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Abstract

Human immunodeficiency virus type-1 (HIV-1) fitness has been associated with virus entry, a process mediated by the
envelope glycoprotein (Env). We previously described Env genetic diversification in a Zambian, subtype C infected, slow-
progressor child (1157i) in parallel with an evolving neutralizing antibody response. Because of the role the Variable-3 loop
(V3) plays in transmission, cell tropism, neutralization sensitivity, and fitness, longitudinally isolated 1157i C2-V4 alleles were
cloned into HIV-1NL4-3-eGFP and -DsRed2 infectious molecular clones. The fluorescent reporters allowed for dual-infection
competitions between all patient-derived C2-V4 chimeras to quantify the effect of V3 diversification and selection on fitness.
‘Winners’ and ‘losers’ were readily discriminated among the C2-V4 alleles. Exceptional sensitivity for detection of subtle
fitness differences was revealed through analysis of two alleles differing in a single synonymous amino acid. However, when
the outcomes of N = 33 competitions were averaged for each chimera, the aggregate analysis showed that despite
increasing diversification and divergence with time, natural selection of C2-V4 sequences in this individual did not appear to
be producing a ‘survival of the fittest’ evolutionary pattern. Rather, we detected a relatively flat fitness landscape consistent
with mutational robustness. Fitness outcomes were then correlated with individual components of the entry process. Env
incorporation into particles correlated best with fitness, suggesting a role for Env avidity, as opposed to receptor/coreceptor
affinity, in defining fitness. Nevertheless, biochemical analyses did not identify any step in HIV-1 entry as a dominant
determinant of fitness. Our results lead us to conclude that multiple aspects of entry contribute to maintaining adequate
HIV-1 fitness, and there is no surrogate analysis for determining fitness. The capacity for subtle polymorphisms in Env to
nevertheless significantly impact viral fitness suggests fitness is best defined by head-to-head competition.
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Introduction

Human immunodeficiency virus type I (HIV-1) is a positive-

sense RNA virus that replicates via error-prone reverse transcrip-

tion and undergoes inter-strand recombination, introducing

approximately 3.461025 mutations/base pair per replication

cycle [1,2]. These diversification mechanisms result in HIV-1

populations behaving as large, dynamic groups of related, yet

genetically distinct, organisms whose evolutionary characteristics

can be modeled as a quasispecies [3]. Quasispecies diversity

provides HIV-1 with evolutionary flexibility to respond to

environmental selective pressures while maintaining capacity to

produce replication-competent progeny.

HIV-1 diversity facilitates evolution of resistance to antiretro-

viral therapy and escape from host immune responses [4–15].

Effective antiretroviral drugs, such as nucleoside and non-

nucleoside reverse transcriptase inhibitors, protease inhibitors,

and integrase inhibitors, have been developed to impede

enzymatic activities required for HIV-1 replication. [16]. Howev-

er, due to HIV-1 quasispecies diversity, drug resistance develops

within many patients, and transmission of drug resistant variants

between patients remains a concern. The CD8+ T-cell recognition

of MHC class I restricted HIV-1 epitopes presented by infected

cells is thought to play a critical role in controlling viral load [17–

21]. While some MHC I alleles have been associated with

decreased viral load and improved patient prognosis, intrapatient

quasispecies diversity also supports escape from cytotoxic T

lymphocyte (CTL) responses in most individuals [22,23]. More

disturbingly, there are indications that the global HIV-1 popula-

tion may be adapting to avoid CTL selective pressure [24–26].

Therefore, large dynamic populations of subtle sequence variants

allow HIV-1 continue to replicate despite potent environmental

selection imposed by treatment and the immune system.

For our study, as well as many described below, fitness is defined

as the replicative capacity of a viral variant in a defined

environment [27]. Using this definition, a ‘survival of the fittest’

landscape, in its simplest form, can be modeled on a two-

dimensional fitness coordinate system as a series of discrete peaks

representing highly fit variants, and valleys representing low fitness

variants. HIV-1 sequence diversity in Gag, Nef, Pro, and RT

allows viral escape from selective pressures. However, escape

mutants often have less replicative capacity; they are less ‘fit’

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e63094



in vitro than the parental strain [6,8,25,28], in the absence of the

selecting agent. Reductions in in vivo fitness, can lead to decreased

viral load, which in turn, hinders disease progression and potential

for virus transmission [29–33].

Humoral immunity, typified by neutralizing antibody (NAb)

responses against HIV-1 Env, develops within months of infection

in most patients [34–37]. The host NAb response exerts selective

pressure on Env leading to the presence of hypervariable regions

(V1–V5) that are thought to undergo almost continual variation

and selection. The variable regions alternate with relatively

conserved regions of Env (C1–C5) that are generally considered

to be immunologically ‘silent’ or highly functionally constrained

[38]. Diversification and selection allow Env to escape neutrali-

zation over the course of infection [34,37,39,40]. Based upon the

observations that CTL and antiretroviral escape mutations in Gag,

Nef, Pro, or RT, incur a fitness cost, one might anticipate that a

similar fitness penalty would be evinced by Env escape mutants.

However, despite the fact that a majority of infected individuals

mount a neutralizing response against Env, clearance of HIV-1

has never been demonstrated, implying that escape from NAb

does not come at a profound fitness cost. This suggests that Env

evolves to maintain fitness while exploring diverse sequence space,

a concept termed mutational robustness, or ‘survival of the flattest’

[41,42]. A two dimensional representation of this concept would

be a fitness plateau where many variants in sequence space are

compatible with adequate replicative fitness.

In the absence of CTL, NAb, or pharmacologic selection, HIV-

1 replicative fitness has been correlated with early events in the

replication cycle including receptor binding, fusion, and entry; all

steps mediated by Env [43,44]. In investigations of relationships

between HIV-1 fitness and disease progression, Quiñones-Mateu

et al., found that fitness, assayed in vitro, correlated with disease

progression in vivo [45]. More importantly, env recombinant viruses

duplicated the fitness stratification, suggesting that HIV-1 fitness,

in the absence of drug selection, was a function of Env-mediated

processes. Subsequent reports verified these observations with

alternative approaches and patient samples [43,44,46,47]. Troyer

et al. investigated temporal relationships in the V3-loop region of

HIV-1 in subtype B infected adults and reported a modest

correlation between Env diversification and fitness, as well as the

anticipated higher fitness of X4- versus R5-tropic strains in

individuals who underwent a coreceptor switch. However, the

longitudinal effects of Env diversification on viral fitness in infected

children and particularly those with HIV-1 subtype C, where R5-

X4 transition is less common, has not been longitudinally

investigated. Moreover, the molecular or functional determinants

of fitness within Env remain to be fully elucidated.

Large differences in HIV-1 fitness can be identified via viral

growth kinetics, either by comparatively assaying rates of increase

in reverse transcriptase activity or accumulation of retroviral

proteins; however, these approaches cannot elucidate subtle fitness

differences between HIV-1 variants [15]. In the absence of gross

replicative defects, two variants can have virtually identical in vitro

growth kinetics, yet disparate fitness values [45,46,48]. Thus, viral

fitness is optimally defined by experimentally quantifying viruses in

dual-infection competitions [49]. Recently, recombination be-

tween a reporter provirus and Env PCR products has been used to

produce infectious HIV-1 containing a fluorescent reporter gene.

Competitions between one virus with an eGFP reporter and

another containing a DsRed2 reporter allowed for quantification

of HIV-1 fitness values by flow cytometry [50].

To support the more specific molecular cloning of various env

domains, we modified these fluorescent reporter infectious

molecular clones by introducing a series of silent restriction sites

into env. These unique constructs support precise creation of

envelope chimeras, allowing for localization of Env-mediated

phenotypes to specific regions (ex. ectodomain), specific domains

(ex. V1–V5 loops) or precisely defined domains (ex. V3-loop). The

C2-V4 region contains the Env third variable loop (V3), a major

determinant of cell tropism, coreceptor usage, and transmission

[51–55]. Based on its important role in Env function, it is not

surprising that V3-loop polymorphisms have been associated with

changes in viral fitness, that antibodies targeting V3 can neutralize

viral infectivity, and that the V3-loop determines susceptibility to

entry inhibitors [28,56–59]. Previously, we showed that the V3-

loop sequences from a treatment naı̈ve, subtype C-infected, slow-

progressor, Zambian infant diverged extensively from birth to 67

months of age. Using viral isolates derived by co-culture,

divergence was correlated with an evolving Ab response that, at

each time-point, neutralized previous isolates but lacked efficacy

against the contemporaneous viral isolate [60].

Given the lack of a coreceptor switch or disease progression in

the infected child, we sought to define relationships between Env

C2–V4 sequence divergence, glycoprotein function, and viral

fitness. Patient sequences derived over a 67-month sampling

regimen were introduced into each of the HIV-1NL4-3 eGFP or

DsRed2 infectious molecular clones. The resulting virus prepara-

tions were subjected to competitive dual-infection matrices to

determine viral fitness of each C2-V4 allele relative to all others

from the same patient. To test for correlation of Env functional

parameters with fitness, the Env chimeras were then subjected to

biochemical characterization for Env synthesis and processing,

incorporation into virions, affinity for CD4 and CCR5, and RT-

normalized infectivity.

Here we demonstrate the utility of a modified system for

quantifying Env-mediated fitness, or replication capacity, where

patient-derived Env sequences can be directly cloned into

infectious molecular clone reporter viral constructs. In experi-

ments using subtype C Env C2-V4 sequences from an slow-

progressor child, we show the capacity to detect ‘winners’, ‘losers’,

and ‘ties’ in individual competitions, including detection of fitness

differences between extremely subtle polymorphisms. Aggregate

analysis of fitness/replication capacity associated with polymor-

phisms in the 1157i C2-V4 region of Env, supports a flat, but

rugged, fitness distribution indicative of mutational robustness.

