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Single-cell transcriptomics identifies divergent
developmental lineage trajectories during
human pituitary development
Shu Zhang 1,2,6, Yueli Cui1,2,6, Xinyi Ma 1,3,6, Jun Yong1,3,4, Liying Yan 1,3, Ming Yang1,3,4,5, Jie Ren1,2,

Fuchou Tang 1,2,5, Lu Wen 1,2✉ & Jie Qiao 1,2,3,4✉

The anterior pituitary gland plays a central role in regulating various physiological processes,

including body growth, reproduction, metabolism and stress response. Here, we perform

single-cell RNA-sequencing (scRNA-seq) of 4113 individual cells from human fetal pituitaries.

We characterize divergent developmental trajectories with distinct transitional intermediate

states in five hormone-producing cell lineages. Corticotropes exhibit an early intermediate

state prior to full differentiation. Three cell types of the PIT-1 lineage (somatotropes,

lactotropes and thyrotropes) segregate from a common progenitor coexpressing lineage-

specific transcription factors of different sublineages. Gonadotropes experience two multistep

developmental trajectories. Furthermore, we identify a fetal gonadotrope cell subtype

expressing the primate-specific hormone chorionic gonadotropin. We also characterize the

cellular heterogeneity of pituitary stem cells and identify a hybrid epithelial/mesenchymal

state and an early-to-late state transition. Here, our results provide insights into the tran-

scriptional landscape of human pituitary development, defining distinct cell substates and

subtypes and illustrating transcription factor dynamics during cell fate commitment.
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The pituitary is the central gland of the endocrine system
for regulating multiple physiological processes including
the stress response, body growth, reproduction and meta-

bolism. Much of the control comes from five cell types of the
anterior pituitary gland including corticotropes that secrete
adrenocorticotrophic hormone (ACTH), somatotropes that pro-
duce growth hormone (GH), lactotropes that release prolactin
(PRL), thyrotropes that produce thyroid-stimulating hormone
(TSH) and gonadotropes that produce luteinizing hormone (LH)
and follicle-stimulating hormone (FSH). The development of the
anterior pituitary provides an excellent model system to elucidate
mechanism of organogenesis1. The five hormone producing cell
types develop in a stereotypical order from Rathke’s pouch, an
epithelial invagination of the oral ectoderm. Previous studies have
identified various signaling pathways and transcription factors
(TFs) participating in pituitary development. These include the
SHH, BMP and FGF pathways for initiation of Rathke’s pouch;
PITX1, LHX3, HESX1 and PROP1 for early phase patterning;
POU1F1 (also known as PIT-1) for differentiation of somato-
tropes, lactotropes and thyrotropes; TBX19 (also known as TPIT)
for differentiation of corticotropes; and NR5A1 (also known as
SF-1) for differentiation of gonadotropes1–4. More recently, stu-
dies have also raised interest in SOX2-positive pituitary stem cells
by showing their capability of self-renewal and differentiation
into all five types of endocrine cells5,6.

However, our understanding of pituitary development,
particularly human pituitary development, is not well defined.
Genomic studies have been hampered by intermingling of
different cell types in this relatively small organ7,8. Recent rapid
progression in single-cell RNA sequencing (scRNA-seq) tech-
nologies provides an opportunity to comprehensively understand
the regulatory network and cellular heterogeneity of pituitary
development. Several recent studies have reported scRNA-seq in
the adult mouse and rat pituitary9–11. Here, we apply scRNA-seq
to human fetal pituitaries for mapping the transcriptional
landscape of human pituitary development at single-cell reso-
lution. Our results provide insights into transcriptional dynamics
of progressive lineage specification of human pituitary endocrine
cells, and elucidate characteristics of the pituitary stem cells,
progenitor and precursor cells, and different endocrine cell types
and subtypes.

Result
ScRNA-seq analysis of human pituitary development. We
obtained pituitaries from 21 human fetuses from 7 to 25 weeks
postfertilization (11 females and 10 males) and performed a
modified STRT-seq method on a total of 5181 cells, with 4113
high-quality cells being retained after filtration (Fig. 1a and
Supplementary Fig. 1a). An average of 4506 genes and 86,497
transcripts (counted as unique molecular identifiers, UMIs) were
detected in each cell (Supplementary Fig. 1c). The samples were
detected with similar gene numbers and GAPDH expression
across batches (Supplementary Fig. 1b, c). The morphology of the
pituitary was verified (Supplementary Fig. 1g).

We used Seurat to identify cell clusters and Uniform Manifold
Approximation and Projection (UMAP) for visualization (Fig. 1b
and Supplementary Fig. 1d)12. A total of 14 cell clusters identified
with known marker genes (Fig. 1b, Supplementary Fig. 1d).
We identified nine clusters of anterior pituitary endocrine cells
including the stem cells (Stem), cycling cells (CC), corticotropes,
progenitors of the PIT-1 lineage (Pro.PIT1), somatotropes,
lactotropes, thyrotropes, precursors of gonadotropes (Pre.
Gonado) and gonadotropes, comprising 2,388 cells (Fig. 1b and
Supplementary Fig. 1a). PITX1 and PITX2 were expressed in all
nine clusters, and SOX2 and PROP1 were specifically expressed in

the stem cells (Fig. 1c and Supplementary Fig. 1f). Lineage-
specific TFs, such as POU1F1, TBX19 and NR5A1, and hormone
genes, including POMC, GH1, GH2, TSHB, PRL, FSHB and
LHB, were expressed in special clusters of the endocrine cells.
Mesenchymal cells, as marked by PDGFRA13, were the second
most abundant cell type after endocrine cells, comprising 1,005
cells. A cluster of 90 cells was identified as posterior pituitary
pituicyte cells (P) as marked by OTX2, LHX2, RAX and
COL25A111,14 (Supplementary Fig. 1f). Other clusters included
endothelial cells (PECAM1+), immune cells (IMM, PTPRC+)
and red blood cells (RBC, HBQ1+). Each cell cluster was
composed of multiple fetal samples, and the samples of similar
stages, or different sexes, were largely mixedly distributed
(Fig. 1b, Supplementary Fig. 1d, e and 2a).

We analyzed the timing of endocrine cell differentiation. The
results showed that the corticotropes appeared first at 7 weeks,
the earliest time point we analyzed; this was immediately followed
by the somatotropes and the gonadotropes at 8 weeks, and the
thyrotropes and lactotropes appeared later at approximately
10 weeks and 16 weeks, respectively (Fig. 1d). The timing of
endocrine cell differentiation was validated by immunofluores-
cence staining for the hormone genes, which was consistent with
previous studies (Supplementary Fig. 2b)15.

