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Background: Raman spectroscopy (RS) has shown great potential in the

diagnosis of oral squamous cell carcinoma (OSCC). Although many single-

central original studies have been carried out, it is difficult to use RS in real

clinical settings based on the current limited evidence. Herein, we conducted

this meta-analysis of diagnostic studies to evaluate the overall performance of

RS in OSCC diagnosis.

Methods: We systematically searched databases including Medline, Embase,

and Web of Science for studies from January 2000 to March 2022. Data of true

positives, true negatives, false positives, and false negatives were extracted

from the included studies to calculate the pooled sensitivity, specificity,

accuracy, positive and negative likelihood ratios (LRs), and diagnostic odds

ratio (DOR) with 95% confidence intervals, then we plotted the summary

receiver operating characteristic (SROC) curve and the area under the curve

(AUC) to evaluate the overall performance of RS. Quality assessments and

publication bias were evaluated by Quality Assessment of Diagnostic Accuracy

Studies 2 (QUADAS-2) checklist in Review Manager 5.3. The statistical

parameters were calculated with StataSE version 12 and MetaDiSc 1.4.

Results: In total, 13 studies were included in our meta-analysis. The pooled

diagnostic sensitivity and specificity of RS in OSCC were 0.89 (95% CI, 0.85–

0.92) and 0.84 (95% CI, 0.78–0.89). The AUC of SROC curve was 0.93 (95% CI,

0.91–0.95).

Conclusions: RS is a non-invasive diagnostic technology with high specificity

and sensitivity for detecting OSCC and has the potential to be applied clinically.
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1 Introduction

Oral cancer is one of the most common malignant tumors in

the head and neck, collectively known as head and neck

squamous cell carcinoma (HNSCC) (1). Oral squamous cell

carcinoma (OSCC) accounts for 90% of the incidence rate of

HNSCC. The mortality rate of HNSCC in the world ranks sixth

in the mortality rate of cancer, and the 5-year survival rate after

diagnosis is less than 50%, making it a disfigurement disease

with poor prognosis (2). The “gold standard” currently in OSCC

diagnosis is visual inspection, then an invasive organizational

examination or histopathological examination that is invasive

and time-consuming (3). Even after successful treatment of

primary cancer, there is still a risk of developing recrudescence

or second primaries. Thus, screening and detection of early

OSCC are the key to reduce the mortality of OSCC patients.

Many non-invasive techniques, such as vital staining

techniques, optical imaging devices, and exfoliated cytology

tools, have been developed to assist in the screening and early

detection of OSCC (4). In 1928, Indian physicist Raman

discovered Raman scattering effect, and the spectrum

produced by the effect is called Raman spectroscopy (RS). RS

can be used to identify the functional groups present in the

molecule to provide a specific spectral characteristic of the

internal structure and conformation of the cells, referred to as

“fingerprint molecules”. Known for its high specificity, high

analysis efficiency, and features such as complex samples

without dyeing or marking, RS can provide real-time

molecular information and high-resolution imaging with a

relatively low cost (5). Moreover, biological samples such as

tissue, plasma, and saliva can be directly inspected by RS. The

non-invasive feature of RS greatly reduces the pain and

economic burden of patients and has become a novel tool for

cancer diagnosis, treatment, and prognosis evaluation (6).

Currently, RS has been proven to have high diagnostic

accuracy for multiple types of human cancers, including

OSCC (7), breast cancer (8), bladder cancer (9), colorectal

cancer (10), and gastric cancer (11).