Results

Construction and Characterization of HIV-1 NL4-3 MSS-
eGFP and -DsRed2 Infectious Molecular Clones

HIV-1 fitness has been studied previously using fluorescent

reporter HIV-1 vectors lacking either env or pol sequences that,

when linearized and co-transfected with patient-derived PCR

products, recombine to generate infectious chimeric virions. This

system offered substantial improvement over heteroduplex-based

fitness assessment regimens by supporting quantification of

outcomes at the single cell level using flow cytometry [45,61].

However, for our purposes, the method still suffered from

limitations. First, the production of viable progeny virions results

from inherently inefficient processes, co-transfection of a linearized

vector and a PCR product, followed by their subsequent

recombination. Second, the system only allowed for the insertion

of pre-defined patient env sequences since recombination requires

sequence homology between the linearized env-deleted vector and

the PCR product to be inserted. Moreover, almost any instance of

illegitimate recombination is likely to produce stop codons and

thereby non-infectious progeny, and, as we will show, even subtle

variations in amino acid sequence can have significant effects on

Fitness Relationships in HIV-1 Subtype C Env C2-V4
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Env mediated fitness. Therefore, it was important to be able to

define the junctions of the inserted sequence and the vector with

certainty. We further reasoned that it would be useful to have the

flexibility to concentrate on specific functional domains of env, or to

pursue a reductionist approach in analyses from a complete Env

sequence down to domains associated with particular phenotypes.

We used site-directed mutagenesis to introduce numerous silent

restriction sites into the HIV-1NL4-3 env gene. The result was

pNL4-3-MSS (Multi-Silent Site), which improved the flexibility

and efficiency of making Env-chimeras by creating a mechanism

to clone virtually any Env sequence (Fig. 1A). To capitalize on the

exceptional utility of the partial genome fluorescent reporter

vectors produced by Weber et al. [50], we transferred the

fluorescent reporter sequences from pNL4-3-Denv-eGFP and

pNL4-3-Denv-DsRed2 into pNL4-3-MSS to create pNL4-3-

MSS-eGFP and pNL4-3-MSS-DsRed2. Both infectious molecular

clone fluorescent constructs were sequenced to ensure there were

no unanticipated mutations (data not shown). Cells transfected

with pNL4-3-MSS-eGFP and pNL4-3-MSS-DsRed2 express the

respective fluorescent proteins from the HIV-1 LTR promoter

(Fig. 1B), providing a convenient evaluation of transfection

efficiency and a surrogate, in situ marker for HIV-1 gene

expression. To determine whether the constructs produced virus

particles, transfected cells were metabolically labeled, and

harvested supernatants were immunoprecipitated with polyclonal

anti-HIV-Ig. Bands consistent with gp120 (SU) and p66 (RT) were

detected by SDS-PAGE of viral pellets from the fluorescent vectors

as well as control non-fluorescent wild-type NL4-3 virus prepa-

rations (Fig. 1C).

The viral constructs make all viral proteins excepting Nef.

Contrary to a previous report [50], we found that while Nef was

detectable from a plasmid expression vector and two different

wild-type NL4-3 transfections, no expression of Nef was evident

from our fluorescent constructs (Fig. S1) or from the source

constructs for the fluorescent reporter genes, kindly provided

Miguel Quinones-Mateu. The likely explanation for this deficit is

that splicing is functioning efficiently to the reporter gene, but is

not supported to the nef exon. It is important to note that since the

constructs are isogenic other than the reporter genes, Nef is absent

from both constructs. Therefore, any potential effect lack of Nef

might exert on replicative capacity is controlled for in dual

infection competitions.

To verify that the viruses produced by transfection of pNL4-3-

MSS-eGFP and pNL4-3-MSS-DsRed2 are capable of mediating

multiple round infections, we harvested virus-containing superna-

tants from transfected HEK293T cells and used RT activity to

normalize the viral content. Constructs containing the wt NL4-3

Env sequence are exclusively CXCR4 tropic. We infected

U87.CD4.CXCR4 with equivalent units of RT activity and

monitored virus replication kinetics over the ensuing 12 days

(Fig. 1D). RT activity increased in supernatants from infected

cultures of both fluorescent viruses, demonstrating replication

competence. The maximum steepness of the sigmoidal curve for

eGFP virus was 6.28 CPM/day (90% CI 5.57–6.98), and for

DsRed2 virus - 6.93 CPM/day (90% CI 6.16–7.70). Fifty-percent

maximal accumulation of RT activity (RT50) occurred at

approximately Day 6 of culture for both constructs (eGFP virus:

6.20 days, DsRed2: 5.90 days). These values suggest the two

fluorescent viruses replicate with near identical replication kinetics

despite containing fluorescent reporter genes from two biolumi-

nescent species.

However, evaluating replication kinetics in parallel often fails to

detect differences in replication capacity when such differences

actually exist. Therefore, to directly and quantitatively test the

impact of the distinct reporter genes in the context of the wild-type

NL4-3 Env allele, dual-infection competitions between NL4-3-

MSS-eGFP and NL4-3-MSS-DsRed2, along with parallel control

mono-infections were set up on U87.CD4.CXCR4 cells at

multiplicity of infection (MOI) of 0.01, 0.1, and 1.0. Five days

post-infection, eGFP and DsRed2 signals were readily visible via

fluorescent microscopy (Fig. 2A) and infectious events were

quantified via flow cytometry. Comparable numbers of infectious

events were detected for each fluorescent virus at a given MOI

using the 561-nm laser for DsRed2 and 488-nm for eGFP

(Fig. 2B). We observed a dose-response relationship between the

two fluorescent viruses in mono-infections (Fig. 2B). Infections at

high MOI (1.0) were not analyzed due to extensive cell death in all

cultures, and the presence of dually-fluorescent (yellow), and

therefore dually-infected, cells in the competitive infections (data

not shown). We reasoned that such cultures could exhibit

phenotypes resulting from mixed genetics. No difference in fitness

between the two wild-type Env viruses in dual-infection compe-

titions was detected at a MOI of 0.1 or 0.01 (Fig. 2B) indicating

that neither fluorescent reporter gene imparted a significant gain

or loss of viral fitness. We were therefore confident that the distinct

fluorescent viral vectors would have the capacity to resolve subtle

fitness differences in competitive infections.

1157i C2-V4 Chimeras
As with other studies of HIV-1 transmission, our previous

findings suggested that restricted, or selective, transmission

occurred to 1157i. Previous genetic analyses of the C2-V4 region

of Env showed that diversification increased over the course of

infection. Divergence essentially paralleled diversification, and was

associated with accumulation of non-synonymous changes. Nev-

ertheless, tropism for CCR5 was maintained and neither sequence

length, or numbers of potential glycosylation, increased with time

[60]. The nucleotide changes/month as well as the amino acid

changes/month, for a minimum of 23 haplotypes/time-point, are

presented in Fig S2. Using co-cultured virus and patient sera, we

previously documented that de novo, as opposed to passively

acquired maternal, neutralizing responses were evident at 12

months, and from thence onward [60]. These humoral responses

appeared to correlate with ongoing Env diversification. Moreover,

comparative studies of Env diversification utilizing a pathogenic

simian-human immunodeficiency virus containing the 1157i

envelope sequence (SHIV-1157ipd3N4) have demonstrated com-

mon genetic patterns among two species of non-human primates

and the original infected infant [62,63]. One previous study

reported a positive correlation between temporal env C2-V3

diversification and viral fitness in Subtype B infected adult men

[48]. However 1157i is a drug-naı̈ve, slow-progressing infant

infected with subtype C HIV-1 in utero. Given that it was clear that

Env genotypically evolved in a temporal fashion in the patient and

in the two primate models, we asked how sequence evolution was

impacting the temporal fitness landscape in 1157i. Was Env-

mediated fitness increasing or decreasing with variation and

selection of C2-V4, or was the region simply undergoing variation

without impact on fitness?

Patient-derived C2-V4 HIV-1 env sequences were originally

amplified from genomic DNA for genetic characterization based

on sequencing and phylogenetics [60]. In the current study,

archival clones of these C2-V4 sequences in pGEM-T were

subjected to amplification with PCR primers that templated the 59

AgeI and 39 SbfI restriction sites compatible with NL4-3-MSS env to

generate cloneable env subgenic fragments (Fig. 1A). Twelve

individual env C2-V4 alleles were amplified from 0, 12, 18, 24, 36,

48 and 67-month pGEM-T constructs (Fig. S3). Alleles were

Fitness Relationships in HIV-1 Subtype C Env C2-V4
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selected on the basis of their genetic distance from one another

and proximity to the major phylogenetic branch of the subsequent

time-point.

Fitness Quantification in Primary CD4+ T Cells
Our data utilizing DsRed2 and eGFP infectious molecular

clones containing wild-type NL4-3 envelopes demonstrated

equivalent replication kinetics and fitness (Fig. 1d & 2b).