We analyzed a number of TFs that are mutated in human
pituitary genetic diseases16, showing that these TFs were
expressed in a cell type-specific manner (Supplementary Fig. 1h).
The SCENIC analysis identified activation of known TFs
including SOX2, TBX19, POU1F1 and NR5A1 (Fig. 1e and
Supplementary Fig. 2c)17. Taken together, these results indicated
that our data provided comprehensive and precise information on
human pituitary development.

Characterizing pituitary stem cells. Human pituitary stem cells
have not been comprehensively characterized. We identified stem
cell-specific genes including SOX2, PROP1, LHX3, HES1,
ZFP36L1, ANXA1, NFIB, ZNF521 and NR2F2 (Fig. 2a). Gene set
enrichment analysis (GSEA) showed that the TGF-β, Notch, Wnt
and Hedgehog signaling pathways were enriched in the stem cells,
and the “tight junction”, “cell cycle” and “ECM receptor inter-
action” pathways were also highly enriched (Fig. 2b). We iden-
tified potential ligand-receptor genes between stem cells and
mesenchymal cells, which enriched Gene Ontology (GO) terms
such as “ECM receptor interaction” and the Notch, Wnt, BMP
and Eph signaling pathways, suggesting that the mesenchymal
cells may involve in regulation of the stem cells (Supplementary
Fig. 3a, b and Supplementary Data 1). Co-immunofluorescence
staining for SOX2 and Collagen III (COL3) suggested that
mesenchymal cells encompass stem cells in human fetal pitui-
taries (Supplementary Fig. 3c).

Notably, reclustering the stem cells by Seurat revealed three
subpopulations (Stem1, Stem2 and Stem3, Supplement Fig. 3d).
Interestingly, Stem1 cells were found to be mainly derived from
the early-stage pituitaries (7 to 10 weeks), while Stem3 cells were
mainly derived from the late-stage pituitaries (19 to 25 weeks),
indicating that these subpopulations represented time-dependent
cell state shifts in the stem cells (Fig. 2c). The clustering result
remained similar after regressing out the cell cycle genes
(Supplement Fig. 3d).

Examination of differentially expressed genes (DEGs) among
the three subpopulations identified 114 and 165 genes that were
highly expressed in Stem1 and Stem3, respectively (Supplemen-
tary Fig. 3e). Stem1 cells were enriched in genes for “stem cell
proliferation” (e.g. HMGA2), while the Stem3 cells were strongly
enriched in genes for “negative regulation of cell proliferation”
(e.g., CDKN1A, Fig. 2d and Supplementary Fig. 3e). Reclustering
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Fig. 1 Diversity of cell types in the human fetal pituitary. a Experimental flowchart for the scRNA-seq analysis of the human fetal pituitary. b UMAP plots
showing the clusters of the cell cycle cells (CC), stem cells, the progenitor cells of PIT1 lineage (Pro.PIT1) or precursor cells of gonadotrope (Pre.Gonado) and the
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of the CC cluster showed that most cycling cells were SOX2-
positive stem cells, and a small portion were POU1F1 or TBX19-
positive cells, which were verfied by immunofluorescence staining
(Fig. 2f and Supplementary Fig. 3f). The proportion of cycling
stem cells in the total stem cell population gradually decreased
from the early to late stages (20% in the early stages, 10% in the
middle stages, and less than 5% in the late stages; Fig. 2f), which
was validated by coimmunostaining for SOX2 and Ki67 in the
pituitaries of 8-, 17- and 23-week fetuses (Fig. 2g). These results

together suggest that Stem3 cells enter a quiescent or lowly
proliferative state.

Interestingly, ASCL1 was specifically expressed in Stem1
(Fig. 2d). This expression was consistent with the expression of
Ascl1 in the early stage of pituitary development in mouse and
zebrafish18,19. We performed immunofluorescence staining to
show that a large portion (24%) of SOX2-positive stem cells were
also positive for ASCL1 at 10 weeks, while there were nearly no
double-positive cells at 23 weeks (Fig. 2e). ASCL1 is required for
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differentiation of all anterior pituitary endocrine cell types in
zebrafish, while in mice, mutation of Ascl1 affects corticotropes
and gonadotropes, and maybe also thyrotropes, at different
regulatory steps19–21. The downregulation of ASCL1 expression
in the late pituitary stem cells may play a role in the state shift.
The Wnt signaling modulator SFRP2 and the non-canonical
WNT gene WNT5A was prominently upregulated in Stem2 and
Stem3 (Fig. 2d), which was consistent with the enrichment of the
GO term “negative regulation of canonical Wnt signaling
pathway” in Stem3 (Supplementary Fig. 3c).

The marker of the folliculostellate cells (FSCs) S100B was
expressed in a small fraction (3.4%) of the stem cells of both the
early and late stages (Fig. 1c). Comparison between the S100B-
postive and S100B-negative stem cells revealed no DEGs relating
to FSCs. The results suggested that FSCs were not present in the
human fetal pituitary during 25 weeks postfertilization, which
was consistent with previous immunostaining studies showing
that S100-positive FSCs are basically not detected in the prenatal
rat pituitary22.

In summary, we identified an embryonic state shift of the
pituitary stem cells accompanied by negative regulation of cell
proliferation and alternations in TFs and signaling pathways.

Pituitary stem cells in hybrid epithelial/mesenchymal state.
Previous studies have suggested that mouse pituitary stem cells
undergo an epithelial-mesenchymal transition (EMT)-like pro-
cess during differentiation23,24. We explored EMT dynamics
during differentiation of the human pituitary stem cells. Among
the Kyoto Encyclopedia of Genes and Genomes (KEGG) terms
enriched in the stem cells, “tight junction” is related to the epi-
thelial state, and “ECM receptor signaling pathways” is related to
the mesenchymal state (Fig. 2b). By principal component analysis
(PCA), all endocrine cells were ordered in a gradient transition
from the stem cells to the differentiated cells on the principal
component 1 (PC1) axis, so we used the PC1 axis as a trajectory
for analyzing the stem cell differentiation (Fig. 3a). Examination
of the expression of epithelial and mesenchymal markers showed
that both the epithelial markers, such as CDH1, and the
mesenchymal markers, such as VIM and CDH2, were highly
expressed in the stem cells but lowly expressed in the differ-
entiated cells; EPCAM was highly expressed in both groups
(Fig. 3b and Supplementary Fig. 4b). This pattern suggested that
the stem cells existed in a state expressing both the epithelial and
mesenchymal markers, fitting the term of a hybrid E/M state as
previously identified during mouse organogenesis and tumor
transition25,26.

