly, despite this, the first topological descriptor

(a combination of STM type and � and � values) chosen in the

selection was always the same for all but the genetic versus per-

turbation interaction task (where three of the five chosen descrip-

tors were the same). Moreover, the second chosen descriptor was

consistent in almost all cases except for some variation in � and

�. This remarkably robust feature selection is a sign that each

functional interaction class has its own unique topological

signature.
A visual overview of the selected features, and thus the topo-

logical signatures, is given in Figure 3. Some of the signatures

have interesting interpretations. In Supplementary Figure S2, the

single descriptor (univariate) AUC performances are given.
For co-expression interactions, the first two selected measures

are always the Jaccard and clustering coefficient STMs. The

Jaccard measure is also selected at the medium scale further

down the ranked list of selected descriptors, as well as for the

classification experiments where co-expression interactions are

contrasted to genetic and perturbation interactions (Fig. 3D

and E). An explanation for this is that the Jaccard describes to

what extent two proteins have the same position with respect to

the surrounding topology. From Supplementary Figure S2, it

can be seen that co-expression interactions are best predicted

by low-scale STMs and depend only weakly on the mixture

level of the PP/PD networks.

Genetic interactions are best characterized by the shortest-

path and clustering coefficient STMs. Both results in Figure 3

and Supplementary Figure S2 show a preference for somewhat

higher scales and a strong preference for PP interactions. The

shortest-path measure is associated with the negative class, indi-

cating that genetic interactions are represented by relatively short

paths. The chosen scale is just below the threshold of the low �
class with �=0.18 (for all five independent repeats).
The second descriptor selected for genetic interactions (clus-

tering coefficient STM) corroborates this picture. It is an indica-

tion that proteins with a genetic interaction are generally also

embedded in a well-connected neighborhood. Taken together,

this suggests that proteins that take part in a genetic interaction

are well connected through the PP network, for instance, because

they are part of a common complex, pathway or module but

without necessarily having common regulators (PD interactions).
Finally, for perturbation interactions, we see a large focus on

centrality measures, which are typical for regulators with many

outgoing connections. Note that experimenter bias could play a

role here, as perturbation experiments are typically performed

for genes with a known regulatory role. On the other hand, the

selection of this measure can also indicate that perturbations in

more central proteins will induce more effects throughout the

network and therefore have more perturbation interactions.

3.2 Unsupervised analysis

Next, we asked if the three broadly defined functional interaction

classes each have a single descriptive topological structure in the

physical network, or if multiple distinct topological implementa-

tions of the functional relations still could be present.

To address this question, we first mapped all interactions to a

position in 2D space (Fig. 4), such that the differences in the

topological characterization of these interactions were repre-

sented by their mutual distance in this space. The embedding

reveals a clear structuring into distinct subgroups. Interestingly,

interactions from the three interaction classes are not evenly dis-

tributed across the 2D map (Supplementary Fig. S3).

A B C

D E F

Fig. 3. (A–F) Top topological descriptors for each classification task, based on forward feature selection performed on five non-overlapping datasets.

Large pie parts with intense colors represent the more relevant descriptors. Pie parts are assigned to classes based on the sign of their rank correlation

with the class labels. Descriptors were grouped into a low- (�50.2), mid- or a high- (�41) scale group, as well as a PP (�=0), PD (�=1) or PD/PP

mixture group. Standard (non-STM) topological features were also available to the feature selection and are represented without a � value. More in

detail, the size of each pie part indicates the number of times a certain group of descriptors is represented in the top five descriptors, times their average

rank value (where rank 1 corresponds to the value 1.0 and rank 5 to the value 0.2). Color indicates the STM type, while the intensity represents (again)

the average rank value
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To investigate this further, the data were clustered using a

combination of spectral and hierarchical clustering. In this fash-
ion, the 400000 interactions were grouped into 498 clusters, of

which 88 contained more than 500 interactions. Of these, 34

clusters (covering 40% of interactions) were significantly en-
riched (Fig. 4). For nine clusters, more than 75% of interactions

in the cluster were of a single class, with one cluster (C1) con-
taining 2523 interactions from the co-expression class (97%).

