
RESEARCH ARTICLE

A 4D continuous representation of myocardial

velocity fields from tissue phase mapping

magnetic resonance imaging

Bård A. BendiksenID
1,2,3*, Gary McGinley1,2, Ivar Sjaastad1,2, Lili Zhang1,2, Emil K.

S. Espe1,2

1 Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway,

2 KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway, 3 Bjørknes University College,

Oslo, Norway

* b.a.bendiksen@medisin.uio.no

Abstract

Myocardial velocities carry important diagnostic information in a range of cardiac diseases,

and play an important role in diagnosing and grading left ventricular diastolic dysfunction.

Tissue Phase Mapping (TPM) Magnetic Resonance Imaging (MRI) enables discrete sam-

pling of the myocardium’s underlying smooth and continuous velocity field. This paper pres-

ents a post-processing framework for constructing a spatially and temporally smooth and

continuous representation of the myocardium’s velocity field from TPM data. In the pro-

posed scheme, the velocity field is represented through either linear or cubic B-spline basis

functions. The framework facilitates both interpolation and noise reducing approximation.

As a proof-of-concept, the framework was evaluated using artificially noisy (i.e., synthetic)

velocity fields created by adding different levels of noise to an original TPM data. The frame-

work’s ability to restore the original velocity field was investigated using Bland-Altman statis-

tics. Moreover, we calculated myocardial material point trajectories through temporal

integration of the original and synthetic fields. The effect of noise reduction on the calculated

trajectories was investigated by assessing the distance between the start and end position

of material points after one complete cardiac cycle (end point error). We found that the

Bland-Altman limits of agreement between the original and the synthetic velocity fields were

reduced after application of the framework. Furthermore, the integrated trajectories exhib-

ited consistently lower end point error. These results suggest that the proposed method gen-

erates a realistic continuous representation of myocardial velocity fields from noisy and

discrete TPM data. Linear B-splines resulted in narrower limits of agreement between the

original and synthetic fields, compared to Cubic B-splines. The end point errors were also

consistently lower for Linear B-splines than for cubic. Linear B-splines therefore appear to

be more suitable for TPM data.
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Introduction

Measures of regional myocardial function play a key role in pre-clinical studies that aim to

identify and describe mechanisms driving heart failure development, and to discover efficient

targets for therapy. Myocardial velocities reflect myocardial function, and has been shown to

carry important diagnostic information in a range of cardiac diseases [1–3]. They play a partic-

ularly important role in diagnosing and grading left ventricular diastolic dysfunction [4].

Velocity encoded tissue phase mapping (TPM) MRI enables measurement of myocardial

velocities with high spatial and temporal resolution [5]. TPM data can also serve as a basis for

deriving several characteristics that describes cardiac mechanical function on a regional level;

such as strain [6, 7], fiber shortening [8], strain rate [9, 10], and work [11]. To derive these

parameters, the velocity field must undergo either spatial differentiation (to get strain rate) or

temporal integration (to get myocardial material point trajectories).

The velocity field measured by TPM is intrinsically a discretely sampled representation of

the true underlying continuous velocity field. This constitutes a fundamental problem for inte-

gration of material point trajectories, as this in principle requires a continuous representation

of the velocity field. The simplest solution to a lack of such a representation is to employ the

nearest-neighbor assumption during integration [7]. In this approach the velocity at any loca-

tion is assumed to be equal to the velocity in the closest voxel, i.e. the field is assumed to be

piecewise (voxel wise) constant. The actual velocity of the myocardium, however, varies

smoothly between imaging voxels, and any approximation of the velocity field is a potential

source of error in estimation of functional parameters derived from TPM data. In principle,

the validity of the nearest-neighbor approach improves with increasing image resolution.

Increasing the image resolution will, however, prolong the scan duration and reduce the veloc-

ity to noise ratio of the data [12]. In velocity measurements, noise accumulates during integra-

tion of material point trajectories for assessment of strain [13, 14], and amplifies during strain

rate calculations as a result of spatial differentiation [9]. B-spline processing has the potential

to generate smooth and continuous vector fields based on discrete and noisy data [15]. Repre-

senting vector fields using B-splines also guarantees well-defined analytical differentiation

[16]. B-spline processing has previously been used to analyze ventricular deformation from

echocardiography [17], MRI tagging data [18], and to resolve the underlying tensor field

describing biological fiber structure measured using Diffusion Tensor Imaging [19]. 3D bio-

logical fiber structure can be derived from Diffusion Tensor Imaging data through integration

of seed points in the primary eigenvector field of the diffusion tensor field [20]. This analysis

resembles the way deformation curves are derived from TPM data. We therefore hypothesized

that B-spline processing is a suitable candidate for TPM applications.