Sequence analysis of 1157i C2-V4 alleles revealed only a single

Ser/Thr polymorphism in a sequon at position 227, (Fig. S3)

between date-of-birth samples 00m06 and 00m15. Viral stocks of

chimeras 00m06 (eGFP) and 00m15 (DsRed2) were generated by

transfection of HEK293T cells. We anticipated that competitions

between these nearly identical chimeras would produce neutral

fitness outcomes. To quantify fitness of these initial chimeras,

stimulated CD4+ T-cells were isolated by negative immunomag-

netic sorting from three genetically distinct blood donors. The

enriched CD4+ populations were infected at an MOI of 10 in

mono- and dual-infections, a multiplicity sufficient to ensure

production of fluorescent cells for fitness calculations without

Figure 1. Expression of infectious molecular clones results in fluorescence in 293T transfectants and generation of infectious
virions. a) Diagram of the HIV-1 NL4-3-MSS-eGFP/DsRED2 construct showing an expansion of the region bounded by EcoRI and XhoI and
encompassing the code for Tat, Vpu, Rev, and Env. Introduced silent mutations are underlined. Sequence region utilized in this paper purple. b) HEK
293 cells transfected with either NL4-3-MSS-eGFP or NL4-3-MSS-DsRED2 were imaged by fluorescent microscopy (406) at 48-hours post-transfection
(b). c) Pelleted virions derived from 35S- radiolabeled transfected cells were immunoprecipitated with HIV-Ig and the resulting proteins were
separated by SDS-PAGE revealing bands corresponding to gp120 (Env) and p66 (RT) in wild-type, NL4-3-MSS-eGFP, and NL4-3-MSS-DsRED2, but not
mock transfected cells. d) Virus stocks derived from NL4-3-MSS-eGFP (green line) and NL4-3-MSS-DsRED2 (red line) transfections were used to infect
U87.CD4.CXCR4 cells. Virus replication kinetics were assayed using a 3H-based RT assay at the indicated time-points. Mock transfected cell
supernatant served as a control (black triangles).
doi:10.1371/journal.pone.0063094.g001
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generation of co-infected cells (dually fluorescent). Independent

infections were assayed by flow cytometry in triplicate on days 3–7

to quantify eGFP and DsRed2 positive cells for calculation of

relative fitness (W) values for the 00m06 and 00m15 C2-V4 alleles

(Fig. 3a). Fitness is calculated by quantifying the change in the

proportion of each competitor (infectious events) in the dual-

infection to the quantity of infectious events in matched mono-

infections, which act as internal controls. On this fitness coordinate

system, maximum fitness or competitiveness is 2.0, whereas total

lack of fitness is 0.0, and neutrality is at 1.0. We were surprised to

find that competitions between 00m06 and 00m15 alleles resulted

in significant fitness differences at the endpoint (7 days post-

infection). Initial proportions of infected cells from the dual-

infection suggested that 00m15 was less fit than 00m06 (Day 3, W

00m15DsRed2 = 0.819760.1321) (Fig. 3a, b). However, 00m15

fitness value steadily increased over the course of 7 days indicating

that the initial findings resulted from titer underestimations for the

innocula used to set up the dual- infection that required 00m15 to

undergo multiple rounds of replication in both the mono- and

dual-infections before demonstrating competitive exclusion. The

increase in 00m15 fitness occurred in all blood donors, and there

was no difference in the slope of the increase in fitness in the three

donors. When the mean fitness value from all three donors was

plotted over time, at Day 7, 00m15 was more fit than 00m06 (W

00m15DsRed2 = 1.422 vs. W 00m06eGFP = 0.57860.1094)

(Fig. 3b). These data, from viruses differing by a single, seemingly

conservative, point mutation in a maintained N-linked glycosyl-

ation motif, demonstrate that this fitness quantification platform is

potentially more sensitive than those previously reported.

Fitness Quantification in U87.CD4.CCR5 Cells
The number of dual infections and controls required to analyze

fitness for all chimeras precluded the use of primary cells as targets

for infection. Moreover, though we saw no differences between the

relative fitness values calculated from three different blood donors,

the use of a defined cell line, such as U87.CD4.CCR5, previously

utilized for competition assays, would simplify the assay in terms of

time and cost as well as reducing the potential introduction of

donor-specific effects, such as variation in receptor/coreceptor

expression levels [46]. U87.CD4.CCR5 cells were infected at an

MOI of 0.1 to determine whether they recapitulated fitness

outcomes in PBMC. By Day 5, both the 00m06 (eGFP) versus

00m15 (DsRed2) and the reciprocal infections, 00m06 (DsRed2)

versus 00m15 (eGFP) reproduced the same fitness relationships

determined in PBMC (W 00m15DsRed2 = 1.21360.07732,

00m15eGFP 1.38660.1659) (Fig. 3c). Competitions in

U87.CD4.CCR5 using independently generated and titered viral

stocks not only recapitulated outcomes from PBMC dual-

infections, but did so in a shorter amount of time and at a lower

MOI. Therefore, subsequent analyses were carried out in

U87.CD4.CCR5 at Day 5 to ensure that infectious events were

readily detectable, and that the more competitive variant had not

competitively excluded the less fit variant to the point of

extinction.

Virus stocks for all chimeras were produced by transfection of

HEK293T cells, titered and subjected to triplicate, dual-infection

competitions versus all other chimeras in the opposite color vector,

including itself. Each chimera was also introduced into the

alternative fluorescent vector and subjected to reciprocal compe-

titions. Relative fitness (W) values for each competition were

determined in comparison to parallel mono-infections with each

chimera at the same MOI. The self-self competitions, which are

theoretically anticipated to be 1.0, were not experimentally exactly

1.0. An example competition, where the DsRed2 and eGFP

fluorescent reporter viruses both contain the C2-V4 sequence

haplotype 15 from 67 months post-infection (67m15), is shown in

Figure 4A. This example demonstrates the anticipated outcome

that is competitions of the same Env sequence against itself results

in a neutral outcome W ,1.0 (0.9960.31). While all competitions

performed at the same time with the same stocks of virus were

comparable to one another, to support comparison between all

chimeric competition sets, all other competitions in each data set

were adjusted to reflect the deviation between theoretical (1.0) and

actual values for the self-self competitions. For example, 67m14

self-competitions resulted in a W of 1.1360.29 (n = 3, 6 SD),

slightly higher than the expected 1.0. To adjust the values to 1.0,

Figure 2. Infectious molecular clones express fluorescent protein reporter upon infection of target cells. a) U87.CD4.CXCR4 cells were
infected at a MOI of 0.1 with NL4-3-MSS-eGFP, NL4-3-MSS-DsRED2, or both viral variants. Five days post-infection, cells were imaged by fluorescent
microscopy (406). b) Fluorescent events from mono- and dual-infection of U87.CD4.CXCR4 cells at MOI of 0.1 and 0.01 were enumerated by flow
cytometry. Fluorescent cells were quantified on an Influx cell sorter, excitation 488-nm (eGFP) and 561-nm (DsRed2). MOI of 1.0 was not quantified
due cell death in mono- and dual-infections, as well as the presence of dually infected cells (double positive ‘yellow’ cells).
doi:10.1371/journal.pone.0063094.g002
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PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e63094



the self-values were multiplied by a factor of 0.927, thus the

adjusted W was 1.0560.27. Similar adjustments for self-self

variation were carried out for all chimera competition sets. All self-

self competitions had a mean of 1.03 (95% CI 0.98–1.1), which

was not statistically different from 1.0 (One sample t test).

When chimeras were individually analyzed, we identified env-

chimeras that were consistently less competitive, W,1.0, (Losers);

whereas other env sequences imparted a more competitive

phenotype W .1.0 (Winners). Disparate fitness phenotypes were

quantified among env sequences isolated at the same time-point

(Fig. 3 & 4B, C). Thus the fitness assay readily discriminates env

C2-V4 sequences that impart greater or lesser fitness on a

common viral genetic background, and can do so within the

spectrum of polymorphisms contained within a single individual or

within a single time-point of collection.

Aggregate analyses of relative fitness values from all competi-

tions (n = 396 dual infections, associated eGFP and DsRed2 mono-

infections, and mock infections) are presented in Fig. 5, with

circles representing individual data points, black bars representing

means, and error bars representing 95% CI (numeric data Table
S1, individual competitions Fig. S4). In individual competitions

between chimeras (Fig. S4), we observed a wide range of W values

demonstrating that the system has discriminatory capacity to

segregate winners and losers in individual competitions

(range = 0.23–2.0). With the exception of 12m04 and 67m15, all

average fitness values were significantly different from neutrality

(95% CI), suggestive of a rugged fitness landscape (Table S1).

From Figure 5 & Table S1, it is also clear that there were

chimeras that were significantly more fit than others (e.g. 36m29).

Equally, there were those that were significantly and consistently,

less fit (e.g. 00m06). In many cases, however, relative fitness values

were statistically indifferentiable from one another (Table S3).

Taken together, the samples of C2-V4 sequences derived from this

infected individual imparted average viral fitness values that

clustered about neutrality (Range: 0.65–1.24, Mean: 0.97,

Median: 0.96) (Fig. 5– black bars). While diversification and

divergence were increasing with time in this region of Env, no

statistically significant temporal trend in fitness outcomes could be

detected.

In an effort to detect temporal fitness trends in C2-V4 we

combined the outcomes of all fitness competitions into categories

based on allele isolation time-point (e.g. data from 00m06 and

00m15 were combined into a 00m data set). Analysis of the

temporally grouped competition data sets resulted in a linear

regression slope that was not statistically differentiable from zero,

supporting the concept of a flat fitness trajectory over time (data

Figure 3. Chimera fitness in PBMC and U87.CD4.CCR5 cells. a) Stimulated CD4+ T-cells isolated from three genetically distinct blood donors
were infected with chimeric viruses generated from patient viral sequences isolated at birth, NL4-3-00m06-eGFP and NL4-3-00m15-DsRED2. Infected
cells were quantified by flow cytometry to calculate relative fitness (W) on days 3–7 post-infection. W of NL4-3-00m15-DsRED2 shown. b) Mean NL4-
3-00m15-DsRED2 W from each donor (dots) with standard deviation (bars) over time. c) Competitions between NL4-3-00m06-eGFP and NL4-3-
00m15-DsRED2 and the reciprocal NL4-3-00m06-DsRed2 and NL4-3-00m15-eGFP were repeated in U87.CD4.CCR5 cells. In both competitions, the W
of NL4-3-00m15 in U87.CD4.CCR5 at Day 5 post-infection was not statistically different from the W calculated in PBMC at Day 7.
doi:10.1371/journal.pone.0063094.g003
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not shown). These data suggest the fitness distribution between

time-points needs to be sampled at a greater depth, and that more

env sequences from more patients with different courses of disease

need to be longitudinally analyzed using this method to determine

whether evolutionary trajectories are evident.