Next, feature selection was performed to investigate which
topological descriptors best capture the topological structure of

each cluster. To this end, interactions from each cluster were
contrasted with a randomly selected set of interactions from

the other clusters, five times the size of the cluster itself.
Some differences with the supervised analysis are expected, as

the contrasting set of interactions contains interactions from all

functional classes as well as the negative class in approximately
equal balance. However, the results still reveal that, within each

class of functional interactions, topological characterizations are
shared among many of the enriched clusters (Supplementary

Figures S4–S6). For instance, clusters enriched for the co-

expression class are predominantly characterized by the
Jaccard and shortest-path STMs at low scales (Fig. 4C1–C2),

whereas clusters from the genetic class commonly have a short-
est-path STM for the PP network and a negatively associated

shortest-path STM (longest path) for the PD network (Fig. 4G1–
G2). This indicates that, even though each class consists of inter-

actions from a number of topologically distinct clusters, the

topological characterization of the different types of functional
interactions is still remarkably robust, confirming the picture

painted in the classification experiment, as reported in Figure 3.

There are, however, still notable differences between the clus-

ters. Clusters C1 and C2, for instance, differ in such a way that in
Cluster C1, the Jaccard STM operates on the combined network

at medium scale, whereas in Cluster C2, the PP network is se-

lected at low scale. Both clusters contain interactions with a min-
imal shortest-path length of 2, indicating that they are not

embedded in complexes.
For the perturbation interaction class, Clusters P1, P2 and P3

all depend on the shortest-path STM. However, Clusters P1 and
P2 select it as a negative feature, indicating that short paths are

preferred for the positive class. It is likely that these correspond
to direct relations between a transcription factor and their tar-

gets. This is supported by the observation that all interactions in

these clusters are directly connected in the PD network (the aver-
age shortest-path length in the PD network is 1). For Cluster P3,

on the other hand, high shortest paths are favored, combined
with a high centrality (which was also observed in the supervised

analysis). This may correspond to propagation of the perturb-

ation effect from a central regulator through a combination of
interactions at the PP level and transcription factor activity at the

PD level. This is supported by the observation that interactions
in this cluster have an average shortest path of length 2 in the

combined network but are more than three hops apart in the

individual PD and PP networks.
Clusters G1 and G2 from the class of genetic interactions con-

firm our previous observation that these interactions consist of

well-connected proteins in the PP network. This is apparent from

the selection of the shortest-path STM across the PP and PP/PD
networks and supported by the low average shortest-path dis-

tance. Additionally, both clusters also select long-distance paths

Fig. 4. (A) Representation of the interactions from the three functional interaction classes augmented with 100 000 negative interactions. The STM

representation of each interaction (which constitutes a 960 dimensional space) was reduced using multidimensional scaling (t-SNE) to two dimensions.

The t-SNE is an embedding technique, which aims to capture local structure in the data (Van der Maaten and Hinton, 2008). Interactions were clustered,

and significant enrichments (Binomial test, Bonferroni-corrected P50.01 and a log odds ratio of41) are indicated by colors. (C1–C2, G1–G2, P1–P3)

Detailed description of several clusters. The most significant cluster within each of the functional classes is shown, augmented with a few contrasting and/

or supporting examples. Feature selection results are determined by contrasting the cluster to a random selection of interactions from other clusters five

times the size of the cluster, which is repeated five times. The top three descriptors are visualized in a similar fashion, as shown in Figure 3. Visualizations

of all other significant clusters can be found in Supplementary Figures S4–S6
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across the PD network, indicative of the lack of a common

regulator.
Taken together, this indicates that each of the three functional

interaction classes has a few rather distinct implementations of

the interactions in the physical interaction network.

4 CONCLUSIONS AND OUTLOOK

We have shown that generalized STMs can be obtained based on

diffusion kernels. Using these STMs, graph topological scale

spaces can be constructed that characterize graph topology

across the full range of scales, from local to a global scale. The

measures described here already constitute a fairly complete set,

covering centrality, clustering, paths, association and between-

ness. Based on the principles outlined here, however, it should be

straightforward to transform more existing topological measures

into scale-aware versions.
Scale is an important aspect in relating physical networks

to functional annotations and interactions. In a supervised clas-

sification setting, STMs improved performance in all our experi-

mental settings, also in comparison with the equivalent standard

(non-scale-aware) measures. To obtain good classification, local

topology is clearly an important factor. However, using STMs,

we also find that descriptors of higher scale were selected by the

training algorithms.