In the present study, we developed a B-spline processing framework that is able to interpo-

late or approximate the measured time dependent velocity field of the hearts left ventricle (LV)

measured with TPM-MRI. The proposed framework was developed to facilitate mathemati-

cally well-defined evaluation of the velocity field, while simultaneously reducing the influence

of imaging noise on the field analysis. The suitability of both linear B-spline functions (LBS)

and cubic B-spline functions (CBS) were tested. The proposed framework allows for individual

levels of both temporal and spatial noise attenuation.

Methods

Continuous approximation of the velocity field

The theoretical basis for constructing continuous representations of discrete vector fields

using B-splines has previously been outlined by Aldroubi and Basser [15]. Our
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implementation follows a similar approach to the approximation of continuous tensor fields

commonly used in the processing of DTI-data [19]. Although most of the following concepts

will be introduced for one-dimensional problems, we apply them to higher dimensions

through the use of tensor product splines [21].

B-splines refer to a family of piecewise polynomial functions, of different polynomial order,

that are commonly used to represent digital signals through either interpolation or approxima-

tion. In situations when the sampled signal of interest contains noise it can be an advantage to

approximate the signal, rather than interpolate it. Unser and co-workers have previously sug-

gested a scale conversion algorithm for the enlargement or reduction of digital images by arbi-

trary rational scale conversion factors [21]. In the scale conversion approach, the

approximated signal is related to the B-spline basis through:

sn
D
ðxÞ ¼

X1

k¼� 1

cD½k�b
n
ðx=D � kÞ ð1Þ

Here, Δ represents the scale conversion factor, sn
D

represents the approximation of the sig-

nal, βn represent a B-spline function of order n, and cΔ represent a set of spline coefficients cal-

culated by the algorithm. A scale conversion factor Δ = 1 corresponds to signal interpolation

and Δ>1 result in signal approximation. A general approach for determining the optimal val-

ues of cΔ[k] in a way that minimizes the error in the least squares sense has previously been

outlined by Unser et al. [21]. The difference between spline interpolation, and approximation

using the scale conversion algorithm is illustrated Fig 1A and 1B, where the schemes have been

applied on a noisy sample of a sinusoid, using both LBS and CBS.

In the proposed framework, we interpolate or approximate the components of the velocity

field individually, using the following tensor product spline of nth order spline functions:

vn
D;qðx; y; z; tÞ ¼

X

i;j;k;l

cD;q½i; j; k; l� � b
n
ðx=Dx � iÞ � bn

ðy=Dy � jÞ � bn
ðz=Dz � kÞ � bn

ðt=Dt � lÞ ð2Þ

where the superscript, n, denotes the spline order, and the subscript, q, denotes the x, y, and z
component of the velocity field. For signals with more than one dimensions, the spline

Fig 1. B-spline interpolation and approximation. a) Interpolation of a sampled, noise-contaminated sinusoid, using LBS (crosses) and

CBS (dashed line). The continuous, noise free sinusoid is shown as a solid line b) Approximation a sampled, noise-contaminated

sinusoid, using LBS (crosses) and CBS (dashed line).

https://doi.org/10.1371/journal.pone.0247826.g001
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coefficients can be found by successive application of the one dimensional scheme along each

dimension [21].

Calculation of material point trajectories

Myocardial material point trajectories, r(t), can be used to describe the position of a small vol-

ume of myocardium as a function of time, t. The trajectory is related to the velocity field of the

material through integration of the following system of differential equations in time [13]

drðtÞ
dt
¼ vðr; tÞ ð3Þ

subjected to the initial condition r(0) = r0, where r0 is some user defined “seed point location".

v(r, t) represents the spatiotemporal velocity field of the material. However, Eq 3 cannot in

general be solved analytically, and it was therefore solved numerically using a forward Euler

integration scheme [22]. One material seed point was generated in the center of each voxel

that contained LV myocardium at the onset of systole (t = 0). The 3D position of each material

point was then approximated at subsequent time points, throughout the entire cardiac cycle.

Animal preparation

The Wistar rat that was included in the present study was sham operated for a study on myo-

cardial infarction, following the procedure outlined in [23]. Thus, no additional animals were

used solely for the purpose of this study, in accordance with the goal of reducing the number

of animals used in experimental research. Anesthesia was induced before operation, using O2

and 4.0–4.5% isoflurane. During operation, the rat was intubated and ventilated on a ventilator

with O2 and 2.0–3.0% isoflurane. As postoperative analgesia, the rat was given Buprenorphine.