Although many single-central original studies have been

carried out, due to the small number of samples, various

diagnostic algorithms and analysis tools, and different RS

settings, the previous researches cannot fully reveal the value

of RS in OSCC diagnosis. Herein, we conducted this meta-

analysis of diagnostic studies to evaluate the overall performance

of RS in OSCC diagnosis.
2 Methods

2.1 Search strategy

A systematic search of the Medline, Embase, and Web of

Science databases was performed for English publications for
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studies from January 2000 to July 2022. Keywords used in

database searches were (OSCC) OR (oral cancer) AND

(Raman spectroscopy) OR (Raman spectra) OR (Raman

spectrum) AND [(histopathology) OR (biopsy)]. Reference

lists of retrieved articles and unpublished clinical trials were

also examined to identify potential findings.
2.2 Study selection

All records were selected for eligibility by 2 reviewers

independently, and disagreements were reported to the third

reviewer and resolved by discussion. Studies were selected with

the following criteria: 1) The samples used should only be

human tissue. 2) RS should be an independent diagnostic tool

to identify OSCC or differentiate it from normal tissue. 3)

Original data including true positives (TPs), true negatives

(TNs), false positives (FPs), and false negatives (FNs) should

be provided or can be calculated with sensitivity and specificity

values. 4) A control group (normal tissues) should be included

with a total number of more than 10 samples. 5) Articles should

be published in English. Following are the exclusion criteria: 1)

Studies used combined diagnostic methods; 2) Studies with

animal trial; 3) Irrelevant article types such as reviews and

case reports; 3) Studies without providing the exact original

data; 4) Studies without a control group; 5) Studies using

samples less than 10.
2.3 Data extraction and
quality assessment

Two reviewers extracted the information from all eligible

studies independently according to the selection criteria and

organized all of the information into Table 1, including principal

author, year of publication, country, number of specimens,

number of patients, type of RS, diagnostic algorithm,

sensitivity, specificity, accuracy, sample type, type of study

design (in vivo or in vitro), spectra, and gold standard. Then,

we evaluated the quality of all eligible studies in Review Manager

5.3 software (Cochrane Collaboration, Oxford, England) using

Quality Assessment of Diagnostic Accuracy Studies 2

(QUADAS-2) (12).
2.4 Statistical analysis

The summary receiver operating characteristic (SROC) curve

model of Lee et al. (13) is used for the meta-analysis. TP, FP, TN,

FN, sensitivity, specificity, accuracy, and positive and negative

likelihood were calculated directly or indirectly using the correct

method (14). Then, the pooled diagnostic odds ratio (DOR),

publication bias, and the summary receiver operating
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TABLE 1 Characteristics of the studies included.

Reference Country Specimens Patients Type of Raman spec- Diagnostic Sensitivity
)

Specificity
(%)

Accuracy
(%)

Sample
type

Type of study
design

Spectra
(nm)

Gold
standard

.6 85.9 90.7 Tissue in vitro 785 Histo

0 66 86 Tissue in vitro 785 Histo

0 78 91

.1 94.4 90.3 Tissue in vitro 785 Histo

57 73 Saliva in vitro 785 Histo

52 60 Oral cells

.4 98.8 98.3 Tissue in vitro 785 Histo

27 86.11 81.25 Tissue in vitro 532 Histo

.9 83.3 87.5

85.7 82.9 Tissue in vitro 532 Histo

85.7 82.9

.3 88.4 88.4 Tissue in vivo 785 Histo

.7 76.7 88.4 Tissue In vitro 785 Histo

.9 80 80.2 Tissue in vivo 785 Histo+
follow-up79.7 79.4

.7 84.1 87 Serum in vitro 785 Histo

.3 100 90.2 Tissue in vitro 532 Histo

.7 84.1 82.5 Serum in vitro 633 Histo

.3 82.8 81.1

enhanced Raman spectroscopy; MLRM, microscopical laser Raman spectroscopy; OFRS, optical fiber Raman-based
inear discriminant analysis; LOOCV, leave-one-out cross-validation; DSB-ResNet, diverse spectral band-based deep
ltinomial logistic regression.
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Cals et al., 2015
[19]

Netherland 25 10 SCRA PCA-KCA 94

Cals et al., 2016
[20]

Netherland 25 10 SCRA PCA-LDA 10

PCA-hLDA 10

Christian et al.,
2014 [3]