Biochemical Characterization of 1157 V3-loop Chimeras
The HIV-1 envelope glycoprotein carries out several essential

processes in HIV-1 replication that can be individually quantified.

Given the lack of a clear temporal relationship with fitness we

sought to investigate how viral fitness associated with biological

functions of Env. We tested for relationships between fitness and

parameters of Env function, including synthesis and processing of

gp160, incorporation of Env trimers into virions, Env affinity for

CD4 and CCR5, and single-round virus entry.

Env Synthesis, Processing, and Virion Incorporation
Using metabolic labeling and immunoprecipitation, followed by

quantification of signal using a phosphorimager, we observed

differences between chimeras in the rate of change of the

gp120:gp160 ratio (i.e. the processing of gp160 into gp120) over

the course of a 24-hour chase (range of slopes = 0.0035–0.027

DLU/hour) (Fig. 6A). Despite these differences, the efficiency of

processing did not correlate with average fitness values (Fig. 6B).

However, when the level of gp120 incorporated into pelleted

virions, relative to p66 RT, was investigated (Fig. 6C), there was a

modest correlation with average fitness values (R2 = 0.43)

(Fig. 6D). This suggested that perhaps quantity, rather than

quality of Env was playing a role in determining fitness. However,

despite obvious differences in levels of Env synthesis and

processing as well as the efficiency with which Env was

incorporated, neither biosynthetic parameter appeared solely

predictive of Env-mediated fitness.

Viral Entry
As anticipated from previous publications [45,46], there was a

positive trend between Env-mediated infectivity (Fig. 7A) and

average relative fitness values (Fig. 7B). However, this trend

exhibited only a moderate correlation (R2 = 0.44), with two data

points falling outside of the 95% confidence range. This indicates

Figure 4. Results from individual patient chimera competitions. a) U87.CD4.CCR5 cells were infected with NL4-3-67m15-eGFP, NL4-3-67m15-
DsRED2 at a MOI of 0.1 in mono- and dual-infections. The numbers of fluorescent events were enumerated by flow cytometry. The numbers of events
were then used to calculate relative fitness (W) values. This process was carried out for all competitions, in triplicate. b) The resulting W values from all
NL4-3-00m06-DsRED2 vs. all other viruses in eGFP, and c) NL4-3-00m15-DsRED2 vs. all other viruses in eGFP. Circles represent individual W values,
black bars represent means, and error bars represent standard deviation. Results from all chimeras in Fig. S4.
doi:10.1371/journal.pone.0063094.g004

Fitness Relationships in HIV-1 Subtype C Env C2-V4

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e63094



that while there may be a relationship between Env, infectivity,

and viral fitness, one cannot confidently predict the relative fitness

of a virus from normalized single-round infectivity results. This is

especially true with small sample sizes typical of experiments with

human samples. The correlation was lost when co-adjusted for the

level of Env incorporation into particles [infectivity (DLU)/p66)/

incorporation (Env/p66)] (R2 = 0.11), again suggesting that the

fitness trend associated with Env was influenced by the quantity of

Env on the surface of virions, rather that the functional quality of

individual Env chimeras (Fig. 7C–D). Together, these results

suggest that fitness imparted by Env might be more a function of

avidity, resulting from multivalent low affinity interaction between

Env and the target, than from high affinity, but low abundance,

interactions.

Receptor and Coreceptor Affinities
To begin to test relationships between avidity or affinity and

fitness, we next evaluated parameters associated with viral entry

into a new host cell for their correlation with fitness. Affinity of

each chimeric Env for the primary receptor, CD4, was assayed

via competition with the anti-CD4 antibody B4 for available

receptors on TZM-bl cells (Fig. 8A). The introduction of the

subtype C C2-V4 sequences converted NL4-3 from exclusive

X4 tropism to R5 tropism. Therefore, CCR5 coreceptor affinity

was assayed by competition with antibody 2D7 (Fig. 8B).

Despite a wide range of phenotypes (IC50 = 0.083–0.85 mg/ml

B4, IC50 = 0.0079–0.21 mg/ml 2D7), there was no correlation

between affinity for CD4 or CCR5 and fitness (Fig. 8C-D). In

sum, the biochemical quantifications of Env function suggest

that relative fitness values are determined by quantity of Env in

particles, rather than the affinity of Env for relevant cellular

receptors.

Discussion

Dual-infection Competitions and Limitations of Current
Methods

Links between HIV-1 fitness and disease progression, virus

transmission, drug resistance, immune escape, and global epide-

miology have been experimentally established. Because of these

associations, numerous assays have previously been developed for

measuring HIV-1 fitness in vitro [24,26,47,64–69]. Large differ-

ences in fitness can be identified via differential viral growth

kinetics [15]. However, these approaches are often incapable of

elucidating subtle fitness differences between HIV-1 variants as

might be anticipated to exist in genetically related viruses derived

from a patient over the course of infection, or in samples from a

quasispecies at a single time-point [15,45,46,48].

When two or more variants are in competition with one

another, the ‘more fit’ variant will eventually outgrow ‘less fit’

variants by competitive exclusion i.e. ‘survival of the fittest’ as

resources become limiting [3,70–72]. In the absence of gross

replicative defects, two HIV-1 variants can have virtually

identical in vitro growth kinetics, yet disparate fitness values in

Figure 5. Aggregate data from all patient chimera competitions. Each C2-V4 patient chimera (DsRed2) was competed against all others
(eGFP) in triplicate. WRED was calculated for each competition, and plotted in aggregate for each chimera. Black bars represent mean, and 95% CI.
doi:10.1371/journal.pone.0063094.g005
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competition with one another [46]. Viral fitness is therefore

optimally defined by assaying replication where viruses are

competing in an identical environment (dual-infection), and

where the performance in the dual-infection can be directly

normalized to the replication of each competitor in monoinfec-

tions innoculated with the same quantity of virus [49]. In

addition to providing a standard for determining proportional

changes in viral species in competition, mono-infection controls

eliminate concern about the absolute equality of the titers of the

two species at the beginning of the competitions.

Heteroduplex tracking assays (HTA) or qRT-PCR have

previously been used to quantify HIV-1 fitness in dual-infection

competitions among viruses in HIV-1 panels [45,48,73,74]. One

of the striking findings was that HIV-1 fitness, in the absence of

treatment, is a function of the envelope glycoprotein [46]. While

previous methods to quantify fitness have proven unquestionably

useful, they are limited by inability to discriminate variants with

either too much or too little genetic diversity within the detection

target sequence. Likewise, recent methods employing precise

parallel allele-specific sequencing have the advantage of precise

quantification of fitness differences but require prior knowledge of

the sequences under selection as well as specialized instrumenta-

tion and expertise [75].

Advantages of the New Vectors for Fitness Analyses and
Other Applications

The infectious molecular clones we describe here contain either

the eGFP or DsRed2 fluorescent reporter gene, and, being derived

from a previously validated fitness analysis system, provided a

simple and direct platform for quantifying Env effects on HIV-1

fitness. A primary advantage of our system over other HIV-1

fluorescent reporter vectors [50] is the inclusion of sites to facilitate

precise molecular cloning of env genes or subdomains (Fig. 1A).

The fluorescent signal produced upon viral infection supports

quantification of infectious events in dual-infection competitions

by universally accessible methods (flow cytometry or qRT-PCR),

which in turn, allows for the calculation of relative fitness values.

Because the fluorescent reporter is contained within the viral

genome, the resulting viruses can be used to quantify infectivity of

patient Envs on any target cell type, including primary cells

(Fig. 3).

These constructs have additional applications. First, co-infected

cells skew interpretation of fitness assays due to the capacity for

recombination between the competing strains [76,77]. A substan-

tial benefit of using eGFP and DsRed2 reporters is that they

provide the ability to detect co-infected cells (‘yellow’ fluorescence),

resulting from high MOI infections. Moreover, since the eGFP

and DsRed2 genes are derived from different species (the jellyfish

Figure 6. Patient chimeras differ in Env processing and incorporation. a) 293T cells were transfected with patient eGFP chimeras. 24-hours
post-transfection, cells were radiolabeled with 35S. Cells were lysed at the indicated time-points, immunoprecipitated with HIV-Ig, and resolved by
SDS-PAGE in order to quantify the processing of gp160 and accumulation of gp120. To quantify the processing of Env, the slope of the ratio of gp120
to gp160 verses time was calculated for each chimera (00m06, 00m15, 12m04 shown). b) Slope values were plotted against average relative fitness
values to determine correlation (dashed lines 95% CI). c) Supernatants from radiolabeled 293T patient eGFP chimeras’ transfections were pelleted,
lysed, and immunoprecipitated with HIV-Ig. SDS-PAGE was used to resolve gp120 and p66 protein bands for calculating incorporation of Env relative
to wild-type virus, in triplicate. d) This ratio was plotted against relative fitness values, and revealed a modest positive correlation (R2 = 0.4349)
(dashed lines 95% CI).
doi:10.1371/journal.pone.0063094.g006
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Aequorea victoria versus the sea anemone Discosoma striata) [78,79],

they are less likely to undergo recombination. Given the MOI we

employed, we rarely detected yellow, co-infected cells at the

endpoint analysis, and when they were detected, the dual-infection

competitions were repeated at reduced MOI. On the other hand,

our system readily supports the identification, and cell sorting, of

co-infected cells that could be used to investigate the biology

associated with HIV-1 recombination.