2–3 rats per cage were housed in a temperature-regulated room with a 12:12 h light-dark cycle,

and access to food and water ad libitum. The animal was anesthetized during MRI scans six

weeks after operation, according to the description below. One day after the MRI examination,

anesthesia was induced using O2 and 4% isoflurane and the rat was sacrificed by heart excision.

The animal was cared for according to the Norwegian Animal Welfare Act. The use of animals

was approved by the Norwegian Animal Research Authority (FOTS ID 3284/10102), and con-

formed to the Guide for the Care and Use of Laboratory Animals published by the US National

Institutes of Health and the European Convention for the Protection of Vertebrate Animals

used for Experimental and Other Scientific Purposes (ETS no. 123).

Acquisition

All MRI images were acquired on a 9.4T T/210 mm/ASR horizontal bore magnet (Agilent

Technologies Inc., Santa Clara, CA, USA) with a volume transmit coil (inner diameter 72 mm)

and a 4-channel phase array coil (Rapid Biomed GmbH, Rimpar, Germany). The animal was

anesthetized by 4.0–4.5% isoflurane, and put into the MRI lying in a prone position. Anesthe-

sia was maintained using a stream of medical oxygen with 1.5–2.5% isoflurane at a flow rate of

1 L/min. Heart rate, respiration rate and body temperature were closely monitored (SA Instru-

ments, Inc., New York, USA) during the experiments. Temperature was kept as close to 37 oC

as possible by thermostat-regulated warm air. TPM datasets with 4x undersampling were

acquired, following the acquisition approach outlined by McGinley et al. [24]. A stack of 11

slices covering the LV of the rat heart were acquired with the following parameters: TE = 2.3

ms; TR = 3.2 ms; field-of-view = 45x45 mm; matrix = 128x32; slice thickness = 1.5 mm;

gap = 0.0 mm; flip angle = 7˚; venc = 13.9 cm/s using nine-point balanced encoding [25]. The

venc was chosen to cover the spectrum of expected velocities of the myocardium [25], and was
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the same for all acquisitions. The spatial resolution and field-of-view were chosen to avoid

fold-over artifacts, provide enough extracardiac structures for the eddy current compensation

[26], as well as to keep gradient duty cycle within acceptable limits. The acquisition time was

42 min in total for all 11 slices. The acquisitions were prospectively triggered by ECG and pro-

spectively respiration gated, in the freely breathing animal. The undersampled data were

reconstructed using compressed sensing as previously described [24]. The resulting data set

consisted of 128x128 voxels for each velocity field component, and 58 timeframes covering the

entire cardiac cycle, for each of the 11 slices.

Approximation of velocity fields

The TPM-measured 3D velocity components were combined into a 4D matrix, where the first

three dimensions represented the laboratory frame of reference, and the fourth dimension rep-

resents time. This dataset will be referred to as the “original velocity field”, and includes myo-

cardial velocities of the entire LV (11 slices).

The robustness of the approximation scheme towards imaging noise was tested on a set of

“synthetic velocity fields”. Synthetic velocity fields with different levels of noise were generated

by adding Gaussian noise to the real and imaginary components of the original MRI images,

prior to velocity calculation. This was done to mimic TPM data with realistic noise profiles

[27]. The added noise had a mean of 0, and standard deviations ranging from 5% to 20% of the

99th percentile signal intensity of the original images (Fig 2).

The LBS and CBS approximation schemes were applied on non-segmented velocity fields

with different noise levels, using identical scale conversion factors in all three spatial dimen-

sions. We used Δx = Δy = Δz = Δxyz = 1 for interpolation and the following fractions for approx-

imation Δxyz = 60/58, 60/56, 60/54, 60/52 and 60/50. We chose to keep the temporal scale

conversion factor fixed at 1 for all approximations, to avoid loss of rapid temporal changes in

the velocity fields. In order to make the approximated fields comparable to the original fields,

the approximated fields were reevaluated to provide discrete velocity fields with the original

resolution.

The discrepancy between the original field and each of the synthetic fields was assessed by

evaluating the voxel-wise difference in velocity of all voxels that included LV myocardium

using Bland-Altman 95% limits of agreement (LoA). The voxels that included myocardium

were identified by following the semi-automatic segmentation approach outlined by Espe et al.
[28]. Briefly, end systolic and end diastolic masks are created based on manual delineation of

the endocardium and epicardium. Material point trajectories are then calculated for seed

points originating from within the manually segmented masks. These trajectories are used to

identify the delineation of the myocardium at time points between the end diastole and end

systole, and automatically remove seed points that transverses out of the manually segmented

masks. Voxels that contained LV myocardium from all 11 slices and 58 timeframes were con-

sidered, giving in total 336620 myocardial voxels.