We found that the different functional interaction classes each

have their own topological signatures. These signatures are

selected with remarkable robustness. Through unsupervised ana-

lysis, we showed that these classes of functional interactions are

based on more fine-grained topological signals that are vari-

ations on the overarching topological signatures. Taken together,

graph topological scale spaces clearly capture biologically mean-

ingful features by exploiting, across multiple scales, graph

topology of physical interaction data.

Application of STMs is not limited to protein networks. On

the contrary, they have the potential to play an important role in

answering various questions in the field of network biology. For

instance, several studies have shown that topology-describing

measures can be used to prioritize candidate disease genes

(Ghersi et al., 2013; K €ohler et al., 2008). There is also increasing

evidence that the topological structure of brain connectivity

determines many of its functions (Park and Friston, 2013).

We believe that STMs and the associated graph topological

scale spaces can provide new insights in many of these

applications.

5 METHODS

5.1 Measures

Note that, below, we have omitted � for notational convenience and

without loss of generality.

5.1.1 Shortest path The shortest-path measure s(x,y), i.e. the

minimum number of vertices connecting node x and y, can be redefined

to work across the scale-space by noting that K� can be rewritten as

K� = I+�H+
�2

2!
H2+

�3

3!
H3+::: ð2Þ

In this formulation, the contributions of different path lengths are repre-

sented as the different factors (Hi), with ðHiÞx;y=0 for all i5 s(x,y).

As a result, when �! 0, the diffusion signal approaches

K�x;y�
rx;y

sðx; yÞ!
�sðx;yÞ ð�! 0Þ ð3Þ

where rx,y is the number of shortest paths between x and y. All longer

paths [i.e. i4s(x,y)] have negligible contributions, as �sðx;yÞ44�i because

� ! 0.

Therefore, taking �log ðK�x;yÞ gives us �log ðrx;yÞ+log ðsðx; yÞ!Þ�

sðx; yÞ log ð�Þ. Again assuming that � ! 0, then �log ðrx; yÞ+ log

ðsðx; yÞ!Þ will become negligible, and we are left with �sðx; yÞlog ð�Þ.

As log ð�Þ is equal for all paths and negative as � ! 0, we remain

with s(x,y), which is the shortest-path length. For interpretation pur-

poses, the �logð�Þ factor can be divided out of the measure using the

following scaling factor: maxðlog 1
�

� �
; 1Þ.

For higher values of � (i.e. an increase in scale), the shortest-path

measure gradually transforms: through component rx,y, the number of

shortest paths between x and y will be taken into account. Moreover,

because of the other components [with i4s(x,y)], longer paths will also

gradually be incorporated. Intuitively, one may regard this as bundling

(near) shortest paths, where more and more physical paths are covered as

� increases. For values of � above 1.0, the focus gradually shifts from

shortest paths to paths of certain length (owing to the balance between �i

and i!). Finally, for � !1, and under the condition that there is a

shortest path between x and y, s�x;y ! log ðNcðxÞÞ, whereNc(x) represents

the number of nodes connected to x (and thus to y).

Shortest-path STM: s�ðx; yÞ=� log ðK�x;yÞ

5.1.2 Jaccard index The Jaccard index is one of many available as-

sociation measures (Fuxman Bass et al., 2013), describing how nodes are

associated in terms of their shared set of interaction partners. It is defined

as J= nðxÞ\nðyÞ
nðxÞ[nðyÞ, where n(x) and n(y) represent the set of neighbors of x and

y, respectively.

In graph topological scale-space, all connected nodes become neigh-

bors, so this definition cannot be used directly. Instead, we take into

account the strength of each interaction. The intersection is subsequently

defined as the minimum weight of both interactions per interaction part-

ner (
P

i min ðK�x;i;K
�
i;yÞ) and the union as the maximum weight

(
P

i max ðK�x;i;K
�
i;yÞ). This definition is equal to the original Jaccard for

graphs in which all edges are equally weighted, yet with the definite ad-

vantage of also being applicable in graph topological scale spaces. For

higher values of �, it will represent a Jaccard measure with increasingly

larger neighborhoods, approaching 1 for �!1.