To clarify the correlation between the hybrid E/M state and
stemness, we defined an epithelial score (E.score), a mesenchymal
score (M.score) and a stemness score (S.score) (Supplementary
Data 2). We found that all three scores decreased along the

differentiation axis (Fig. 3c and Supplementary Fig. 4c). This
pattern was exemplified by the expression levels of known
stemness markers (SOX2, SOX4, SOX9, NOTCH2 and HES1),
epithelial markers (EPCAM, CDH1, KRT8, CLDN4 and GRHL2)
and mesenchymal markers (CDH2, VIM, COL1A1, COL1A2 and
SNAI1) which decreased along the timeline (Fig. 3c). We did not
observe significant EMT changes in the stem cell substates
(Supplementary Fig. 4d). The stem cells also specifically expressed
CDH3, which plays roles in both maintaining stemness and
promoting the hybrid E/M state in development and cancers
(Fig. 2a)27.

The SCENIC analysis suggested that CDH1, CDH2, CDH3 and
VIM were potential targets of SOX2 and SOX4; VIM and CDH3
were potential targets of PROP1 whose targeted genes enriched in
the “epithelial to mesenchymal transition” term, being consistent
with the previous chromatin immunoprecipitation sequencing
(ChIP-seq) study24 (Supplementary Fig. 4e, f).

In sum, the data suggested that the pituitary stem cells existed
in a hybrid E/M state which is associated with their stemness
characters.

Reconstructing developmental trajectories. Next, we recon-
structed the developmental progression of five endocrine cell
lineages and identified transient precursors by applying the RNA
velocity28 and Slingshot29 for the pseudotime trajectory analysis
(Fig. 4a). The Slingshot results revealed lineage-shared and spe-
cific TFs being downregulated or upregulated during the pseu-
dotime developmental progression, with some TFs showing peak
expression in intermediated stages (Fig. 4b, Supplementary
Data 3). A group of 29 TFs were identified as downregulated
genes being shared among all five lineages, including PROP1,
SOX2, LHX3, HES1, TCF7L1 and TGIF1 (Fig. 4c, d). Mutations in
TCF7L1 and TGIF1 have been reported in patients with hypo-
pituitarism recently30,31. POU1F1, TBX19 and NR5A1 were
strongly upregulated in the PIT-1, corticotrope and gonadotrope
lineages, respectively. GATA2, FOXL2 and ISL1 were shared by
the thyrotrope and gonadotrope lineages. NEUROD1 showed
peak expression at the intermediated states of both the gonado-
trope and corticotrope lineages (Fig. 4c).

Corticotropes experience two subtates. Next, we investigated
development of each cell lineage. The corticotrope is the first
hormone-producing cell type that appears and TBX19 is crucial
for its development3. The pseudotime and reclustering analysis
identified two subclusters: Corticotrope1, which comprised cells
mainly derived from the early stage (7 to 9 weeks), and Corti-
cotrope2, which comprised cells mainly derived from the middle
or late stages (10 to 25 weeks) (Fig. 5a). TBX19 and POMC were
highly expressed in both clusters, which was consistent with the

Fig. 2 Molecular characteristics and heterogeneity of pituitary stem cells. a DEGs between the stem cells and the differentiated endocrine cells shown by
a z-scored heatmap. DEC: differentiated endocrine cells, which include the progenitor or precursor cells. b Bar plots showing differentially enriched KEGG
pathways between the stem cells and the DEC detected by GSEA. Representative genes in each pathway are shown. Nominal P values are determined by
two-sided Kolmogorov-Smirnov Test and adjusted by FDR. c Bar plots showing the stages of three subtypes of the stem cells. The Stem1 are mainly derived
from the early stages (7 to 10 weeks), and the Stem3 cells are mainly derived from the late stages (19 to 25 weeks). Color: weeks postfertilization. d Violin
plots of representative DEGs between the Stem1 and Stem3 cells. e Immunofluorescence staining for SOX2 and ASCL1 in the 8- and 23-week human fetal
pituitaries. Triangles indicate representative cells coexpressing both genes. Scale bar, 50 μm. f The CC cluster are composed of different cell subtypes. The
upper panel shows the average expression levels of the S and G2/M phase genes, and representative cell type markers. CC1 and CC2 are SOX2-positive
stem cells with CC1 and CC2 being the S and G2/M phase, respectively. CC3 are non-stem cells expressing POU1F1, TBX19 or GATA2. The lower panel
shows the proportions of the cycling to all stem cells as a function of weeks postfertilization. Data are presented as mean ± SEM. g Immunofluorescence
staining of SOX2 and Ki67 in the 8-, 17- and 23-week human fetal pituitaries (left). Triangles indicate representative costaining cells. The right panel shows
the ratios of double-positive and SOX2-positive cells in each sample (n≥ 2). p-Value is determined by two-sided Wilcoxon test (*P= 0.023 which is less
than 0.05, **P= 0.0024 which is less than 0.01). Data are presented as mean ± SEM. Scale bar, 50 μm.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19012-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5275 | https://doi.org/10.1038/s41467-020-19012-4 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


previous immunofluorescence staining study showing that all
TBX19-positive cells also express POMC (Fig. 5b, c)32. Androgen
receptor (AR) was prominently expressed in both corticotrope
clusters, which was predicted to be a potential TF regulating
POMC by SCENIC, and the expression was verified by immu-
nofluorescence (Figs. 1e, 5b and c). AR mutant mice have been
shown to exhibit an increased expression of POMC33.

We identified DEGs between Corticotrope1 and Corticotrope2.
DEGs in Corticotrope1 enriched GO terms such as “regulation
of mitotic cell cycle” (e.g., HMGA2), suggesting that they
could potentially proliferate (Fig. 5d, e, and Supplementary
Data 4). Indeed, a few TBX19-positive cycling cells were captured
(Fig. 2g). Interestingly, follistatin (FST), which is an antagonist of
ACTVIN, was specifically expressed in Corticotrope1, suggesting
that this intermediate cell type may also play some paracrine roles
for regulating the gonadotropes. DEGs in Corticotrope2 enriched
GO terms such as “response to corticosterone” (e.g., NR4A1
and NR4A2), suggesting that these cells were more matured
(Fig. 5d, e)34.