Fig 2. Velocity fields with varying levels of added noise. Illustration of the different levels of noise added to the

velocity field. Here, the y-component of the field from a mid-ventricular slice early in systole is shown. The z-axis

points in the through-plane direction.

https://doi.org/10.1371/journal.pone.0247826.g002
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Spatial variations in the discrepancies were assessed by calculating residual fields (that is,

the images of the voxel wise difference between the original and synthetic fields). In particular

we wanted to investigate the effect of the discontinuities in the velocity field at the endocardial

and epicardial borders on the approximation. First the residual fields were divided into an

epicardial, a mid myocardial and an endocardial zone. Then the median and interquartile

range of the residual fields were calculated for each zone individually, combining data from all

time points.

The effect of noise attenuation on material point trajectories

To isolate the noise attenuating effect of the framework on calculated material point trajecto-

ries, material points were propagated from their seed position by solving Eq 3, employing the

nearest-neighbor method. For the calculation of material point trajectories, the myocardium

was first segmented at the end diastolic and end systolic time point by manual delineation.

Only seed points that originated from the myocardium at the end diastolic time frame were

used for material point trajectory calculation. The trajectory for material points that were not

located within the bounds of the LV mask at the end systolic time point were terminated, and

the integration of that particular material point was flagged as unsuccessful, and disregarded

[28].

A set of trajectories were calculated for the original velocity field and all the synthetic veloc-

ity fields, following the outlined scheme. The ability of the scheme to produce closed loops by

simple forward integration was used as a measure of its accuracy. The trajectories should in

principle form closed loops as the myocardium returns to its end-diastolic state. Therefore, the

distance between the starting position and end position of each trajectory will be referred to as

the “end point error” (EPE), defined as

EPE ¼ krend position � rstart positionk ð4Þ

To ensure that any improvement in EPE was not mediated by an overall reduction in dis-

placement, we also quantified the displacement of the material points from their initial posi-

tion in end systole. This parameter will be referred to as the end systolic displacement (ESD),

and was defined as

ESD ¼ kr0 � rend systolek ð5Þ

Illustrations of the EPE and ESD are presented in Fig 3.

Integration of trajectories in a continuous field

Next, we investigated the effect of integrating material points in a continuous field (piecewise

linear or piecewise cubic) compared to integrating them in the measured, discrete, field (piece-

wise constant). First we interpolated the original field (with no added noise) using CBS and

LBS. Afterwards, motion curves were integrated in the two continuous fields and the discrete

field using a step size equal to the temporal sampling interval of the acquired TPM data [22].

The integration followed the scheme outlined above, in every other aspect. The accuracy of the

trajectories was assessed by comparing the EPE-distributions from using the three different

approaches.

Data analysis and statistics

All post-processing and data analysis were performed in MATLAB 2018a (The MathWorks,

Inc., USA). For computational efficiency, the images were cropped to 60x60 voxels per slice. In
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order to avoid discontinuities at the image borders, we chose to extend the image matrices on

each side, in all dimensions, by using its mirror image [29].

Results

Approximation of velocity fields

The results from the Bland-Altman analysis of discrepancies between the original and syn-

thetic velocity fields is summarized in Table 1. Representative Bland-Altman plots from the

analysis is presented in Fig 4.

As expected, LoA between original and synthetic field grew wider with increasing noise.

The Bland-Altman analysis did not reveal any systematic bias between the original and the

synthetic noisy fields. Both LBS and CBS approximation resulted in narrower LoAs (Table 1).

The transmural variations in the LBS and CBS residual fields are reported in Table 2. We

found that the interquartile range of the residual fields were larger in the endocardium and

epicardium compared to the mid myocardial zone, indicating a less reliable field approxima-

tion in zones with discontinuous variations in velocity. The interquartile ranges grew with

increasing noise level and increasing scale conversion factor. LBS resulted in consistently

lower interquartile ranges than CBS. Some example images of residual fields are presented in

Fig 5. In these example images only one time point early in systole is shown.

The effect of noise attenuation on trajectories

The noise attenuating effect of the framework on the calculated material point trajectories was

assessed by propagating materiel points from their seed position by solving Eq 3, using the

nearest-neighbor method for the original and synthetic velocity fields. Fig 6 allows a visual

appreciation of selected representative material point trajectories. Visually, the trajectories

integrated in the synthetically noisy fields (Fig 6D and 6I) appeared less smooth individually,

and less coherent collectively, when compared to trajectories estimated from the original field

(Fig 6C). Both CBS and LBS approximation appears to partially restore the smoothness and

coherence (Fig 6D–6M).