Jaccard STM: J�ðx; yÞ=

P
i min ðK�

x;i;K
�
i;yÞP

i max ðK�x;i;K
�
i;yÞ

5.1.3 Degree and closeness centrality The degree centrality reflects

the connectivity of a node in terms of the number of edges connected

to it: deg(x). Again, using � ! 0, we find that K�x;x � 1� degðxÞ�.

Consequently,
1�K�x;x
� gives us a measure of the degree of each node.

Increasing � gives us the degree with respect to increasing neighborhoods.

Closeness centrality is classically defined as cðxÞ= 1P
inx sðx;iÞ

. It reflects

the farness of a node x, by summing the shortest-path distances to all other

nodes. This definition is inadequate for graphs with disconnected compo-

nents. Therefore, an alternative formulation has been suggested

(Dangalchev, 2006): cðxÞ=
P

inx 2
�sðx;iÞ. Filling in the shortest-path STM,

we obtain c�ðxÞ=
P

inx 2
logðK�

x;iÞ �
P

inx K
�
x;i=1� K�x;x. Apart from a scal-

ing factor �, this is the same formulation as was obtained for the degree

centrality STM. We will refer to this combined measure as the ‘centrality’.

Centrality STM: c�ðxÞ=
1�K�x;x
� .

i243

Scale-space measures for graph topology

scale-aware topological measure
-
-
-
-
; Ghersi etal., 2013
,
-
-
,
in the 
,
Path
-
:
:
(
)
due 
owing 
to
Taking 
therefore 
due to
(
)
due 
:
:
Bass etal., 2013
:
,
2
7
-
-
,
-
-
:
:
'
: 


5.1.4 Clustering coefficient The clustering coefficient for a node is

defined as the number of edges between its direct neighbors including

itself, divided by the maximum number of possible edges, i.e.

ccðxÞ= 2jexj
degðxÞðdegðxÞ�1Þ, where jexj is the number of edges among the direct

neighbors of node x.

As was observed in the derivation of the Jaccard STM, in the graph

topological scale-space the graph is fully connected. We propose to define

a generalized scale-aware version of the clustering coefficient as the

weighted average of Jaccard STM of all the interaction partners of x,

i.e. cc�ðxÞ=
P

inx kð�Þðx; iÞ � J�ðx; iÞ. This formulation is not fully equiva-

lent to the standard clustering coefficient when applied to a standard

adjacency graph. A notable difference with the traditional measure is

that edges are downweighted when a ‘neighbor node’ has many links to

nodes outside the cluster. This conforms more closely to the common

notion of an optimal cluster—high connectivity (low distance) between

nodes within the cluster and low connectivity (large distances) to nodes

outside the cluster. In the formulation proposed here, the size of the

neighborhood (cluster) is defined by the scale parameter �.

Clustering coefficient STM: cc�ðxÞ=
P

inx K
�
x;iJ

�ðx; iÞ

5.1.5 Betweenness centrality The betweenness centrality is defined as

the number of shortest paths that pass through a node, i.e.

bðxÞ =
P

i;jnx
qijðxÞ
qij

, where qij is the number of shortest paths between

nodes i and j, and qij(x) the number of those paths that pass through x.

In graph topological scale-space, the notion of a shortest path

changes, as the graph is fully connected. Note, however, that if

s(x,y)= s(x,z)+ s(z,y), we can infer that z is on the shortest path between

x and y, by using the triangle inequality. As a result, we can exploit the

previously defined shortest-path STM. Moreover, instead of discrete

counting, we calculate a continuous score s�ðx; yÞ � ðs�ðx; zÞ+s�ðz; yÞÞ

for each node pair x, y and normalize by the total number of pairs N2,

where N is the total number of nodes.