In addition, minimal spectral overlap in the excitation and

emission of eGFP and DsRed2 (excitation 488-nm and 531-nm,

emission 509 nm and 582 nm, respectively), limits the need for

compensation adjustments and simplifies data acquisition and

analysis by flow cytometry. Dual-infection competitions can also

be readily quantified via qRT-PCR using amplicons directed

against the distinct fluorescent reporters due to their lack of

sequence homology [78,79]. Using this approach, entire collec-

tions of env chimeras could be detected with the same optimized

primer-probes, rather than requiring discrete reagent sets for each

individual allele. We have shown that qRT-PCR amplicons

directed towards the fluorescent genes have virtually no cross-

reactivity towards the other template (Fig. S6), making them ideal

multiplex RT-PCR targets. Furthermore, as measuring fluores-

cence in situ does not require cell lysis, given cell-sorting capacity in

biocontainment, these fluorescent markers support live sorting of

infected cells for use in any number of downstream applications.

For example, the constructs may prove useful for screening

neutralizing antibodies where the restriction sites allow for the

introduction of a complete Env ectodomain that could be followed

by reductive introductions of smaller sequences to localize Ab

binding.

Longitudinal Ab-driven Divergence of C2-V4 in 1157i
We chose to demonstrate the utility of our system using

genetically characterized Env C2-V4 sequences derived longitu-

dinally from a slow-progressing, subtype C HIV-1 -infected,

Zambian patient, 1157i. We selected this panel of Env variants for

four reasons: 1) because longitudinal variants from a single infant

had not been previously evaluated for differences in Env-mediated

fitness by dual-infection competition, 2) because we reasoned that

these isolates would test the capacity of the assay system to

quantify fitness values among closely related sequences, 3)

phylogenetic analyses of Env C2-V4 suggested that env diversifi-

cation was taking place at both the nucleotide and amino acid level

(slope = 0.25 nucleotide differences/month, 0.18 amino acid

differences/month Fig. S2) moreover, positive selection was

taking place since increases in non-synonymous changes (dN/dS)

over time were detected [60], and 4) immunological assessment of

1157i plasma samples suggested that NAb were exerting selective

pressure on Env, since sera collected at later time-points were

capable of neutralizing viruses isolated at earlier time-points, but

minimally neutralized contemporary viruses. [80]. Collectively

these previous analyses suggested that diversification within 1157i

env had taken place in response to humoral immune pressure.

Figure 7. Chimera infectivity has a modest correlation with fitness, while infectivity per incorporated Env does not. a) Infectivity of
each chimera was assayed via luciferase activity of TZM-bl cells (Relative Light Units, RLU), relative to p66, as determined by immunoprecipitation of
radiolabeled virions (see Fig. 5c), relative to wild-type NL4-3, in triplicate. b) The average infectivity value was plotted against average relative fitness
values, and revealed a modest correlation (R2 = 0.4448) (dashed lines 95% CI). c) The ratio of average infectivity to average incorporation of Env was
calculated to determine average infectivity per incorporated Env. d) When this ratio was plotted verses average relative fitness values, there was no
correlation (R2 = 0.1058) (dashed lines 95% CI).
doi:10.1371/journal.pone.0063094.g007
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Subtle 1157i C2-V4 Variants from the Date of Birth Exhibit
Fitness Differences

The C2-V4 region of Env plays a critical role in viral tropism

and transmission, as well containing a principal neutralization

determinant, the V3-loop [55,81]. To investigate relationships

between viral fitness and sequence diversification in C2-V4, viral

chimeras were created by introducing 1157i C2-V4 sequences,

isolated from birth to 67 months, into the NL4-3-MSS-eGFP and

DsRed2 vectors. Though this region underwent genetic diversifi-

cation over time in 1157i (without alteration of coreceptor usage),

C2-V4 sequences obtained at birth (00m06, 00m15) were virtually

identical (Fig. S3). This limited DNA diversity only manifested in

a single amino acid difference, a Ser or Thr at amino acid 227 in

the third position of a potential N-glycosylation site. With such

limited amino acid differences between the two variants, one

would anticipate that both variants would have similar relative

fitness values. However, 00m15 (Thr227) proved to be more fit

than 00m06 (Ser227) in CD4+ T-cells isolated from three different

blood donors and in U87.CD4.CCR5 cells (Fig. 3). We

hypothesize that threonine supports preferential glycosylation

[82], or perhaps the differential glycan addition to the associated

Asn. The resulting altered Env structure and function, thereby

contributes to the fitness differential [82]. It is also conceivable that

one or the other sequon variants is simply not recognized as a site

for glycan addition in the Env folding pathway within the ER.

This in vitro fitness advantage of 00m15 appears to correlate with

an in vivo fitness advantage, since the ‘more-fit’ Thr polymorphism

was maintained at subsequent time-points. Maintenance of Thr is

also consistent with its approximately 2-fold preferential utilization

in N-linked glycosylation motifs [82]. The outcomes of competi-

tions between 00m06 and 00m15 chimeras highlight several

important points: 1) though in vitro fitness assays cannot perfectly

mirror the selective environment occurring in a patient, our

observations demonstrate that in vitro fitness assays yield biologi-

cally relevant information, 2) the competition system has the

ability to reproducibly differentiate between fitness ‘winners’ and

Figure 8. Chimera affinity for CD4 or CCR5 is not correlated with fitness. Viral stocks of eGFP chimeras were incubated with serial dilutions
of a CD4 competitor (B4 Ab) or CCR5 competitor (2D7 Ab), and added to TZB-bl indicator cells. Though reduction in eGFP expression with increased
competitor antibody could be visualized via microscopy (a, b) (406), IC50s were calculated from luciferase activity assays, in triplicate. When IC50

values were plotted against average relative fitness values, there was no correlation for CD4 affinity (c) (R2 = 0.02970) or (d) CCR5 affinity
(R2 = 0.0001508) (dashed lines 95% CI).
doi:10.1371/journal.pone.0063094.g008
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‘losers’ in primary CD4+ T-cells as well as U87 cell lines, 3) fitness

differentials can be identified even when the sequences in question

differ by extremely subtle polymorphisms, 4) such information

could inform further study of envelope structure and function in

relation to viral fitness or other parameters.

C2-V4 Variants from Later Time-points Suggest
Increasingly Complex Fitness Relationships

U87.CD4.CCR5 cells were used for dual-infection competitions

pitting each chimeric Env virus against all others, in what was

essentially a viral ‘round-robin’ tournament. This cell line was

utilized in lieu of PBMC because of the substantial number of

competitions and controls for fitness analysis in this study, and

because the U87.CD4.CCR5 cell line has been used in previous

fitness analyses [46]. We showed that it not only reproduced

PBMC outcomes, but did so with less virus (lower MOI) in a

shorter amount of time (Fig. 3). Relative fitness values from each

individual competition were calculated and ranged between 0.23-

2.00 (Table S1).

When analyzed individually and in aggregate, head-to-head

competitions yielded complex findings. Though we compared

sequences from a relatively small region of Env, derived from the

same patient and from within time-points, identifying molecular

determinants of fitness was not as simple as identifying ‘more-fit’

and ‘less-fit’ amino acids at set locations. Shared polymorphisms

could be associated with a ‘more-fit’, ‘less-fit’, or ‘neutral’ outcome,

depending on their context with other polymorphisms within a

given allele. For example, 12-month time-point sequences, 12m04

and 12m22, like those from 00m, differed from one another by a

single amino acid that resulted in loss or retention of a putative

glycosylation site (N or S at amino acid 329 Fig. S3). This

polymorphism did not have an effect on viral fitness in head-to-

head competitions, nor was there a statistical difference between

12m04 and 12m22 average relative fitness values (Fig. 5, Fig. S4,
Table S2). Based on our finding that 12m22 had a neutral or less

fit outcome in average relative fitness values versus eleven other

alleles, and the fact that, S329 was not maintained in subsequent

time-points makes it attractive to conclude that S329 was not a

fitness-favorable polymorphism. However, the exception appeared

at the 48-month time-point, with 48m11 containing N329 and

48m12 the S329. Despite an additional 26 polymorphisms between

48m11 and 48m12, these two viruses were neutral in head-to-head

fitness, and did not have significantly different average fitness

values (Fig. 5, Fig. S4, Table S2). However, the additional 17

polymorphisms between 12m22 and 48m12, both of which

contain the Ser329, lead to 48m12 being more fit in both head-

to-head and total average fitness. In fact, the S329 containing

48m12 had significantly higher average fitness values than 5 of the

other 11 variants, but was not detected at 67m. The genetics of the

subsequent time-point along with our fitness results, lead us to

hypothesize that the S329 is either a minor variant, a neutral

polymorphism in this context, or it is actively negatively selected

against by a factor not directly measured (i.e. antibody selection).

In the future, resolving the complexity in the relationships between

genetic polymorphisms and fitness outcomes would require more

thorough sampling at a given time-point as well as comparison to

both prior and subsequent time-point allele frequencies and

associated fitness values.

Our results also highlight a benefit to competing all viruses

against one another, as opposed to competing the chimeras against

reference strains. A viral ‘round robin’ does not assume that 1) all

fitness results are transitive (a.b, b.c, therefore a.c), or 2) all

fitness results are cumulative (a.b by 0.1, b.c by 0.1, therefore

a.c by 0.2). While these assumptions might be valid in some

circumstances, they would have been incorrect assumptions for

this study. For example, chimeras 12m04 and 18m33 were

approximately neutral in head-to-head competition with one

another (Fig. S4) (12m04DsRed2 vs. 18m33eGFP = 0.9560.13,

12m04eGFP vs. 18m33DsRed2 = 1.060.06), and their average

relative fitness values were not statistically different (Table S2).