We found no systematic variation in number of successful trajectory integrations by vary-

ing the scale conversion factor. The distribution in EPE for the trajectories are presented in

Fig 3. Material point trajectories with end systolic displacement and end point error. A graphical representation of the end point error, and end systolic displacement,

for a hypothetical LV material point trajectory. For illustration purposes we show 2D projections of the estimated trajectories, displacements and EPEs, viewed from a

mid-ventricular short axis.

https://doi.org/10.1371/journal.pone.0247826.g003
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Table 1. Bland-Altman analysis.

Added noise: 5% 10% 15% 20%

x-component (in-plane)

Unfiltered 0.00 ± 0.80 0.0 ± 1.0 0.0 ± 1.3 0.0 ± 1.6

LBS

Δxyz = 60/58 0.00 ± 0.56 0.00 ± 0.68 0.00 ± 0.86 0.0 ± 1.1

Δxyz = 60/56 0.01 ± 0.57 0.00 ± 0.65 0.00 ± 0.78 0.01 ± 0.94

Δxyz = 60/54 0.01 ± 0.56 0.00 ± 0.65 0.00 ± 0.77 0.00 ± 0.93

Δxyz = 60/52 0.01 ± 0.57 0.00 ± 0.64 0.00 ± 0.77 0.00 ± 0.92

Δxyz = 60/50 0.01 ± 0.64 0.00 ± 0.71 0.00 ± 0.82 0.00 ± 0.96

CBS

Δxyz = 60/58 0.00 ± 0.71 0.00 ± 0.87 0.0 ± 1.1 0.0 ± 1.4

Δxyz = 60/56 0.01 ± 0.70 0.00 ± 0.83 0.0 ± 1.0 0.0 ± 1.3

Δxyz = 60/54 0.01 ± 0.69 0.00 ± 0.82 0.0 ± 1.0 0.0 ± 1.2

Δxyz = 60/52 0.00 ± 0.68 0.00 ± 0.81 0.00 ± 0.98 0.0 ± 1.2

Δxyz = 60/50 0.01 ± 0.77 0.00 ± 0.87 0.0 ± 1.0 0.0 ± 1.2

y-component (in-plane)

Unfiltered 0.00 ± 0.80 0.0 ± 1.0 0.0 ± 1.3 0.0 ± 1.6

LBS

Δxyz = 60/58 0.00 ± 0.56 0.01 ± 0.69 0.01 ± 0.86 0.0 ± 1.1

Δxyz = 60/56 0.00 ± 0.57 0.01 ± 0.66 0.01 ± 0.78 0.01 ± 0.92

Δxyz = 60/54 0.00 ± 0.57 0.01 ± 0.65 0.01 ± 0.77 0.01 ± 0.90

Δxyz = 60/52 0.00 ± 0.56 0.01 ± 0.64 0.01 ± 0.76 0.01 ± 0.90

Δxyz = 60/50 0.00 ± 0.63 0.01 ± 0.69 0.01 ± 0.79 0.01 ± 0.92

CBS

Δxyz = 60/58 0.00 ± 0.70 0.01 ± 0.87 0.0 ± 1.1 0.0 ± 1.4

Δxyz = 60/56 0.00 ± 0.70 0.01 ± 0.84 0.0 ± 1.0 0.0 ± 1.2

Δxyz = 60/54 0.00 ± 0.69 0.01 ± 0.82 0.0 ± 1.0 0.0 ± 1.2

Δxyz = 60/52 0.00 ± 0.68 0.01 ± 0.81 0.01 ± 0.98 0.0 ± 1.2

Δxyz = 60/50 0.00 ± 0.75 0.01 ± 0.85 0.0 ± 1.0 0.0 ± 1.2

z-component (through plane)