Another POMC-expressing lineage is the melanotrope in the
intermediate lobe, which appears after 14 weeks of gestation but is
scarce in the human pituitary15. The melanotrope coexpresses
TBX19 and PAX7, both of which are required for its differentia-
tion35. Only 4 cells, which were 7- or 8-week stem cells,

coexpressed TBX19 and PAX7 in our data (Fig. 1c). Comparison
between these cells and other stem cells revealed only PAX7 and
three other DEGs that were not expressed in the mouse and rat
melanotropes. These results suggested that we have not captured
the melanotrope.

In summary, we defined corticotrope differentiation from an
early intermediate state to a maturing state with upregulation of
the expression of genes to establish the cortisol feedback.

PIT-1 lineages segregate from a common progenitor. The PIT-1
lineage is comprised of three endocrine cell types: the somatotrope,
the lactotrope and the thyrotrope, all of which are governed by
POU1F12,36. In addition to these three hormone producing cell
types, the pseudotime trajectories analysis identified three inter-
mediated progenitor or precursor cell populations: the Pro.PIT1_all
cells as a common progenitor for all three hormone producing cell
types (146 cells), the Pre.Thy as a precursor for the thyrotrope
(74 cells, GATA2-positive) and the Pre.Som as a potential precursor
for the somatotrope (19 cells, Fig. 6a, b).

To explore how three different lineages segregate from the
common progenitor cell state, we first investigated expression
dynamics of known lineage-enriched genes (Fig. 6c). Previous
studies have shown that mutation of Neurod4 in mice leads to
almost completely lack of GHRHR expression and markedly
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decrease in GH expression21,37. Mutation of Foxo1 in mice also
results in delayed somatotrope differentiation38. Notably, we
found that NEUROD4 was clearly activated in Pro.PIT1_all cells
in comparison with the stem cells (logFC = 1.6, P= 1.3E–18,
Fig. 6c). NEUROD4 was further significantly upregulated in the
Pre.Som cells and the differentiated somatotropes. FOXO1 was

not expressed in the Pro.PIT1_all cells before upregulation in the
Pre.Som cells and a portion of the somatotropes. Thus, the results
demonstrated that NEUROD4 played roles earlier than FOXO1 in
the somatotropes.

ZBTB20 has been recently demonstrated to be crucial for
lactotrope specification in mice39,40. This gene was expressed
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in all pituitary cell types including the stem cells. Notably, its
expression level was significantly upregulated in the Pro.PIT1_all
cells in comparison with the stem cells (logFC = 0.6, P=
9.8E–08), and the level was similar between the Pro.PIT1_all cells
and the lactotropes (P > 0.1, Fig. 6c). Due to downregulation in
other two lineages, the expression level of ZBTB20 was slightly
but significantly higher in the lactotropes comparing with the
somatotropes and the thyrotropes (Lactotrope versus Somato-
trope: logFC = 0.7, P= 9E-25; Lactotrope versus Thyrotrope:
logFC = 0.4, P= 1.1E-08). This expression pattern was consistent
with the essential role of ZBTB20 in lactotrope specification.

GATA2, and possible ASCL1, have been implicated in
thyrotrope development in mouse18,21,41. In zebrafish, sox4b

has been shown to be required for thyrotrope development by
activating gata2a expression42. We found that ASCL1 and SOX4
were prominently expressed in the Pro.PIT1_all cells. GATA2
was not significantly upregulated in the Pro.PIT1_all cells (P >
0.1), but were prominently activated in the Pre.Thy and further
upregulated in the terminal differentiated thyrotropes. Inter-
estingly, SOX11, a member of SoxC family genes with SOX4,
was significantly upregulated in the Pro.PIT1_all cells in
comparison with the stem cells (logFC = 1.0, P= 4.2E-12,
Fig. 6d). The SCENIC analysis also suggested that both
SOX4 and SOX11 bind to the regulatory region of GATA2.
ASCL1 displayed significantly higher expression levels in the
thyrotropes than two other lineages (Thyrotrope versus

Fig. 4 Pseudotime developmental trajectories of hormone-producing cells. a Pseudotime analyses of the endocrine cells shown in the UMAP plot. Left:
the RNA velocity result with the arrows predicting directions of the pseudotime. Right: the Slingshot result with the lines indicating the trajectories of
lineages and the arrows indicating manually added directions of the pseudotime. Dots: single cells; colors: cell types. Yellow circle in the right panel
represents the start point of the trajectories which was set as the Stem1 subcluster. Since the corticotrope was already a separate cluster in the earliest
sample (7 weeks), the corticotrope trajectory may start from stem cells earlier than Stem1. The CC cluster was omitted in the Slingshot pseudotime
analysis as it contained several cell types and caused wrong trajectories. b Heatmap showing the relative expression of TFs displaying significant changes
(P≤ 1E−5) along the pseudotime axis of each lineage. The progenitor or precursor cells of each lineage were enclosed in frames of dashed lines. Colors:
loess-smoothed expression (red, high; blue, low). The columns represent the cells being ordered along the pseudotime axis with the cell type and fetal
week informations being shown above. Rows represent genes being ordered by their peak expression along the pseudotime axis. P values are determined
by one way ANOVA test. c Scatterplots showing the expression levels of representative TFs along the pseudotime axis. Dots: single cells; colors: cell types.
d Venn diagram of downregulated and upregulated TFs along the pseudotime axis of each lineage. Representative TFs were listed in the right boxes.
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Somatotrope: logFC = 1.3, P= 6.6E-15; Thyrotrope versus
Lactotrope: logFC = 0.7, P= 3.7E-09).

Then, we investigated a comprehensive view of lineage-
enriched genes and identified a total of 1,277 DEGs, including
107 TFs, between any two of three lineages (logFC ≥ 0.5 and
adjusted P ≤ 0.01, Fig. 6d, Supplementary Fig. 5a, b and
Supplementary Data 5). Thirteen TFs were significantly upregu-
lated in the Pro.PIT1_all cells comparing with the stem cells.
Among these TF, remarkably, NEUROD4 and ZBTB20 were
identified as the primary lineage-enriched TFs for the somato-
tropes and the lactotropes, respectively (Fig. 6c, d). RXRG and
DACH1 were identified as two thyrotrope-enriched genes, both of
which were prominently upregulated in the Pro.PIT1_all cells and
kept the high expression levels in the thyrotropes while down-
regulated in the somatotropes and the lactotropes (Fig. 6c, d).