Competition against reference strains would assume that these

chimeras would fare similarly against others, winning, losing, and

tying against the same viruses by the same magnitude. That was

not the case. Chimera 12m04 had a statistically higher average

relative fitness than 00m06, but lower than 36m29. Average

relative fitness of 18m33 was lower than 00m15, 36m29, 48m11,

48m12, and 67m14 (Table S2). So while the amino acid variation

between 12m04 and 18m33 appeared to have no impact on viral

fitness in head-to-head competition, the true impact of that

variation became apparent when the viruses were competed

against other alleles. The ‘round robin’ strategy made possible by

our competition system allowed us to elucidate an enriched fitness

landscape that would have remained hidden had reference strains

been used.

Extinction was not Observed
Fitness competition data was further analyzed by grouping all

competition outcomes for each chimera. Previous fitness analyses,

particularly those between subtype B and C, revealed substantial

disparities in replicative fitness between subtypes. In those

instances, it was necessary to dilute ‘more-fit’ subtype B variants

by orders of magnitude to prevent complete exclusion of the ‘less-

fit’ subtype C variant [45]. Dilutions were not necessary for the

competitions in this study, as no variant was grossly more or less fit

than the others over the time course of the analysis. This is likely

because all variants were derived from a single individual. An

alternative reason could be that no critical Env fitness determi-

nants lie inside the C2-V4 region of Env. The latter explanation is

not supported by data from previous studies that have demon-

strated the essential nature of the V3-loop [28,51–59]. Our data

shows that competitive exclusion is taking place and that given

sufficient time, extinction would occur (Fig. 3). However, allowing

such complete exclusion reduces complex fitness assays from

quantitative measures to less informational binary results.

Potential Relationships between Humoral Responses and
Fitness Outcomes

While there were statistically significant differences between

average relative fitness values, none of the chimeras were a

universal ‘winner’ or ‘loser’. The values clustered between 0.65

and 1.23, suggesting that in spite of sequence diversity in C2-V4,

the chimeras have similar average fitness (Table S1–S2). Our

previous neutralization analyses with 1157i revealed an evolving

humoral neutralizing response that acted against previous viral

isolates but not against contemporaneous isolates. That is, 48m

sera neutralized virus co-cultured from all previous time-points but

had little impact on the 48m or subsequent 67m isolate. Those

results along with the increases in nonsynonymous changes in C2-

V4 implied the host antibody response was acting to select the viral

population in this region of Env. Plasma samples from 1157i were

exhausted in previous analyses [60]. Thus, we were unable to

directly assess relationships between replication competitiveness

and neutralization sensitivity of chimeric Env alleles. As such, our

results represent quantification of differential replication capacity

in the absence of demonstrable selection.

However, in the Amsterdam cohort of HIV-1 subtype B

infected adults, the impact of neutralizing antibody, and even

broadly neutralizing Ab on autologous virus growth kinetics, as a
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surrogate for fitness, was tested. No inverse relationship between

fitness and neutralization Ab titer or breadth was reported [83,84].

Similarly, Troyer et al. demonstrated that Env CTL escape

variants suffered a fitness deficit less frequently than escape

variants in other structural genes [85]. And, mutations in Env that

block recognition by NAb have also been shown to have little

impact on viral fitness [83,84]. Recent findings have suggested that

broadly neutralizing antibodies may select Env quasipecies

resulting in reduced viral fitness [75,86,87]. These effects appear

to be temporary since viral load in many cases appears to rebound

[86].

We have no evidence that 1157i possessed bNAb and given the

time post-infection required to develop bNAb responses, it seems

unlikely [88]. But it is reasonable to speculate that neutralizing

antibodies with more restricted breadth have less impact on fitness

than do bNAb, resulting in a pattern similar to that observed in

1157i. This concept requires further experimental validation but

can be inferred from the finding that only some of the escape

variants generated in early infection undergo a fitness deficit as a

result of humoral selection [87]. Collectively, published data, and

that from the current study, suggests that HIV-1 Env, tolerates

mutation leading to immunological escape while maintaining

protein functionality and viral fitness or replication capacity at

adequate levels.

Env Quantity/avidity Measures Trend Most Closely with
HIV-1 Fitness

In an effort to understand how fitness is maintained in the face

of genetic diversification, we biochemically characterized the

functions of Env in the HIV-1 replication cycle, including synthesis

and processing, incorporation into virions, affinity for CD4 and

CCR5, and infectivity. As expected from previous reports,

infectivity did positively trend with average fitness values [73].

However, infectivity was not statistically useful for predicting

relative fitness (R2 = 0.44) (Fig. 7B), similar to what others have

recently reported [75]. Similarly, incorporation of Env into virions

contributed to viral fitness since a positive trend between

incorporation and relative fitness (R2 = 0.43) was detected

(Fig. 6D), a weak correlation previously described by others

[43]. Again, however, incorporation levels are not a useful proxy

assay for estimating fitness, as other studies have not found

statistically significant differences in Env incorporation levels in

pseudoviruses generated from elite suppressors and chronic

progressors [89]. The ratio of infectivity per Env ((Infectivity/

p66)/(Env/p66)) could be considered the efficiency of a given

quanta of Env to support entry. This ratio, however, was not

correlated with average fitness (R2 = 0.10) (Fig. 7D).

Interestingly, several chimeras contained polymorphisms in

putative CD4 contact residues in C2 and C3, which have

previously been associated with higher or lower CD4 affinity

[90]. Yet despite the finding that chimeras exhibited a wide range

of affinities for CD4 (B4 IC50 0.083–0.85 mg/ml), and CCR5 (2D7

IC50 0.0079–0.21 mg/ml), neither receptor binding parameter

correlated with average fitness (R2 = 0.033, 0.00035 respectively)

(Fig. 8C-D). This suggests that while there clearly must be some

affinity between Env and CD4 as well as with coreceptor, a range

of affinities can be tolerated without adversely effecting viral

fitness. Collectively, these results support the conclusion that it is

Env quantity, and perhaps avidity, rather than affinity that most

potently influences virus entry and therefore fitness.

In the correlations between biochemical assays and fitness, no

chimera was consistently an outlying data point, above or below

the 95% CI. No chimera was shown to consistently over- or under-

perform and skew the correlations. One interpretation of these

data is that there are multiple pathways to maintaining fitness

adequacy in the Env-mediated HIV-1 entry pathway. An

examination of functional assay outliers highlights this basis of

this concept. For example, 36m29 and 48m12 both had similar

fitness values statistically greater than 1.0. In functional assays,

however, these chimeras demonstrated distinct biochemical

properties, including viral entry (Fig. 5 & 7). Previous studies

investigating the biochemical properties of transmitted Env

variants determined a wide range of phenotypes [91]. Likewise,

our results suggest that fitness, while determined by the HIV-1

entry process, is defined by the sum of the efficiencies with which

Env is able to accomplish each step, suggesting that no single

readout is likely to satisfactorily correlate with fitness. It also

implies that each parameter assayed makes an important, but not

necessarily equal, contribution to the entry process and therefore

to fitness. Thus, no functional assay is able to serve as a proxy

measure for fitness.

Env C2-V4 Fitness Landscapes and Population Biology
Concepts

Population biology has supported the concept of ‘‘survival of the

fittest’’ suggesting that natural selection favors the propagation of

genomes that impart a pinnacle of fitness to the organism (fitness

peaks) and deviation from those sequences results in a drop in

overall fitness (fitness valleys). In such a model, populations with

high mutation rates, such as retroviruses, would lack the capacity

to maintain genome integrity should they reach a fitness peak, and

therefore would fall into a valley. Alternatively, a ‘flat’ or

‘mutationally robust’ fitness landscape can be modeled in two

dimensions as a broad plateau of sequence space populated by a

host of nearly equivalent variants [41,42] that is, a population with

adequate replicative capacity despite substantial degrees of

sequence polymorphism. Our data, derived from in vitro measure-

ments of patient-derived sequences, supports aspects of both of

these models. The restricted variation between average relative

fitness values among chimeras supports the concept of a flat fitness

landscape within env in this patient. The resolution of this

landscape is limited, and more robust sampling and fitness

characterization at each time-point would further elucidate the

topography of the fitness landscape within this or other patients.

However, samples collected from any individual patient, even at

disparate time-points, occupy a very limited portion of the

sequence space being accessed by the global HIV-1 population,

and in each individual, the sequence space explored in Env is

localized around different fitness ‘heights’. It is possible that there

are defined peaks and valleys for fitness within env as a global

population, but again, more robust sampling and fitness charac-

terization would be required to resolve the fitness/replicative

capacity topography of env. It is also possible that different fitness

topographies apply to different HIV-1 gene products due to the

distinct and diverse selective pressures acting on those proteins,

and it is equally conceivable that different topographies might

apply to different domains of Env for the same reason. The current

analyses are admittedly limited by the sequence content available

for analysis, but nevertheless reveal a remarkable fitness landscape

for a functionally critical region of Env.

What fitness topography is being explored by HIV-1 in Env can

only be resolved if more sequences, and more complete env alleles

are subjected to competitive fitness determinations, pitting isolates

against closely related sequences and against those inhabiting

distant regions of sequence space. Here we have developed a

system that makes quantification of fitness by dual infection

competition readily implementable, as well as providing a
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tractable system for quantitatively evaluating various aspects of

HIV biology, or HIV-1-immune response interactions.

Conclusions
To quantitatively evaluate HIV-1 fitness, we generated novel

chimeric HIV-1NL4-3 infectious molecular clones containing

patient 1157i C2-V4 env sequences, which co-expressed either

eGFP or DsRed2 fluorescent reporters upon infection. While the

system was capable of differentiating ‘winners’ and ‘losers’ in

individual competitions with exceptional sensitivity, no chimera

was a universal ‘winner’ or ‘loser’ and fitness phenotypes were not

correlated to a single Env-mediated step in virus entry. Within the

limits of the sample set, the apparent longitudinal pattern of fitness

evolution presented as a flat, near neutral, distribution; one

consistent with the concept of selection of C2-V4 for mutational

robustness.