Unfiltered 0.00 ± 0.91 0.0 ± 1.2 0.0 ± 1.4 0.0 ± 1.7

LBS

Δxyz = 60/58 0.00 ± 0.68 0.00 ± 0.79 0.00 ± 0.95 0.0 ± 1.1

Δxyz = 60/56 0.00 ± 0.66 0.00 ± 0.74 0.00 ± 0.86 0.0 ± 1.0

Δxyz = 60/54 0.00 ± 0.66 0.00 ± 0.73 0.00 ± 0.85 0.00 ± 0.98

Δxyz = 60/52 0.00 ± 0.66 0.00 ± 0.74 0.00 ± 0.85 0.00 ± 0.98

Δxyz = 60/50 0.00 ± 0.73 0.00 ± 0.79 0.00 ± 0.89 0.0 ± 1.0

CBS

Δxyz = 60/58 0.00 ± 0.82 0.00 ± 0.97 0.0 ± 1.2 0.0 ± 1.4

Δxyz = 60/56 0.00 ± 0.81 0.00 ± 0.93 0.0 ± 1.1 0.0 ± 1.3

Δxyz = 60/54 0.00 ± 0.80 0.00 ± 0.91 0.0 ± 1.1 0.0 ± 1.3

Δxyz = 60/52 0.00 ± 0.79 0.00 ± 0.91 0.0 ± 1.1 0.0 ± 1.3

Δxyz = 60/50 0.00 ± 0.86 0.00 ± 0.95 0.0 ± 1.1 0.0 ± 1.3

Summary of the Bland-Altman analysis, where each component of the original velocity field and the different synthetic fields have been compared. Here we show the

comparisons using both the LBS basis and the CBS basis, reported as (bias ± 95% LoA).

https://doi.org/10.1371/journal.pone.0247826.t001
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Fig 7. With increasing scale conversion factor, EPE assumes a convex shape for all the noise

levels investigated. Furthermore, it appears that the scale conversion factor that minimizes the

median EPE, simultaneously minimize the spread in EPE.

Fig 4. Bland-Altman analysis. Bland-Altman plots comparing the y-component of the original velocity field with

different synthetic fields. Only Bland-Altman plots from processing with a scale conversion factor of Δxyz = 60/50 is

shown.

https://doi.org/10.1371/journal.pone.0247826.g004

Table 2. Transmural analysis of residual fields.

LBS CBS

Δxyz = 60/56 Δxyz = 60/50 Δxyz = 60/56 Δxyz = 60/50

median IQR median IQR median IQR median IQR

x-component [cm/s]

10% Endo -0.03 0.74 -0.04 0.84 -0.04 1.03 -0.06 1.10

Mid 0.04 0.65 0.01 0.72 0.00 0.94 0.01 0.99

Epi 0.02 0.75 0.03 0.83 0.01 1.06 0.02 1.12

20% Endo -0.04 1.13 -0.05 1.20 -0.05 1.64 -0.07 1.63

Mid 0.01 1.05 0.01 1.08 0.01 1.56 0.01 1.52

Epi 0.02 1.17 0.04 1.19 0.02 1.70 0.03 1.64

y-component [cm/s]

10% Endo -0.03 0.72 0.02 0.78 -0.02 1.02 -0.02 1.05

Mid -0.05 0.65 -0.05 0.70 -0.05 0.93 -0.05 0.96

Epi -0.06 0.75 -0.07 0.84 -0.07 1.05 -0.07 1.11

20% Endo -0.02 1.11 -0.02 1.15 -0.02 1.62 -0.02 1.57

Mid -0.04 1.04 -0.04 1.05 -0.04 1.55 -0.04 1.49

Epi -0.08 1.17 -0.10 1.20 -0.08 1.69 -0.10 1.64

Median and interquartile range of the epicardial, mid myocardial and endocardial residual fields of the in-plane velocity component, with different B-spline basis, level

of noise, and scale conversion factor.

https://doi.org/10.1371/journal.pone.0247826.t002
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Fig 5. Field approximations and residual fields. Approximations of the y-component of the velocity field and their associated residual fields in early systole, with

different B-spline basis, level of noise, and scale conversion factor. The section highlighted by the red circle illustrates discrepancies between the original and synthetic

fields in the border between the LV anterior free wall and the chest wall.

https://doi.org/10.1371/journal.pone.0247826.g005
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Increasing the noise intensity or scale conversion factor appears to reduce the median ESD

(Fig 8).

Integration of trajectories in a continuous field

A comparison of the EPE-distributions for trajectories integrated in a continuous field (piece-

wise linear or piecewise cubic) and the original discrete field (piecewise constant) is presented

in Fig 9. The LBS interpolation yielded a narrower EPE-distribution, with a lower median,

compared to the nearest-neighbor interpolation. The CBS interpolation gave similar results as

the nearest-neighbor interpolation.