A total of 19 somatotrope-enriched TFs, including FOXO1,
CEBPD and NKX2-2, were upregulated during the differentiat-
ing process of the somatotrope. NKX2-2, which has been shown
to be essential for development of neuroendocrine, gastro-
intestinal tract and pancreas43, was specifically upregulated in a
portion of terminal somatotropes (Fig. 6g), and it is highly
expressed in the human adult pituitary in the GTEx database.
We validated the coexpression of NKX2-2 with GH by
immunofluorescence (Fig. 6g). A total of 8 lactotrope-enriched
TFs (e.g. SIX6) and 38 thyrotrope-enriched (e.g., GATA2, ISL1
and FOXL2) were upregulated during the differentiation of the
lactotropes and the thyrotropes, respectively (Fig. 6d, e). The
pseudotime analysis of thyrotrope-lineage differentiation
showed that expression of SOX4 and SOX11 peaked before
activation of GATA2 in the Pre.Thy cells (Fig. 6f). SOX4 and
SOX11 were significantly downregulated in the thyrotrope
comparing with the Pre.Thy (SOX4: logFC = 1.0, P= 2.7E-7;
SOX11: logFC = 1.3, P= 4.9E-13).

A surprising finding was that the lactotropes and the
thyrotropes were close to each other relative to the somatotropes.
This was displayed in UMAP, and fewer DEGs were identified
between these two lineages comparing with the somatotropes,
and the transcriptomes of the lactotropes and the thyrotropes
were closely correlated (Figs. 4a, 6d and Supplementary
Fig. 5a, b, c). In contrast, the somatotropes and lactotropes were
more close to each other comparing with the thyrotropes in the
mouse and rate adult pituitaries (Supplementary Fig. 5c). We
speculated that this may be due to that both the lactotropes and
the thyrotropes were in less matured states comparing with the
somatotropes before 25 weeks. In the human fetus, GH begins to
secrete before 10 weeks and peaks at approximate 22 weeks, while
PRL begins to secrete at 25 weeks and peaks at birth44.
Supporting this, we found that TRHR and ESR1 were lowly
expressed in the fetal thyrotropes and lactotropes, respectively.

Furthermore, despite of many evidences suggesting the
existence of mammosomatotropes coexpressing GH and PRL in
the human and rodent pituitary45,46, our analysis did not identify
a distinct cell cluster that corresponds to a common precursor of
the somatotropes and the lactotropes, even after removing
potential batch effects of the somatotropes and the lactotropes;
the result was similar to that of the rat scRNA-seq study9

(Supplementary Fig. 5d).
Taken together, our results characterized the transcriptome

dynamics during specification of the PIT-1 lineages, in which a
common progenitor coexpresses lineage-enriched TFs prior to
activation of divergent TF networks.

Gonadotropes exhibit two developmental trajectories.
Gonadotropes mainly secrete two types of hormones, LH and
FSH, which are essential for reproduction in both sexes.

The pseudotime and reclustering analyses interestingly identified
five subclusters (Fig. 7a). There was a clear intermediate precursor
cell state, Pre.Gonado, which expressed GATA2 and FOXL2, but
not NR5A1. The other four clusters (Gonadotrope1, 2, 3 and 4)
comprised cells that expressed NR5A1 and GNRHR with different
expression patterns of LHB, FSHB and the primate-specific hor-
mone chorionic gonadotropin (CGBs). NR5A1, GNRHR and LHB
were expressed in the four cell clusters at a similar level, while
CGBs were expressed solely in Gonadotrope2 (LHBhighCGB-
highFSHBlow), and FSHB was more highly expressed in Gonado-
trope4 (LHBhighCGBlowFSHBhigh).

The pseudotime analysis revealed two developmental trajec-
tories: one trajectory was from the Pre.Gonado to the Gonado-
trope1 and terminated at the Gonadotrope2 (Type I trajectory),
while the other trajectory was from the Pre.Gonado to the
Gonadotrope3 and Gonadotrope4 (Type II trajectory, Fig. 7a, b).
For the Type I trajectory, the intermediate Gonadotrope1 was
solely in the early stages (8 to 14 weeks) while Gonadotrope2 was
comprised of both early and late stages; all Type II trajectory cells
were in the late stages (15 to 25 weeks). These results indicated
that the Type I and II trajectories represented an early and a late
gonadotrope lineage, respectively. Among all five clusters,
Gonadotrope2 had the most DEGs, and comparing between
Gonadotrope2 and Gonadotrope4 identified 265 and 30 DEGs,
respectively (Fig. 7c, Supplementary Fig. 6 and Supplementary
Data 6). GO analysis showed that Gonadotrope2 DEGs enriched
“regulated exocytosis” and “C21− steroid hormone biosynthetic
process” (e.g. the steroidogenic enzyme CYP11A1), suggesting
that Gonadotrope2 actively secreted hormones (Fig. 7c). WNT4
and GATA2 were more highly expressed in Gonadotrope2 and
Gonadotrope4, respectively (Fig. 7d). Other DEGs included
HIF3A and MC2R in the Type I trajectory and folate receptor
FOLR1 and secretoglobin SCGB2A1 in the Type II trajectory
(Fig. 7d and Supplementary Fig. 6).

Together, these data determined two gonadotrope develop-
mental trajectories including a previously unappreciated
LHBhighCGBhighFSHBlow subcluster.

Species comparison between human and rodent pituitaries.
Next, we compared our scRNA-seq data with two recently pub-
lished scRNA-seq datasets of mouse and rat adult pituitaries9,10.
The human scRNA-seq data, which used a plate-based method,
recovered higher number of genes per cell comparing with the
rodent data using the droplet-based 10X genomic method (Sup-
plementary Fig. 7a). Integrating three datasets showed that most
pituitary cell types were conserved among human and rodent
(Fig. 8a). Anterior pituitary known markers and new markers,
including SOX2, POMC, GH1, PRL, TSHB, GNRHR, ALDH1A2,
NR3C1, DLK1, OLFM1, DIO2 and KCNK3, showed similar cell-
type-specific expression patterns (Fig. 8b, Supplementary Fig. 7b).

Notably, no progenitor or precursor cell types were found in
the rodent datasets, indicating that differentiation rarely occurs in
these adult pituitaries. Also, in the human fetal pituitaries, the
proliferating cells were mainly the stem cells, while in the adult
rodent pituitaries, the proliferating cells were mainly the
somatotropes and the lactotropes. The rat FSCs were clustered
closely to human and mouse stem cells; all expressed SOX2, but
only the FSCs expressed S100B.