We conclude that there are multiple pathways to adequate

HIV-1 fitness in Env, but there appears to be no surrogate marker

for HIV-1 fitness; it is optimally quantified by dual-infection

competition.

Methods

Patient 1157i Samples
The Env sequences subjected to analysis here were genetically

characterized previously [60]. Peripheral blood mononuclear cell

(PBMC) DNA samples were collected from a child infected with

HIV-1 (subtype C) in utero in Zambia, Africa, infant 1157 (1157i).

This child underwent limited progression to AIDS without the use

of antiretrovirals, providing the opportunity to investigate the

longitudinal evolution of Env.

Cell Culture
Human embryonic kidney (HEK293T) cells, obtained from

ATCC, and HeLa indicator cells (TZM-bl), obtained from the

NIH AIDS Research and Reference Reagent Program, Division

of AIDS, NIAID, NIH: from Dr. John C. Kappes, Dr. Xiaoyun

Wu and Tranzyme Inc. [92], were maintained in Dulbecco’s

modified Eagle medium (DMEM) supplemented with 10% FBS,

L-glutamine (20 mM), penicillin/streptomycin (100 mg/ml)

(Gibco). Astroglial cells expressing CD4 and CXCR4

(U87.CD4.CXCR4), and CD4 and CCR5 (U87.CD4.CCR5)

were obtained from the AIDS Research and Reference Reagent

Program, Division of AIDS, NIAID, NIH from Dr. Hong Kui

Deng and Dr. Dan R. Littman [93] and maintained in DMEM

supplemented with 15% FBS, L-glutamine (20 mM), penicillin/

streptomycin (100 mg/ml), puromycin (1 mg/ml), G418 (300 mg/

ml) (Gibco).

Primary blood mononuclear cells (PBMC) were isolated from

HIV-seronegative blood donors via Ficoll-Hypaque density

gradient centrifugation (Oklahoma Blood Institute). PBMC were

activated with PHA (5 mg/ml, Sigma) for 48 hours, and then

washed thoroughly in PBS. Untouched CD4+ T-cells were

isolated utilizing Miltenyi CD4+ T-Cell Isolation Kit II (#130-

091-155) and AutoMACS according to manufacturer instructions.

Purified CD4+ T-cells were resuspended in PBMC growth media:

RPMI 1640 supplemented with 10% FBS, L-glutamine (20 mM),

penicillin/streptomycin (100 mg/ml), and IL-2 (10 U/ml, Roche).

Plasmid Construction
Fluorescent protein genes from pNL4-3-Denv-eGFP and pNL4-

3-Denv-DsRed2 (kindly provided by Miguel Quiñones-Mateu)

were transferred into pNL4-3-MSS (Multiple Silent Site), using

BamHI (position 8465 in NL4-3) and XhoI (position 8887 in NL4-3)

(New England Biolabs) restriction sites, to generate the infectious

molecular clones pNL4-3-MSS-eGFP and pNL4-3-MSS-DsRed2

(Fig. 1A). The resulting plasmids, NL4-3-MSS-eGFP and NL4-3-

MSS-DsRed2, were sequenced across the junctions 59 and 39 of

the fluorescent reporter gene using primers overlapping the 59

BamHI site (59-TAGTGAACGGATCCTTAGCACTTATC-39)

and 39 XhoI site (59-TTCTAGGTCTCGAGATACTGCTCC-

CAC-39).

Chimeric infectious molecular clones in the Env region were

generated by PCR amplifying archival clones of 1157i C2-V4

sequences in pGEM-T with primers containing the AgeI (59-

CACATGGAATCAGACCGGTAGTATC-39) and SbfI (59-

GTTTTATCCTGCAGGGGAGTGTGATTG-39) restriction sites

to exactly match the sites flanking C2-V4 in the pNL4-3-MSS

vector (position 6970 to 7464 in NL4-3). The resulting PCR

products were digested with the appropriate enzymes (New

England Biolabs) and ligated into a pSP72 subcloning vector,

containing EcoRI-XhoI sequence from NL4-3-MSS. The chimeric

env sequences from the pSP72 vector were then transferred into

NL4-3-MSS-eGFP and NL4-3-MSS-DsRed2 utilizing the EcoRI

(position 5743) and BamHI (position 8465) restriction sites, to

produce a panel of infectious molecular clones identical to one

another, except at the C2-V4 sequence derived from Patient 1157.

NL4-3-MSS-eGFP, NL4-3-MSS-DsRed2 Nef Protein
Expression

In order to make genomic RNA and all of the necessary

mRNAs for protein production from a single LTR promoter,

retroviruses employ an intricate system of splice donors, splice

acceptors, and accessory proteins to regulate expression. Inserting

fluorescent proteins 59 of the nef gene could disrupt Nef

production. To assess Nef protein expression, a control Nef

expression construct pcDNA-Nef was generated by PCR ampli-

fying the NL4-3 nef gene (Forward: 59-CACCATGGGTGG-

CAAGT-39, Reverse: 59-GCAGTTCTTGAAGTACTCCGG-39)

and transferring it into a pcDNA3.1 Directional TOPO vector

(Invitrogen). HEK293T cells in 6-well plates were transfected with

2 mg of the following plasmids using Fugene6 according to

manufacturer’s instructions (Roche): pNL4-3-Denv-eGFP [94],

pcDNA-Nef, NL4-3-MSS, NL4-3-MSS-eGFP or NL4-3-MSS-

DsRed2. 24-hours post transfection, cells were starved for Cys/

Met, followed by radiolabeling with [35S]-Cys/Met (MP biomed-

icals) at 100 mCi/mL for one hour. Cells were lysed (1% NP40,

0.1% SDS, 0.5% DOC in sterile PBS) and immunoprecipitated

with anti-Nef hyperimmune sera (Advanced BioScience Labora-

tories, Inc., #5416). Proteins were resolved on a 12% SDS-PAGE

and quantified by phosphorimager analysis. This procedure was

repeated with mock-transfected cells, NL4-3-MSS, NL4-3-MSS-

eGFP, NL4-3-MSS-DsRed2, and with the original pNL4-3-Denv-

eGFP and pNL4-3-Denv-DsRed2 as described in Weber et al.

Replication Kinetics
Supernatants from NL4-3-MSS-eGFP and NL4-3-MSS-

DsRed2 transfections were 0.45 mm filtered 48-hours post-

transfection and assayed in triplicate for reverse transcriptase

activity according to manufacturer’s instructions (GE, Quan-T-

RT assay system, TRK1022). In a 6-well plate, 105

U87.CD4.CXCR4 were infected with equivalent units of RT

activity of NL4-3-MSS- eGFP, NL4-3-MSS-DsRed2, or Mock.

Three hours post-infection, cells were washed with PBS, and

returned to U87 growth media. Aliquots of 200 ml of infected cell

supernatant from days 2, 4, 6, 8, 10, and 12 post-infection were

filtered and stored at -80 C until the completion of the time course,
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at which time 50 ml of each was used to quantify RT activity in

triplicate.

NL4-3-MSS-eGFP and NL4-3-MSS-DsRed2 Mono and Dual
Infections

NL4-3-MSS-eGFP and NL4-3-MSS-DsRed2 transfection su-

pernatants were filtered 48-hours post-transfection, and titers of

viral stocks were calculated via limiting dilution on TZM-bl

indicator cells. In a 96-well plate, 20,000 TZM-bl cells were

infected with serial dilutions of viral stocks, in triplicate. Forty-

eight hours post-infection, cells were stained in situ for beta-

galactosidase activity. Infectious units (TCID50/ml) were calculat-

ed according to the Reed and Muench method based on staining

endpoints.

Using a MOI of 1.0, 0.1, or 0.01, 20,000 U87.CD4.CXCR4

were infected in triplicate with NL4-3-MSS-eGFP and NL4-3-

MSS-DsRed2 in mono- and dual-infections. Five days post-

infection, U87 cells were trypsinized, resuspended in PBS, and

fixed with paraformaldehyde (final concentration of 0.25%).

Fluorescent cells were quantified from counting 10,000 events

on an Influx cell sorter, excitation 488-nm (eGFP) and 561-nm

(DsRed2). Data was analyzed using Summit v4.3 software.

Quantification of Chimera Fitness
All Env chimeras utilized CCR5 exclusively as a coreceptor (not

shown) as anticipated by the sequences of the V3 terminal

tetrapeptide. Env chimera virus stocks were prepared and titered

as above. For dual-infection competitions in PBMC, CD4+ T-cells

from three donors were aliquoted into 20 wells of a 24-well plate

for individual mock, mono-, and dual infections for the five time-

points. Cells were infected at an MOI of 10. On days 3-7,

fluorescent cells were quantified by counting 50,000 events on an

Influx cell sorter, in triplicate, using the 488-nm (eGFP) and 561-

nm (DsRed2) laser lines. Data was analyzed using Cytopeia

software.

Relative fitness values (W) were calculated as follows [45,48,85]:

WRED = 26(DualRED/MonoRED)/(DualRED/MonoRED)+(-

DualGFP/MonoGFP).

WGFP = 26(DualGFP/MonoGFP)/(DualGFP/Mono-

GFP)+(DualRED/MonoRED).

For dual-infection competitions in U87.CD4.CCR5 cells, all

chimeras (12 in total) were competed against all others (DsRed2

versus eGFP) in triplicate, generating 36 data points for each

chimera (including self-self competitions, used for normalization).

Briefly, in a 96-well plate, 26104 U87.CD4.CCR5 cells were

infected in triplicate at a MOI of 0.1 for eGFP and DsRed2 mono-

infections, eGFP/DsRed2 dual infections were conducted at 0.1

MOI of each chimera, and mock infections served as controls. Five

days post-infection, the infected and dually infected cultures were

analyzed by flow cytometry as above.