Discussion

Summary of results

We have developed a framework that 1) recovers a smooth and continuous approximation of a

velocity field from noisy TPM data and 2) allow analytical, rather than numerical, subsequent

Fig 6. Material point trajectories. a) Anatomical short axis image of the heart at the onset of systole. The red box represents an arbitrary

area of interest that has been used to compare trajectories between schemes. b) 2D projections of LV material point trajectories integrated

based on the original velocity field, c) zoomed in view on the area of interest of the trajectories in (b), d-h) trajectories integrated in velocity

field with 10% added noise with different B-spline basis functions and scale conversion factors (Δxyz), and i-m) trajectories integrated in a

velocity field with 20% added noise with different B-spline basis functions and scale conversion factors.

https://doi.org/10.1371/journal.pone.0247826.g006
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processing of the data. The smoothness of the approximated field can be readily adjusted by

varying the scale conversion factor, Δ, in any of the field’s dimensions. This way, our frame-

work can interpolate (for Δ = 1) or approximate (for Δ>1) the measured field using an either

piecewise linear- or piecewise cubic B-spline scale conversion algorithm. We assessed the abil-

ity of the framework to recover a velocity field after addition of random noise, and found that

the LoAs between the original and the synthetic fields were narrower after the application of

the framework. We also calculated myocardial material point trajectories through temporal

integration of the original and synthetic fields. Linear B-splines resulted in narrower limits of

Fig 7. End point errors. End point error distributions of LV material point trajectories integrated based on the acquired- and

synthetic velocity fields, representing different levels of imaging noise and choice of scale conversion (i.e. noise reduction), Δxyz. All

fields were integrated using the Euler method with nearest-neighbor interpolation. Here, Δxyz = 1, corresponds to an unfiltered data

set. The central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,

respectively. The whiskers extend to the most extreme data points not considered outliers by MATLAB’s boxplot function. The plot

axes are scaled to show the body of the box plots more clearly, and do not display extreme outliers>3mm.

https://doi.org/10.1371/journal.pone.0247826.g007

Fig 8. End systolic displacements. End systolic displacement distributions of LV material point trajectories integrated based on the

acquired- and synthetic velocity fields, representing different levels of imaging noise and choice of scale conversion. The plot axes are

scaled to show the body of the box plots more clearly, and do not display extreme outliers.

https://doi.org/10.1371/journal.pone.0247826.g008
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agreement between the original and synthetic fields, compared to Cubic B-splines. The end

point errors in the calculated material point trajectories were also consistently lower for Linear

B-splines than for cubic. Therefore, Linear B-splines appear more appropriate than cubic for

TPM data.

Approximation of velocity fields: Edge effects

B-spline processing reduced the influence of noise in the synthetic velocity fields (Fig 4). In

general, the LoA exhibited an either declining or convex trend with increasing scale conver-

sion factor (Table 1). The residual fields revealed a relatively larger discrepancy in the epicar-

dial and endocardial borders of the LV compared to midmyocardial regions (Table 2). In

effect, the scale conversion algorithm performs a compression of the velocity field for scale

conversion factors larger than one (Δ>1). In order to minimize the loss of information upon

compression, it expands the width of the basis functions. This leads to an increasing degree of

averaging among voxels in the same neighborhood. Errors due to averaging are therefore

expected to be more severe in regions where discontinuities in the velocity field occurs, such as

at the endocardial and the epicardial borders of the LV. This is supported by our observation

that this error became more apparent for larger scale conversion factors (Fig 5E and 5F). Such

edge artifacts might introduce systematic errors in subsequent processing of the velocity fields,

for instance when calculating strain, which is known to vary transmurally [30]. This challenge

may be addressed by forcing the algorithm to discard data points outside the myocardium,

and/or reject integrated motion paths that travels outside the myocardium [7].

Fig 9. Accuracy of trajectories integrated in a continuous field. End point error distributions of LV material point

trajectories integrated in a continuous representation of the field. Here we compare nearest-neighbor interpolation,

LBS interpolation, and CBS interpolation. The trajectories were integrated with the Euler method, using a step size

equal to the temporal sampling interval of the acquired TPM data.

https://doi.org/10.1371/journal.pone.0247826.g009
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The effect of noise attenuation on trajectories

We show that the suggested framework improves the precision and accuracy of LV material

point trajectories derived from noisy TPM data. Both the width and the median of the EPE dis-

tributions varies in a convex manner with increasing scale conversion factor (Fig 7). Interest-

ingly, the same scale conversion factor minimized both the median and spread in the EPE for

all levels of noise investigated, indicating that there exists an optimal scale conversion factor

for a given set of TPM data. The decay in ESD (Fig 8) with increasing Δ does not appear to fit

the convex trend in the EPE or the magnitude in the EPE reduction. We therefore do not

believe that the reduction in EPE is mediated by a reduction in the overall movement of the

material points.