We then attempted to find species-specific genes, despite that
any differences between the fetal human dataset and the adult
rodent datasets could reflect the species or stage differences. We
recognized cell-type-specific genes for each species and then
identified human (or fetal)-specific genes and rodent (or adult)-
specific genes (Supplementary Data 7). Among the identified
genes, CGB and GH2 are primate-specific and thus do not exist in
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the rodent data (Fig. 8c). Trhr and Esr1 were highly expressed in
the rodent thyrotropes and lactotropes, respectively, but lowly
expressed in the human fetal pituitary, thus reflecting stage
differences. Interestingly, AR was highly expressed in the human
fetal corticotropes while lowly expressed in the rodent adult
corticotropes instead with high expression in the gonatropes
(Fig. 8c). Also, PRLHR was highly expressed in the human fetal
gonatropes while nearly not expressed in rodent47. IL17RB and
GAD2 also showed specific expression in the human fetal
pituitary. Together, these results revealed a small number of
potential species-specific genes.

Discussion
We applied scRNA-seq to elucidate transcriptomic heterogeneity
and dynamics in the human fetal pituitary. First, we characterized
divergent developmental trajectories with distinct transitional
intermediate states in five pituitary hormone-producing cell
lineages (Figs. 4a and 7e). For the PIT-1 lineage, integrating our
scRNA-seq data with previous mouse genetic studies provides
insights into how three distinct cell types are specified from a
common progenitor cell. We found that lineage-enriched TFs,
including NEUROD4, ZBTB20, ASCL1, SOX4 and SOX11, were
coexpressed in the progenitor cells (NEUROD4mid/ZBTB20high/
ASCL1high). During differentiation, the cells further segregate into
the NEUROD4high/ZBTB20mid/ASCL1low somatotropes, the
NEUROD4mid/ZBTB20high/ASCL1low lactotropes and the NEU-
ROD4low/ZBTB20mid /ASCL1high thyrotropes. This finding is
consistent with the results of recent scRNA-seq studies demon-
strating coactivation of alternative programs preceding two-cell
fate commitment in several developmental systems48–50. A recent
mouse genetic study interestingly showed that the lactotropes
were significantly increased in the Neurod4-null mice, with a
more prominently increase in the Ascl1;Neurod4 double knockout
mice21. Thus, it seems that there is competition among the three
programs in the progenitor cells with the lactotrope lineage being
produced in a situation of high ZBTB20 expression without high
activity of alternative lineage-enriched NEUROD4 and ASCL1.

How thyrotropes are specified in mammals has not been suf-
ficiently clarified. We found that two SoxC family genes, SOX4
and SOX11, were prominently expressed in the Pro.PIT1_all cells
before activation of GATA2 and GATA3 in the Pre.Thy (Fig. 6f),
suggesting that the SOX genes play roles in thyrotrope commit-
ment by regulating the GATA genes as sox4b does in zebrafish;
these two SoxC genes may act redundantly as in other develop-
mental processes51. Another interesting candidate gene is
DACH1, which was thyrotrope-enriched and clearly upregulated
in the progenitor cells. A previous study has suggested that Six6
interacts with Dach1 for regulating cell proliferation in pituitary;
however, the function of DACH1 on the thyrotrope development
has not been addressed52,53. It should be noted that DACH1 was
also prominently expressed in Pre.Gonado.

The developmental trajectories of the corticotrope and gona-
dotrope lineages were different from the developmental trajectory
of the PIT1 lineage. Corticotrope development was relatively
straightforward. The terminal POMC gene was coexpressed with
TBX19 even in the early intermediate state. We did not capture a
TBX19+/POMC− state, suggesting that this state may be very
transient or much earlier than cells we collected. In contrast,
the gonadotrope lineage was characterized by two multistep
developmental trajectories that clearly contained a GATA2+/
POU1F1−/NR5A1−/LHB− intermediate state before terminal
differentiation. Interestingly, an interaction between the corticotrope
and the gonadotrope lineages seems to exist during the fetal stage.
The LHBhighCGBhighFSHBlow fetal gonadotrope subtype specifically
expressesMC2R, which is the ACTH receptor. Additionally, the early

intermediate corticotrope subtype (Corticotrope1) specifically
expressed FST, which functions as an activin antagonist to inhibit
FSH release, and consistently, FSHB was expressed at low levels in
this fetal gonadotrope subtype (Figs. 5d and 7a).

Second, we identified a fetal gonadotrope subtype
(the LHBhighCGBhighFSHBlow cells of the Type I trajectory).
The hypothalamic-pituitary-gonadal (HPG) axis is activated
in the mid-gestational human fetus54. Our data suggested that
the LHBhighCGBhighFSHBlow cells matured at 10 weeks post-
fertilization, and thus the developmental timing of these cells
matches the activation of the fetal HPG axis. The development
of the Type II trajectory occurs after 15 weeks postfertilization,
lagging behind the Type I trajectory. In addition, our data
suggested that the LHBhighCGBhighFSHBlow cells are matured
with a feature of actively secreting hormones. These results
together indicate that the LHBhighCGBhighFSHBlow cells play a
role in establishing the early fetal HPG axis. The fetal HPG axis
is essential for development of the male genitalia, yet other
biological significances are not fully understood55. After mid-
gestation, the HPG axis is silenced towards the end of gestation,
and reactivated at birth (also called minipuberty), and sup-
pressed throughout childhood until reactivation at puberty56. It
is possible that the LHBhighCGBhighFSHBlow cells are also
involved in these regulations. Interestingly, it seems that this
fetal gonadotrope subtype does not exist in mice since CGB are a
primate-specific hormone and the gonadotrope cell type is the
last cell type to reach maturation in mice1; in contrast, we found
that this subtype is among the earliest generated cell types
in human.

Third, we characterized a hybrid E/M state in the human fetal
pituitary stem cells. Previous studies have suggested that pituitary
stem cells undergo an EMT-like process for cell migration and
differentiation23,24,57,58. Particularly, mice deficient of Prop1
reveal impaired migration of stem cells, and Prop1 has been
shown to directly target both the epithelial and mesenchymal
genes24,58. Our results showed that most typical EMT TFs are not
expressed in the stem cells, except weak expression of SNAI1,
SNAI2 and ZEB1, indicating that the cells are not undergoing full
EMT, and this is consistent with our previous study on mouse
organogenesis25. It is noteworthy that the coexpression of the
epithelial and mesenchymal markers is also detected in mouse
adult stem cells and rat FSCs (Supplementary Fig. 7b). However,
it is possible that, since we only analyzed limited number of cells
from 7 weeks on, we have not captured all E/M substates of the
pituitary stem cells including the early SOX2+/PROP1− cells and
other transitioning cells.