Germany 72 12 SERDS PCA-LDA 86

Connolly et al.,
2016 [21]

Ireland 180 36 SERS PCA-LDA 8

120 6

Ding et al., 2020
[22]

China NA NA OFRS DSB-ResNet 97

Jeng et al., 2019
[23]

China 80 NA MLRM PCA-LDA 77

PCA-QDA 90

Jeng et al., 2020
[24]

China 70 35 MLRM PCA-LDA 8

PCA-QDA 8

Krishna et al.,
2014 [25]

India 603 NA NIR MRDF-SMLR 88

Matthies et al.,
2021 [28]

Germany 137 37 SERDS PCA-LDA 93

Malik et al., 2017
[26]

India NA 99 NIR PCA-LDA 80

LOOCV 7

Sahu et al., 2015
[18]

India 328 328 SERS PCA-LDA 89

Sharma et al.,
2021 [4]

China 131 67 MLRM PCA-LDA 78

Tan et al.
2017 [27]

China 280 280 SERS PCA-LDA 80

LOOCV 79

SCRA, SpectraCell RA; NIR, near-infrared Raman spectroscopy; SERDS, shifted-excitation Raman difference spectroscopy; SERS, surface
spectroscopy; KCA, K-means cluster analysis; LDA, linear discriminate analysis; PCA, principal component analysis; hLDA, hierarchical
residual network; QDA, quadratic discriminant analysis; MRDF, maximum representation and discrimination feature; SMLR, sparse mu
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characteristic (SROC) curve were determined to estimate the area

under the curve (AUC) with StataSE version 12 andMetaDiSc 1.4.

AUC is correlated with diagnostic value: 0.5 ≤ AUC < 0.7, 0.7 ≤

AUC < 0.9, and AUC ≥ 0.9, respectively representative of a low,

moderate, and high diagnostic value (15). The publication bias

was calculated with Deeks’ Funnel Plot Asymmetry Test (16). I2

statistics was used to evaluate the heterogeneity of the studies

included, and the random-effects model would be applied if there

was heterogeneity between studies (17). For the studies focused on

different kinds of samples such as tissues, serum, oral cells, and

saliva, we conducted subgroup analysis to address the

heterogeneity of the study effects due to sample type. To avoid

the inflation of the type 1 error, the false discovery rate (FDR)

method was used to correct p-value.
3 Results

3.1 Study identification

In total, 126 relevant studies were retrieved. After screening

for titles and abstracts, we selected 20 studies meeting the criteria

for full-text reading. Finally, there were 13 diagnostic studies (3,

4, 18–28) eligible for the pooled analysis. Because several studies

included more than one test using different kinds of samples or

diagnostic algorithm, there were a total of 20 tests included.

Figure 1 illustrates details of the whole screening process.
3.2 Study characteristics, quality
assessment, and publication bias

Table 1 shows the general information of the included

studies. All 13 studies were published in English. Most of the

studies were published in the recent 5 years, indicating that

applying RS for diagnosis is a hot issue recently. Five of the

included studies (4, 22–24, 27) were conducted in China, and

three (18, 25, 26) were in India. The others were from

Netherlands (n = 2) (19, 20), Germany (n = 2) (3, 28), and

Ireland (n = 1) (21). Two of the studies (25, 26) are in vivo, and

the others are in vitro. The spectrum was 785 nm in nine studies

(3, 18–22, 25, 26, 28), 532 nm in three studies (4, 23, 24), and 633

nm in one study (27). Histopathology was the gold standard of

all studies. Principal component analysis (PCA) was the most

widely used diagnostic algorithm and was used in every study

included. Linear discriminate analysis (LDA) was used in 10

studies (3, 4, 18, 20, 21, 23, 24, 26–28). Other diagnostic

algorithms include leave-one-out cross-validation (LOOCV)