Comparison of LBS and CBS

The LBS approximations reduce the LoAs between the original and synthetic velocity fields

more than the CBS scheme, for all investigated levels of noise (Table 1). Discrepancies between

the original and synthetic fields near to the endocardial and epicardial borders were also con-

sistently lower when LBS were used, compared to CBS (Table 2). When we compared the effect

of noise attenuation on the integration of material point trajectories, the LBS-scheme yielded a

lower EPE for all the tested scale conversion factors, and all the noise levels. Cubic B-spline

approximation is intrinsically better suited to capture rapid oscillations in the input signal

than LBS [21] and therefore more prone to conserve noise. In addition, it tends to introduce

oscillations near large spatial variations in the dataset [21]. In TPM data, we do not expect the

velocity field to oscillate between voxels.

We also compared trajectory integration using the nearest-neighbor interpolation to LBS

and CBS interpolation. Interestingly, we observe little difference in EPE when we compare

material point integration using nearest-neighbor interpolation and CBS interpolation. In

contrast, LBS-interpolation yields an EPE-distribution with a lower median and narrower

interquartile range. In general, higher order polynomial functions are more likely to overfit the

data compared to lower order polynomials. On the other hand, lower order polynomials such

as the pricewise constant polynomial used in the nearest-neighbor interpolation are more

likely to underfit the data. The problem of overfitting can be remedied by approximating

rather than interpolating, as demonstrated by comparing Fig 1A and 1B.

Limitations

A limitation of the study is that we do not have a noiseless velocity field that realistically mim-

ics the motion of the LV. We therefore do not know if the approximated field is closer to the

ground truth, compared to the original field. This limitation extends to the effect of the frame-

work on the calculated LV material point trajectories, where we instead use the ability of the

scheme to produce closed trajectories to assess the validity of the method.

Future perspectives

Although there are some differences in the contractile pattern between human and rat hearts,

strains, the relative temporal resolution (frames per cardiac cycle) and the anatomical resolu-

tion (imaging resolution divided by heart size) are similar between rats and humans [31]. We

therefore expect that the proposed framework is useful also for clinical data. This calls for fur-

ther studies into clinical validation of the method.

The ratio between peak early diastolic mitral flow (E), and peak early diastolic mid ventricu-

lar myocardial velocities (e0) measured with echocardiography can be used to predict LV filling
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pressures [32]. E/e’ is one of the key biomarkers recommended for diagnosing diastolic dys-

function in the presence of normal LVEF [4]. In the presented mapping data, e’ can be

extracted directly for any region of the left ventricle–due to the superior geometric control

offered by MRI compared to echo. We have previously shown that also E can be measured in

the rat heart using MRI [33]. The proposed post processing framework allows the velocity field

to be represented analytically, rather than discreetly, thereby allowing the field to be evaluated

at any point in space and time. It also improves the precision and accuracy of myocardial

velocities, in the presence of imaging noise. We therefore believe that the proposed framework

has the potential to improve the assessment of regional diastolic dysfunction using MRI.

Myocardial TPM data has also been shown to be valuable in detailed assessment of myocar-

dial mechanical function, through calculation of strain and strain rate tensor fields [9, 14]. Cal-

culation of strain and strain rates relies upon spatial differentiation of velocity and

displacement fields, which is not well defined for discrete fields. Imaging noise further ham-

pers this assessment, as noise is amplified by numerical differentiation [34]. Approximation of

the velocity field through B-splines remedies this problem by attenuating the influence of

noise, while simultaneously making the field susceptible to well defined analytical differentia-

tion [16]. We therefore believe that the proposed framework is well suited for advancing the

use of TPM for detailed assessment of myocardial mechanical function. It has the potential to

be a valuable tool for detecting regional perturbations in cardiac function which is of great

value in pre-clinical studies on heart failure mechanisms. In a clinical setting it could serve,

not only serve as a more robust velocity assessment tool, but also as a pre-processing step for

calculating strain or strain rate from TPM data. Future studies are warranted investigating the

value of this framework in deriving parameters such as strain and strain rate. We also believe

that the proposed framework has potential uses in similar applications of MRI, such as for the

assessment of flow.

Conclusion

In this study we have presented a B-spline framework for analyzing discrete myocardial veloc-

ity fields, acquired using TPM. To the best of our knowledge, we are the first to propose a post

processing framework that can generate a smooth and continuous representation of myocar-

dial velocities, from TPM data. We have shown that the framework reduces the impact of

noise on the measured velocity fields. Furthermore, we show that it improves the robustness of

material point trajectory integration in the presence of noise. Linear B-splines seem more suit-

able for describing myocardial motion than cubic B-splines.
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