Collectively, this study provides key insights into the tran-
scriptional landscape of human pituitary development, defining
distinct cell substates and subtypes, and illustrating transcrip-
tional implementation during major cell fate decisions. The data
may also help identify disease genes of congenital hypopituitarism
and provide a reference for human pluripotent stem cells-
generated anterior pituitary tissue for therapeutic application and
disease modeling59.

Methods
Human fetal pituitary dissection. The donors in this study were pregnant women
who could not continue pregnancy because of their own diseases (such as cervical
insufficiency, inevitable abortion, infection, eclampsia, as examples). All patients
voluntarily donated the fetal tissues and signed informed consents. This study was
approved by the Reproductive Study Ethics Committee of Peking University Third
Hospital (2017SZ-043).

We collected 21 human fetal pituitaries from fetuses at 7 to 25 week
postfertilization (corresponding to 9 to 27 weeks of gestation), including 11 female
fetuses and 10 male fetuses. The pituitary tissues were dissected under a dissecting
microscope. For fetuses earlier than 14 weeks, the whole pituitaries were analyzed;
for fetuses later than 14 weeks, we separated the anterior and posterior pituitaries,
and only analyzed the anterior pituitaries except two fetuses (15W1 and 17W1) of
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which we collected cells from both parts. A total of 58 high-quality cells were
obtained from the posterior pituitaries of these two fetuses, most of which (n= 43)
were pituicytes and other cells included 12 immune cells and 3 red blood cells. The
tissues were washed twice with Dulbecco’s phosphate buffered saline (DPBS) and
then the minced tissues were digested with 1 mg/ml type II (17101015, GIBCO)
and type IV collagenase (17104019, GIBCO) at 37 °C for 15–30 min. After filtration
through 40-µM nylon mesh, the cells were washed once with 10% FBS DMEM, and
a single-cell suspension was obtained.

Immunohistochemistry and immunofluorescence assays. After the whole
pituitary was dissected and washed three times with DPBS, the tissue was fixed with
4% paraformaldehyde at 4 °C overnight.

For histological analysis, fixed tissue was stained with H&E. For IF, after
washing and dehydration, fixed tissue was embedded in Tissue-Tek O.C.T.
Compound (#4583, Sakura) and sectioned at a thickness of 10 mm. Then, the
sections were washed, permeabilized, blocked and incubated with commercial
primary antibodies (1:50, Mouse anti-Sox2 antibody, sc365823, Santa Cruz
Biotechnology; 1:200, Rabbit Anti-MASH1/Achaete-scute homolog 1 (ASCL1)
antibody, ab211327; 1:200, Rabbit Anti-KI67 antibody, ab15580, Abcam; 1:75, Goat
Anti-POMC antibody, ab32893, Abcam; 1:50, Mouse Anti-AR antibody, sc-7305,
Santa Cruz Biotechnology; Mouse Anti-GH antibody, sc-374266, Santa Cruz
Biotechnology; 1:200, Rabbit Anti-NKX2-2 antibody, ab191077, Abcam; 1:500,
Rabbit Anti-Collagen III antibody, ab7778, Abcam; 1:50, Mouse Anti-PIT1
antibody, sc-25258, Santa Cruz Biotechnology; 1:200, Rabbit Anti-TSHβ antibody,
ab155958, Abcam; 1:50, Mouse Anti-PRL antibody, sc-46698, Santa Cruz
Biotechnology; 1:100, Rabbit Anti-FSHβ antibody, ab180489, Abcam; 1:100, Rabbit
Anti-LHβ antibody, ab150416, Abcam) at 4 °C overnight. We used commercial
secondary antibodies that were incubated for 2 h at room temperature. Finally, the
sections were counterstained with DAPI in an antifade solution (P36931,
Invitrogen) and then mounted. The samples were imaged by using an A1RSi+
Nikon confocal microscope (Nikon, Japan).

Statistics and reproducibility. For each representative immunohistochemistry
and immunofluorescence assay, we took the nearby 1–2 weeks as biological
replicates (n ≥ 2) due to sampling limitations. The positive cells in different sections
(n ≥ 3) were counted automatically by ImageJ software or manually.

scRNA-seq library construction and sequencing. We used a mouth pipette to
randomly pick single cells and used a modified STRT-seq protocol to construct a
scRNA-seq library25,60. The cells were lysed in a lysis buffer with an 8-nt cell
barcode and 8-nt UMI. Then, mRNA was reverse transcribed into cDNA with
SuperScript™ II Reverse Transcriptase (18064014, Invitrogen). After preamplifica-
tion, the samples with different cell barcodes were pooled together, and the mixture
was labeled with a biotin modification by 4 cycles of PCR. Then, the full-length
cDNA was sheared into fragments with approximately 300-bp lengths by Covaris
(S2), and the 3′ cDNA was enriched by Dynabeads MyOne Streptavidin C1 (65002,
Invitrogen) to construct a library according to the Kapa Hyper Prep Kit protocol
(KK8505, Kapa Biosystems). Cleaned libraries were sequenced as paired-end 150-
base reads on an Illumina Hiseq platform (sequenced by Novogene). As individual
fetal samples were collected at different time points, they were subjected to dif-
ferent sequencing runs.

scRNA-seq data processing. Cells were split by the first 8-bp barcode in Reads2,
and then the next 8-bp UMIs in Reads2 were added to the header in Reads1. After
trimming the template switch oligo (TSO) and polyA sequences and removing the
short reads (length < 37 bp) and low-quality reads (N > 10%) in Reads1, the clean
reads were aligned by Tophat (version 2.0.12) to the hg19 genome downloaded
from UCSC. Then, HTSeq was applied to count the uniquely mapped reads61, and
the number of different UMIs for each gene in each cell was considered the
transcriptional count.

To filter out low-quality cells and multiple cells sequenced as one cell, we
selected only cells with a gene number ≥ 2000, an initial reads number ≤ 1E7, and a
mapping ratio ≥ 20% and genes with at least one count in at least three cells for the
following analysis. The filtered gene expression data set of transcriptional counts
was analyzed using the Seurat (Version 2.3.4) package12. As most of the single cells
in our data sets were around 100,000 transcriptional counts, the scale factor was set
to 100,000. The resolution of “FindClusters” was set as 1 for all cells and merged
subclusters of MC with the same known markers (Supplementary Fig. 1d, f), 1.5 for
endocrine cells and merged subclusters of Stem, Somatotrope and Gonadotrope
with the same known markers (Fig. 1b, c), 0.3 for stem cells (Fig. 2c), 0.4 for
gonadotropes (Fig. 7a). Main cell types were identified by the combination of
known markers for each cluster.