Processing, Incorporation, and Infectivity of Chimeric
Envelopes

HEK293T cells were transfected with infant 1157 pNL4-3

eGFP chimeras in quadruplet as described above. Twenty-four

hours post-transfection, cells were starved for Cys/Met and pulse-

labeled with [35S]-Cys/Met (MP Biomedicals) at 100 mCi/mL for

one hour. Cells were lysed (1% NP40, 0.1% SDS, 0.5% DOC in

sterile filtered PBS) at time-point 0 for the ‘pulse’, and complete

media was added to replicate well for 4 hours, 8 hours, and 24

hours ‘chase’ time-points. HIV-1 proteins were immunoprecipi-

tated with HIV-Ig (AIDS Research and Reference Reagent

Program, Division of AIDS, NIAID, NIH: Catalog #3957, HIV-

IG from NABI and NHLBI) and pelleted with Staphylococcus aureus

membranes. Lysates were resolved on 9% SDS-PAGE and the

labeled proteins were quantified by phosphorimagery (Optiquant

software).

Labeled supernatants from the 24-hour time-point were filtered

and 1 ml aliquots were pelleted in a Beckman TLA-55 at

136,0006g at 4uC for one hour. Viral pellets were lysed as above,

and immunoprecipitated with HIV-Ig and S. aureus membranes.

Viral proteins were resolved by 9% SDS-PAGE. Phosphorimager

analysis was used to quantify ratios of gp120 to p66 (RT) as an

index of Env incorporation. The remainder of the radiolabeled

viral stocks was used to infect 26104 TZM-bl cells, in triplicate.

Infectivity was assayed 24-hours post-infection using HIV-induced

luciferase expression (Promega, Victor3). Relative light units

produced in each infection was normalized to the amount of

p66 (from the IP of the viral pellet) in the preparation (RLU/p66)

and this quantity was, in turn, normalized to the incorporation

index (Env/p66). Thus this led to quantification of the RLU/Env,

or the infectivity/Env.

Receptor Affinity via Competition with Anti-CD4 or Anti-
CCR5 Antibodies

To achieve simultaneous addition of virus and antibody to

target cells, 1157 Env chimeric NL4-3 eGFP viral stocks at a MOI

of 0.1 were incubated with serial dilutions of anti-CD4 antibody,

B4 (NIH AIDS Research and Reference Reagent Program,

Division of AIDS, NIAID, NIH: Cell Surface CD4 Complex

Monoclonal B4 from United Biomedical Inc. [95]), and the

mixture was added to 20,000 TZM-bl cells in triplicate. TZM-bl

lysates were analyzed 24 hours post-infection for luciferase

expression (Promega) and the IC50 concentration of B4 antibody

was calculated relative to infections without added B4 antibody.

To assess the affinity of the Env CCR5 interaction, the analysis

was repeated with anti-CCR5 antibody, 2D7 (NIH AIDS

Research and Reference Reagent Program, Division of AIDS,

NIAID, NIH: MAb to CCR5 (2D7)). YU2 (a CCR5 tropic virus)

and wild-type NL4-3 (a CXCR4 tropic virus) were included as

controls in both experiments (Fig. S5).

Statistical Analyses
Analyses were carried out using Prism 5.0c for Mac software.

For replication kinetics experiments, the time required to achieve

50% maximal RT activity (RT50) and the ‘HillSlope’ of the

increase in RT activity was calculated by the ‘log(agonist) vs.

response – Variable slope (four parameters)’ subroutine in Prism

(Y = Bottom+(Top-Bottom)/(1+10̂((LogEC50-X)*HillSlope)). For

statistical analysis of wild type dual-infection competitions, the

number of fluorescent events in wild-type mono- and dual

infections were compared by 1-way ANOVA at a MOI of 0.1

and 0.01. A one sample t-test was used to compare average fitness

values of chimeras to a theoretical value of 1.0 (neutrality), with a

99% Confidence Interval, to test for deviations from neutrality. To

determine whether average fitness values were different from one

another, the value for each chimera was compared to all others via

a Bonferroni’s Multiple Comparison Test. The IC50 of B4 and

2D7 antibodies was calculated utilizing logarithmic regression

equations contained within Microsoft Excel 2004 for Mac.

Correlations were determined by plotting the relative fitness

values versus the parameter of interest, and by calculating the

Pearson’s correlation coefficient (R2) of the trendline along with

95% confidence intervals (CI).
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Supporting Information

Figure S1 Nef is not expressed from NL4-3-MSS-eGFP or

DsRed2, or ancestral constructs. 293T cells were transfected with

mock (M), pNL4-3-Denv-eGFP [94] (DE), pcDNA-Nef-V5-6xHis

(V5-Nef), NL4-3-MSS (C), NL4-3-MSS-eGFP (G) or NL4-3-MSS-

DsRed2 (R) (left panel) and NL4-3-MSS, NL4-3-MSS-eGFP,

NL4-3-MSS-DsRed2, and with the original pNL4-3-Denv-eGFP

(DEG), and pNL4-3-Denv-DsRed2 (DER) [50]. 35S radiolabeled

transfections were lysed, immunoprecipitated with Nef hyperim-

mune sera, and resolved by SDS-PAGE. If Nef is required,

expression can be regained by inserting a T2A ribosomal skip

sequence at the end of the fluorescent reporter, as described in

Edmonds et al. [96].

(TIF)

Figure S2 Increase in nucleotide and amino acid differences

over time. Average intra time-point differences in nucleotide (blue)

and amino acid (red) sequence over time (N = 23-38 sequences)

based on data from Ref. 60. Over the 67-month sampling period,

average nucleotide diversity within time-points increased at a rate

of 0.2560.045 differences per month; with average amino acid

diversity within time-points increased at a rate of 0.1860.034 per

month. Both were statistically significant positive slopes

(p = 0.0028 and 0.0030 relatively).

(TIF)

Figure S3 Phylogenetic and amino acid analysis of infant 1157

env C2-V4 sequences. Patient env C2-V4 DNA sequences were

aligned with Sequencher 4.8. The resulting alignment was used to

generate an unrooted tree with PhylML [97]. Amino acid

sequences were generated from DNA Strider 1.4. Only positions

where amino acids differ between two or more sequences are

shown. Variable-3 region is highlighted in yellow.

(TIF)

Figure S4 Results from individual patient chimera competitions.

U87.CD4.CCR5 cells were infected at a MOI of 0.1 for all mono-

and dual-infections. Five days post-infection, fluorescent events

were enumerated by flow cytometry and used to calculate relative

fitness values for each competition (see Fig. 3). W values for all

chimeras from all competitions were plotted individually. Circles

represent individual W values, black bars represent means, and

error bars represent standard deviation.

(TIF)

Figure S5 NL4-3 and YU2 controls for CD4 and CCR5 affinity

assay. NL4-3 (CD4, CXCR4) and YU2 (CD4, CCR5) viral stocks

were used as assay controls for the CD4 and CCR5 affinity assays

(Fig. 7). Viral stocks were incubated with serial dilutions of a CD4

competitor (B4 Ab) or CCR5 competitor (2D7 Ab), and added to

TZB-bl indicator cells. Luciferase activity was quantified and used

to calculate IC50 concentrations. While both viruses were

susceptible to competition with the anti-CD4 Ab B4 (NL4-3

IC50 = 4.928 mg/ml), YU2 IC50 = 1.075 mg/ml), only YU2 was

susceptible to competition with the anti-CCR5 Ab 2D7

(IC50 = 0.0280 mg/ml). NL4-3 luciferase activity in the absence

of 2D7 (133,516 RLU 630,279) was similar to luciferase activity at

the highest concentrations of 2D7 (0.5 mg/ml) 125,668 RLU

67,940).

(TIF)

Figure S6 Real-Time reagents directed towards eGFP or

DsRed2 are suitable for multiplex reactions. DsRed2 primer-

probe set (DsRed2 Forward: 59-CCTCCTCCGAGAACGT-

CATC-39, Reverse: 59-CCCTCCATGCGCACCTT-39, Probe:

59-CCGAGTTCATGCGCTT-39) was used to detect either 1000

copies of NL4-3-MSS-DsRed2 plasmid (Idealized), 1000 copies of

NL4-3-MSS-DsRed2 in the presence of 1000 copies of NL4-3-

MSS-eGFP (Template interference), 1000 copies of NL4-3-MSS-

DsRed2 in the presence of 1000 copies of NL4-3-MSS-eGFP and

the associated eGFP primer-probe set (eGFP Forward: 59-

GGGCACAAGCTGGAGTACAAC-39, Reverse: 59-

TCTGCTTGTCGGCCATGATA-39, Probe: 59-ACAGCCA-

CAACGTCT-39) (Multiplex), or 10,000 copies of NL4-3-MSS-

eGFP (Irrelevant template) (left panel). NL4-3-MSS-eGFP plasmid

was detected in a similar manner (right panel). Using Bonferroni’s

Multiple Comparison Test, there was no difference between cycle

threshold values of Idealized, Template Interference, or Multiplex

reactions, indicating that the presence of the alternate fluorescent

DNA or reagents does not effect detection. There was a statistically

significant difference between those Cts and the irrelevant

template (p,0.001), indicating that there is no non-specific

amplification of the alternate fluorescent DNA. These primer-

probe sets are suitable for multiplex Real-Time PCR.

(TIF)

Table S1 Column statistics of aggregate data. Statistical analysis

of Figure 4 data (top panel) and One sample t test comparing

average relative fitness values to neutrality (1.0) (bottom panel).

(XLSX)

Table S2 Bonferroni’s Multiple Comparison Test. Data from

each chimera (Fig. 4) was compared against all other chimeras to

determine if the were statistically different. Statistically significant

differences are noted with stars (*, p,0.05; **, p,0.01; ***,

p,0.001).

(XLSX)
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