(18, 26, 27), K-means cluster analysis (KCA) (19), hierarchical

linear discriminant analysis (hLDA) (20), diverse spectral band-

based deep residual network (DSB-ResNet) (22), quadratic

d i scr iminant ana lys i s (QDA) (23 , 24) , max imum

representation and discrimination feature (MRDF) (25), and
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sparse multinomial logistic regression (SMLR) (25). Different

types of RS were used in eligible studies, and studies for each

type all account between 1 and 3, including SpectraCell RA

(SCRA) (19, 20), near-infrared Raman spectroscopy (NIR) (25,

26), shifted-excitation Raman difference spectroscopy (SERDS)

(3, 28), surface-enhanced Raman spectroscopy (SERS) (18, 21,

27), microscopical laser Raman spectroscopy (MLRM) (4, 23,

24), and optical fiber Raman-based spectroscopy (OFRS) (22).

The QUADAS-2 diagram is shown in Figure 2. Most studies

conformed to the criteria in QUADAS-2. Some studies’ patient

selection and index test items were evaluated as “unclear”, and

some literature’s selection of the samples was not random and

double-blinded leading to a high or unclear risk of bias. The

Deeks’ funnel plot asymmetry test indicated that there was no

publication bias (p = 0.82; Figure 3).
3.3 Threshold effect and heterogeneity

We used MetaDiSc 1.4 to analyze the diagnostic threshold

effect, and the Spearman correlation coefficient was −0.316 (p =

0.187), indicating that there was no threshold effect between

the studies.

However, the heterogeneity for sensitivity (Q = 166.12, I2 =

88.56) and specificity (Q = 514.39, I2 = 96.31) results was

significant by using the Q test and I2 index. Because the data

showed great heterogeneity, multivariate meta-regression was

conducted to explore the source of heterogeneity. The countries,

diagnostic algorithm, type of study design, type of RS, sample
FIGURE 1

The PRISMA flowchart.
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A

B

FIGURE 2

Risks of bias assessment for each included study (n = 12). Risk of bias summary (A). Risk of bias graph (B).
FIGURE 3

Plots of sensitivity and specificity (A). The positive posterior probability (PPP) and negative posterior probability (NPP) (B). Summary receiver
operating characteristic (SROC) curve (C). Deeks’ funnel plot asymmetry test (D).
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type, and spectra were used as covariates. Table 2 shows the

results of the meta-regression. Type of study design (in vivo or in

vitro) and type of RS (SERS, MLRM, and others) were the

sources of heterogeneity.
3.4 Pooled diagnostic value of raman
spectroscopy in oral squamous cell
carcinoma diagnosis

A total of 2,051 samples were tested in all of the studies, and

914 patients were included. The sensitivity of the included 12

studies fluctuated between 0.77 and 1. The pooled sensitivity was

0.89 (95% CI, 0.85–0.92), which means that the RS can effectively

avoid missed diagnoses. The specificity of the studies ranged

from 0.77 to 1 except for two studies using saliva or oral cell as

samples. The pooled specificity was 0.84 (95% CI, 0.78–0.89),

which means that RS could also avoid misdiagnosis well

(Figure 3). Pooled sensitivity and specificity determined the

SROC curve, and the overall AUC was 0.93 (95% CI, 0.91–

0.95), indicating a moderately high overall diagnostic value of RS

in OSCC (Figure 3). Defining the pretest probability as 0.5, the

positive posterior probability (PPP) and negative posterior

probability (NPP) were 0.85 and 0.12 (Figure 3).
3.5 Subgroup analysis

Type of study design (in vivo or in vitro) and type of RS

(SERS, MLRM, and others) tend to be the sources of
Frontiers in Oncology 06
heterogeneity that may affect the accuracy of the test, so we

conducted a subgroup analysis. All of the pooled diagnostic

values of subgroup analysis are shown in Table 3.