Identification of DEGs and enrichment analysis. DEGs were identified by the
function “FindAllMarkers” or “FindMarkers” in Seurat packages using “wilcox”
test methods and Bonferroni correction. Significant DEGs were selected from genes
with adjusted P value p_val_adj ≤ 0.01 and log processed average fold change
avg_logFC ≥ 0.5 for further analysis and visualization. In venn diagram of Fig. 6d,
TFs were selected from significantly upregulated DEGs (p_val_adj ≤ 0.01 and

avg_logFC ≥ 0.5) between each two of lineages. TFs of each lineage were the union
of upregulated genes (P ≤ 1E-4) compared to the other two lineages, and then the
intersection of upregulated genes (P ≤ 1E-4) compared to the other two lineages
were selected as the specific TFs of that lineage. GO analysis and KEGG pathway
enrichment analysis of these significant DEGs were performed by Metascape
(http://metascape.org)62. Pathway enrichment comparisons of each combination of
two clusters were analyzed by GSEA63,64.

Remove cell cycle effect. To remove cell cycle effect in the non-proliferative stem
cell, we firstly ran a PCA on cell cycle genes in Seurat package (s.genes, g2/m.genes)
of stem cells and observed a little cell cycle effect in some stem cells. Then, we
regressed out cell cycle scores (S.Score and G2/M.Score), and re-ran a PCA on cell
cycle genes and found no cells were separated by these genes. Next, we found
clusters using the newly scaled data after regressing out cell cycle scores, and
revealed that the newly identified clusters were same as the originally found
stem subtypes.

Gene score definitions. We defined the E.score, the M.score and the S.score by
averaging the expression levels of curated epithelial markers, mesenchymal markers
collected from previous studies, and stemness genes in the GO term “stem cell
population maintenance” (GO: 0019827) respectively25,26. Markers of these scores
were listed in Supplementary Data 2.

Prediction of activated TFs. The modules of TFs were identified by the SCE-
NIC17 python workflow (version 0.9.1) using default parameters (http://scenic.
aertslab.org). A human TF gene list was collected from the resources of pyS-
CENIC (https://github.com/aertslab/pySCENIC/tree/master/resources), animal
TFDB65,66 (http://bioinfo.life.hust.edu.cn/HumanTFDB#!/download) and the
Human Transcription Factors67 database (http://humantfs.ccbr.utoronto.ca/
download.php). Activated TFs were identified in the AUC matrix, and differ-
entially activated TFs were selected using “FindAllMarkers” of the Seurat
package. The top 10 enriched activated TFs were ranked by -log10(p_value) and
demonstrated using the binary matrix (1 activated; 0 not activated). Networks of
the modules with TFs and their target genes were visualized by the R package
igraph (version 1.2.5) (https://igraph.org/).

Construction of lineage trajectories. Lineage trajectories were constructed by
Slingshot29 with a UMAP or PCA plot as the dimensionality reduction results. For
Fig. 4a, the start cluster was set as Stem1, and end clusters were mature hormone
producing cell types. For Fig. 7a, the start cluster was set as Pre.Gonado. The
trajectories were considered the developmental pseudotime of each lineage. TF
dynamics along the pseudotime axis were identified by the R package gam (version
1.16)68, and significantly changed TFs were selected from TFs with P-values ≤ 1E-5.
In Fig. 4d, upregulated and downregulated TFs were two clusters of candidate TFs
identified by hierarchical clustering of genes in Fig. 4b.

RNA velocity analysis. The directions of pseudotime were predicted by RNA
velocity28 using exonic and intronic gene expression levels. After alignment by
Tophat, mapped bam files were processed by the python package velocyto (version
0.9.1) to produce loom files with spliced and unspliced gene counts. Then, the loom
files were merged and analyzed to predict directions following the analysis pipeline
with a k-nearest neighbor (k= 10). The directions of RNA velocity were projected
in a UMAP plot.

Cell–cell interaction analysis. Interactions between pairwise cell clusters were
inferred by CellPhoneDB v.2.069, which includes a public repository of curated
ligands, receptors and their interactions. We ran the CellPhoneDB framework
using a statistical method and detected L-R pairs that were expressed in more than
20% of cells. Significant L-R pairs (P-value ≤ 0.05 and mean value ≥ 0.5) were
demonstrated using igraph and heatmap. Cell types expressing ligands were con-
sidered as active cell types sending signals, while cell types expressing the corre-
sponding receptors were considered as target cell types receiving signals.

Integrating human and rodent datasets. Mouse and rat data sets were down-
loaded from GEO website GSE120410 and GSE132224, respectively. Cell types
were identified by Seurat in each data set independently, and then DEGs were
identified by the function “FindAllMarkers” of Seurat packages using “wilcox” test
methods and Bonferroni correction. Significant DEGs of human data were selected
from genes with p_val_adj ≤ 0.01 and avg_logFC ≥ 0.5. For identifying the
potential species-specific genes, we firstly identified cell-type-specific genes (the
corticotropes, somatotropes, lactotropes, thyrotropes and gonadotropes) for each
species and then made comparision between human and rodent. The RESCUE70

(version 1.0.1) method was applied for imputing the dropouts for the rodent
data. The rodent genes required to be both the mouse and the rat genes. As gene
number and gene expression level were much lower in rodent data sets, significant
DEGs of rodent data sets were selected from genes with p_val_adj ≤ 0.01 and
avg_logFC ≥ 0.25.
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To compare the three data sets further, we integrated them by Seurat3 (Version
3.1.1) standard workflow. We only used genes shared in all three data sets. Top
2000 variable features were selected by variance stabilizing transformation (“vst”),
and then anchors were identified and passed to the “IntegrateData” function to
integrate them, which also removed batch effect among these data sets. After
scaling the integrated data and running PCA and UMAP, we clearly observed
the relationships among them in Fig. 8a. We also used this workflow to
remove batch effect in somatotropes and lactotropes from late stages with
more than 10 cells.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its supplementary information files or from the corresponding author
upon reasonable request.
The raw data have been deposited in the GSA (Genome Sequence Archive) databases

of the National Genomics Data Center (NGDC, https://bigd.big.ac.cn/) under the
BioProject accession code: PRJCA003249. The gene expression matrix data have been
deposited in both the GSA and the Gene Expression Omnibus (GEO) under accession
code: GSE142653. There are no restrictions on access to these data.
Gene expression patterns of the endocrine cells are also available on the shiny

webpage: https://tanglab.shinyapps.io/Human_Fetal_Pituitary_Endocrine_Cells/.
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