Betweenness centrality STM:

b�ðzÞ= 1
N2

P
x;y s�ðx; yÞ � ðs�ðx; zÞ+s�ðz; yÞÞ
� �

5.1.6 From node to link-based STMs The STMs betweenness cen-

trality, clustering coefficient and centrality are node-based. To extend

their use to link-based classification and clustering, the average and the

difference between the node-based STM values are used as measure. This

results in eight link-based STMs (Jaccard and shortest-path STMs and

the average and difference of the three node-based STMs).

5.1.7 From link to node-based STMs To perform node-based clas-

sification, link-based STMs were converted to node-based STMs. For the

Jaccard measure, this was already accomplished through the clustering

coefficient STM. Therefore, only the shortest-path measure was con-

verted. This was done in a similar manner as for the clustering coefficient

STM, i.e., s�ðxÞ=
P

inx K
�
x;is

�ðx; iÞ

5.1.8 Values for � As values for �, we empirically choose a grid of

size 20. Grid points were set according to 28r�1
28�1
� ð10:0� 0:0001Þ+0:0001,

with r=0.0 . . . 1.0 in 20 steps. This results in the following values for �:

(0.0001, 0.0134, 0.0312, 0.0550, 0.0869, 0.1296, 0.1868, 0.2634, 0.3659,

0.5031, 0.6869, 0.9330, 1.2624, 1.7035, 2.2941, 3.0848, 4.1435, 5.5610,

7.4589, 10.0000)

5.2 Dimension reduction and clustering

The t-distributed stochastic neighbor embedding (t-SNE) dimension re-

duction algorithm was used with a perplexity value of 30 to reduce the

4M� 960 dataset to two dimensions. The t-transformed distances, which

are used within the t-SNE algorithm to obtain a visualization, were clus-

tered using k-means-based spectral clustering. We used k=50. This was

followed by a second round of hierarchical clustering, using single link-

age, euclidean distance and a distance threshold of 1% of the data range.

5.3 Supervised analysis

The RNNC from the PRTools toolbox (Duin et al., 2004) was used. This

is a feed-forward neural network with an input layer that scales the data

to unit variance, a layer of 100 sigmoid neurons performing a random

rotation and shift, and an output layer. Forward feature selection was

used to determine the optimal set of features. Classifier performance was

determined using double-loop cross-validation and reported as the AUC.

The inner loop was used for feature selection, whereas the outer loop was

used to determine the final performance.

5.3.1 Protein function classification MIPS functional annotations

were used to label proteins. To ensure the presence of enough positive

instances in both testing and training sets, functional categories with520

genes were not considered. In total, 16 MIPS functional classes (Fig. 2A)

were considered for classification.

Classifier performance was determined for each pair of biological func-

tions, using double-loop cross-validation, with a 5-fold inner and 4-fold

outer loop. For each iteration of the outer loop, three folds were used for

training/inner cross-validation, and the remaining fold was used for test-

ing. This resulted in four AUC performance values (which were averaged)

and their SD. Subsequently, these AUC and SDs were averaged for each

functional category.

5.3.2 Interaction classification Gene pairs were labeled according to

their functional interaction—no functional relation (neg), co-expression

(coe), genetic (gen) or perturbation (pt). With these labels, six classifica-

tion problems were investigated—neg-coe, neg-gen, neg-pt, coe-gen, coe-

pt, gen-pt. To ensure a balanced classification experiment, the number of

examples selected for the neg class was kept equal to the other class.

Classifier examples, represented by gene pairs, were divided into five

folds. Because of the abundance of interactions available for training a

classifier, we used only one fold for training and four folds for testing in

each iteration. Feature selection was performed on one half of the train-

ing fold, and validation of these features was performed on the other half.

This setup ensures that the data used for training and feature selection are

completely non-overlapping between the iterations of the outer loop.

5.4 Feature selection

The total number of STMs (eight for link-based classification) combined

with the 6 different values for � and 20 different values for � results in 960

features (topological descriptors). Forward feature selection was used to

select the most informative features for specific classification tasks. The

AUC score was used as performance measure. Briefly, using the double-

loop cross-validation setup described before, we used the inner cross-val-

idation loop to determine an optimal set of features. We thus obtained a

list of selected features for each iteration of the outer cross-validation

loop, which were then tested on the associated outer validation set (test

set). Obtained performances were averaged. The different feature lists are

summarized in Figure 3.
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