3.5.1 Type of study design (in vivo or in vitro)
Three tests (25, 26) were conducted in vivo. The pooled

sensitivity was 0.851 (95% CI, 0.825–0.874). The pooled

specificity was 0.697 (95% CI, 0.667–0.726). The AUC of the

SROC curve was 0.9443. The other 17 tests were conducted in

vitro. The pooled sensitivity was 0.884 (95% CI, 0.870–0.898).

The pooled specificity was 0.830 (95% CI, 0.814–0.845). The

AUC of the SROC curve was 0.9336.

3.5.2 Type of Raman spectroscopy (surface-
enhanced Raman spectroscopy, microscopical
laser Raman spectroscopy, and others)

SERS was used in six tests (18, 21, 27). The pooled

sensitivity was 0.819 (95% CI, 0.786–0.849). The pooled

specificity was 0.786 (95% CI, 0.752–0.817). The AUC of the

SROC curve was 0.8869. MLRM was conducted in five tests (4,

23, 24). The pooled sensitivity was 0.824 (95% CI, 0.789–

0.855). The pooled specificity was 0.760 (95% CI, 0.718–

0.798). The AUC of the SROC curve was 0.8963. Other

types of RS were used in nine tests (3, 19, 20, 22, 25, 26, 28).

The pooled sensitivity was 0.908 (95% CI, 0.893–0.920). The

pooled specificity was 0.799 (95% CI, 0.781–0.816). The AUC

of the SROC curve was 0.9645.

In conclusion, in vitro detections showed better sensitivity

and specificity but lower AUC than in vivo ones. The

performance of SERS and MLRM was relatively close.
TABLE 3 Pooled diagnostic value of subgroup analysis.

Variable No. Pooled sensitivity Pooled specificity Pooled PLR Pooled NLR Pooled DOR AUC

In vivo 3 0.851 0.697 4.426 0.200 22.178 0.9443

In vitro 17 0.884 0.830 5.437 0.158 41.239 0.9336

SERS 6 0.819 0.786 4.009 0.236 17.538 0.8869

MLRM 5 0.824 0.760 3.703 0.238 17.626 0.8963

Others 9 0.908 0.799 8.162 0.084 121.13 0.9645
frontiers
TABLE 2 Result of meta-regression analysis.

Variable Coefficient SD FDR-p-value RDOR 95% CI

Type of study design -3.19 0.8169 0.0150 0.04 (0.01;0.25)

Spectra -0.924 0.5781 0.2768 0.4 (0.11;1.42)

Countries -0.589 0.4361 0.3054 0.55 (0.21;1.45)

Type of samples -0.545 0.4773 0.3330 0.58 (0.20;1.66)

Diagnostic algorithm -0.293 0.5737 0.6196 0.75 (0.21;2.64)

Type of Raman spectroscopy -1.569 0.472 0.0204 0.21 (0.07;0.59)
S, standard error; RDOR, relative diagnostic odds ratio; CI, confidence interval.
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4 Discussion

As previous studies revealed, RS has shown its capability in

the diagnosis of various types of cancer such as OSCC, lung

cancer, and breast cancer. Investigations on the overall

performance of RS in the diagnosis of OSCC were of great

importance. However, no large-scale study has been carried out

to evaluate the value of RS in the diagnosis of OSCC. Therefore,

we conducted this meta-analysis to explore the value of RS in the

diagnosis of OSCC.

The pooled sensitivity and specificity for RS in diagnosing

OSCC are respectively 0.89 and 0.84. Different studies evaluating

the same diagnostic indicator can be expressed in the SROC curve.

In this meta-analysis, the AUC was 0.93 (95% CI, 0.91–0.95),

indicating a moderately high overall diagnostic value of RS in

OSCC. Above all, RS has reliable diagnostic performance to

differentiate OSCC from normal oral samples according to the

pooled sensitivity, specificity, and AUC. When we defined the

pretest probability as 0.5, the PPP and NPP were 0.85 and 0.12,

and this result demonstrated that RS has the capability to raise the

probability of OSCC diagnosis to 85% when positive and lowering

the probability of disease to 12% when negative. Therefore, RS is

an effective method for the diagnosis of OSCC. Subgroup analysis

showed that the pooled sensitivity and specificity of SERS and

MLRM group were both over 0.80 and 0.75. Thus, SERS and

MLRM both had good diagnostic performance in OSCC. The

specificity for the in vivo group was slightly lower than the in vitro

one, which may be explained by the limitation of imaging

technology and limited number of studies. However, in vitro

detection may not be as convenient for clinical operation

because of a complicated pretreatment process, and in vivo real-

time detection of OSCC is a highly potential technology and is

worthy of researchers to explore further.

RS has the ability to discriminate normal healthy oral tissue

from oral disease states with a fiber-optic probe in the clinical

setting, but a major limitation of RS is its dependence on visual

detection of morphological or structural lesions. This results in the

weakness of Raman signals and even not sensitive enough tomerit

clinical value. In our study, a technology called “surface-enhanced

Raman spectroscopy” showed good diagnostic accuracy. By

adsorbing molecules onto nanostructured metal surfaces, SERS

can enhance Raman signal by more than 1,000 times, making the

possibility of detecting even a single molecule (29). It can also

overcome the disadvantage of strong autofluorescence

background in common RS. SERS is considered a non-invasive

method for OSCC diagnosis using saliva or serum as the samples.

In addition, the acquisition and pretreatment process of samples

are relatively simple. Blood or saliva test-based screening is more

practical and cost-saving for mass screening in nations with a

great population like China and India (27). The studies included

in this meta-analysis using SERS (18, 21, 27) had a pooled

sensitivity and specificity of 0.819 and 0.786, showing little
Frontiers in Oncology 07
difference with traditional MLRM. Thus, SERS owes great

potential in the practical application of RS technology in the

clinic and is worthy of further studies and development.

RS not only can be used as a diagnostic tool to differentiate

tumors with healthy tissues but also has the potential to

distinguish different kinds of oral lesions. Krishna et al. (25)

successfully classified the Raman spectra of oral tissue sites into

four classes [normal, OSCC, oral submucous fibrosis (OSMF),

and oral leukoplakia (OLK)] using the MRDF-SMLR-based

diagnostic algorithm. The MRDF-SMLR algorithm showed an

accuracy of 85%, 89%, 85%, and 82% in classifying the spectra

into the four categories. In the study by Tan et al. (27), using the

method of SERS, the PCA-LDA algorithm could classify and

diagnose OSCC, mucoepidermoid carcinoma (MEC), and

normal groups with a sensitivity and a specificity more than

80%. While the results were encouraging, there are still

limitations existing. Firstly, these resulted was not proved by

large clinical trials with good design, and still needed to be

further studied by subsequent researchers. Secondly, oral disease

is various and complicated, and using RS simultaneously

identifies the difference between the many kinds of lesions, not

just cancer and health, and may result in a greater error rate.

Therefore, it still needs to be explored to find how to promote

the RS and whether the RS guarantees a high accuracy in the

diagnosis of various types and stages of oral lesions.

Automatic diagnosis using RS is inseparable from the

application of algorithm. The PCA-LDA is the most common

algorithm among them. PCA is a statistical technique that can

simplify complicated data by reducing dimensions with the

maximum correct rate. However, PCA was not practical for

classification cases because of its disability to use any class

information extracted from the original data. LDA is a method

that can perform a linear transform for feature clusters and

change them into forms that can be separated. PCA and LDA are

usually combined for dimension reduction and classification of

data sets (27). Jeng et al. (23) used two kinds of algorithms, PCA-

LDA and PCA-QDA, to test the potential of RS in diagnosing

OSCC. The LDA and QDA were used to identify the boundary

among different classes. LDA is a good classifier for equal class

samples, and QDA performs well in unequal class samples (24).

The result revealed that the PCA-QDA model had greater

classification efficiency than the PCA-LDA model and could

be promoted further. In the study by Cals et al. (20), a two-step

PCA-hLDA model was developed. The spectra of adipose tissue

and nerve were distinguished from all of the other spectra first,

and then the spectra of surface squamous epithelium, CT,

muscle, and gland were distinguished from the spectra of

OSCC. The PCA-hLDA model showed a better performance

than the traditional one-step model. Moreover, RS for

recognition and diagnosis based on deep learning is emerging

in recent years. Ding et al. (22) created a new classification

framework called DSB-ResNet and successfully distinguished
frontiersin.org
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tongue squamous cell carcinoma (TSCC) from non-cancerous

tissue. Laboratory-level RS can obtain high-quality data, but it

may not be suitable for clinical operation because of a

complicated pretreatment process. However, deep learning can

combine preprocessing, feature extraction, and classification

into one architecture to automatically learn the characteristics

of data at different levels of abstraction without manual

adjustment, greatly simplifying the diagnosis process and

achieving higher precision (22). Combined with the

DSBResNet framework, a Raman probe device can be used for

living samples, and the method proposed in this paper is likely to

play a huge potential in the future operation process. However,

there are some problems with this study. Firstly, the small

amount of data may lead to bias. Secondly, so far, the model

had only achieved two classifications, but oral cancer contains

many types of cancer, and TSCC is only one of them. Finally,

there is still a long way from a potential research on real-time

identification to the real clinic. Thus, further detailed

biochemical experiments of RS in diagnosis are needed to

make the deep learning-based RS technology more practical

and smarter.

Although our study suggested that RS showed great potential

as a non-invasive, high-accuracy diagnostic tool in diagnosing

OSCC, there were still some limitations in the study. Firstly, the

gold standard in this research is histopathology, but

histopathology can only determine where the sample was

taken, thus it is an imperfect gold standard with a

corresponding risk of bias. It will be better to combine

histopathology with other standards such as follow-up in the

study to assess diagnostic accuracy in clinical practice. However,

histopathology is still the most effective diagnostic test in clinical

practice (30), and it is widely used as the gold standard in our

included and other original studies, and only one research

included the use of “histopathology + follow up” as its gold

standard. So, we still use histopathology as the gold standard in

this study, leading to certain limitations. Secondly, diagnosis in

the included studies was not made based on predefined criteria

or cutoff values, leading to a high risk of overestimation of the

diagnostic accuracy by data-driven cutoff selection (31). A

characteristic of the Raman spectrum is that the training set is

diagnosed by PCA or a similar algorithm to get the difference in

the spectrum of normal and cancerous tissues, then the test set

can be diagnosed. Therefore, there is no clear diagnostic

threshold, and the original study cannot provide the relevant

original data. This is an inevitable limitation of the Raman

spectrum-related diagnostic meta-analysis and needs further

consideration and research in the future. Thirdly, the evidence

level of our study might be affected due to a small number of

included studies and significant heterogeneity. Although our

study included 2,051 samples from 914 patients, the amounts of

samples were still insufficient in different groups (such as saliva

samples, in vivo studies) due to less research in this field, which

brought difficulties to the subgroup analysis, even influencing
Frontiers in Oncology 08
the accuracy of the results. Finally, not all of the studies

mentioned that their samples were chosen randomly and

double-blindly, resulting in selection bias in the final

conclusions. In conclusion, to further verify the role of RS in

OSCC diagnosis and promote its clinical practical application,

sufficient sample size and randomized and double-blind original

studies are required in the future.
5 Conclusion

This meta-analysis revealed that RS is a non-invasive

diagnostic technology with high specificity and sensitivity for

detecting OSCC and has the potential to be applied clinically.

Further investigations are also needed to focus on real-time

detection using RS with deep learning in vivo. Moreover,

sufficient sample size and randomized and double-blind original

studies are still required in the future to confirm this conclusion.
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