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Abstract 

Purpose:  Compressed Sensing Magnetic Resonance Imaging (CS-MRI) is a promising technique to accelerate 
dynamic cardiac MR imaging (DCMRI). For DCMRI, the CS-MRI usually exploits image signal sparsity and low-rank 
property to reconstruct dynamic images from the undersampled k-space data. In this paper, a novel CS algorithm 
is investigated to improve dynamic cardiac MR image reconstruction quality under the condition of minimizing the 
k-space recording.

Methods:  The sparse representation of 3D cardiac magnetic resonance data is implemented by synergistically 
integrating 3D total generalized variation (3D-TGV) algorithm and high order singular value decomposition (HOSVD) 
based Tensor Decomposition, termed k-t TGV-TD method. In the proposed method, the low rank structure of the 3D 
dynamic cardiac MR data is performed with the HOSVD method, and the localized image sparsity is achieved by the 
3D-TGV method. Moreover, the Fast Composite Splitting Algorithm (FCSA) method, combining the variable splitting 
with operator splitting techniques, is employed to solve the low-rank and sparse problem. Two different cardiac MR 
datasets (cardiac perfusion and cine MR datasets) are used to evaluate the performance of the proposed method.

Results:  Compared with the state-of-art methods, such as k-t SLR, 3D-TGV, HOSVD based tensor decomposition 
and low-rank plus sparse method, the proposed k-t TGV-TD method can offer improved reconstruction accuracy in 
terms of higher peak SNR (PSNR) and structural similarity index (SSIM). The proposed k-t TGV-TD method can achieve 
significantly better and stable reconstruction results than state-of-the-art methods in terms of both PSNR and SSIM, 
especially for cardiac perfusion MR dataset.

Conclusions:  This work proved that the k-t TGV-TD method was an effective sparse representation way for DCMRI, 
which was capable of significantly improving the reconstruction accuracy with different acceleration factors.

Keywords:  Dynamic cardiac MR imaging, Higher-order singular value decomposition, Total generalized variation, 
Sparse representation
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Introduction
In Magnetic Resonance Imaging (MRI), imaging speed 
is limited by slow acquisition of full k-space using 
magnetic field gradients [1]. Minimizing the k-space 
recording time without compromising image quality 
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has been a main thrust of MR imaging research. With 
the advent of compressed sensing (CS) theory [2, 3], 
MR image reconstruction with sparsity-promoted 
regularization (e.g., ℓ1-based regularization), termed 
as CS-MRI [4–10], has gained popularity for its high 
imaging speed. The effective exploitation of the sig-
nal sparsity enables the MR image reconstruction 
from far fewer k-space samples possible than con-
ventional methods require, thus CS-MRI can signifi-
cantly reduce the scan time. The compressed sensing 
theory has been successfully applied to both static and 
dynamic magnetic resonance imaging (dMRI) recon-
structions [11–14].

In CS-MRI, the method used to sparsify the MR 
image plays an important role in the image recon-
struction. The most used sparsity bases are pre-
defined mathematical transforms, such as discrete 
cosine transform (DCT), and discrete wavelet trans-
form (DWT). Recently, the singular value decomposi-
tion (SVD) method has been used as a data-adaptive 
sparsity basis in CS-MRI reconstruction [15, 16], and 
it has been found that the SVD-based method could 
significantly accelerate the reconstruction process and 
achieve better image quality than those commonly 
used sparsifying transforms (DCT and DWT). Majum-
dar et al. proposed to exploit the nuclear norm regular-
ization to implement the CS-MRI reconstruction, and 
the results showed that the proposed reconstruction 
method was faster than other methods [6]. In addition, 
the linear combination of Total Variation (TV) and 
wavelet sparse regularization, known as TV-L1 prob-
lem, is very popular in many CS-MRI models [5, 6, 17], 
which can be considered as processing the MR image 
to be sparse by both the specific transform and finite-
differences at the same time. Due to the stair-case 
artifacts caused by the conventional TV-based regular-
ization [18, 19], several generalizations and extensions 
of TV have been introduced to improve the CS-MRI 
reconstruction accuracy, such as Total Generalized 
Variation (TGV) [18–20], Higher Degree Total Vari-
ation (HDTV) [21]. Nonlocal Total Variation (NLTV) 
[22–24] is another effective way to address the issue 
of stair-case artifacts. Although effective in practice, 
it involves higher computational complexity than the 
conventional TV method.

For dynamic MR image reconstruction, Ji, et  al. 
adopted the difference between the reconstructed 
image and the reference image to represent the spa-
tial sparsity [25]. However, when compared with the 
reference frame, the sparsity of the difference image 
got worse with the increase of the subsequent frame 
distance. To solve this problem, Majumdar took the 
difference between two adjacent sub-images as a 
sparse representation of the reconstructed MR image 
[13]. In addition, Usman put forward the concept of 
a sparse group of dynamic MRI, utilizing both MRI 
signal itself sparsity and the group structure informa-
tion between signals [26, 27], which can effectively 
improve the image reconstruction quality. Moreover, 
a novel blind compressed sensing frame work was pro-
posed to recover dynamic magnetic resonance images 
from undersampled measurements [28, 29], which 
has been proved to provide superior reconstruction 
performance in comparison to existing low rank and 
compressed sensing schemes. Recently, k-t SLR (k-t 
Sparisity and Low-Rank) method has been proposed to 
accelerate dynamic MRI by exploiting sparsity and low 
rank properties of the image data [30, 31]. To exploit 
the low-rank structure, the k-t SLR method reshaped 
the 3D dataset into a large 2D matrix through a two-
step process: vectorize the 2D images in a dynamic 
sequence first and then concatenate them to form 
a matrix. In most of the existing dynamic CS-MRI 
methods, 2D/1D transforms were applied to solve the 
3D dynamic problem, which, by treating the 3D data 
as a series of 2D images, unfolded the 3D dataset into 
a 2D matrix to explore the spatiotemporal redun-
dancy [30–33]. In addition, Majumdar [34, 35] acted 
the dynamic MR image reconstruction problem as a 
least squares minimization regularized by lp-norm as 
the sparsity penalty and Schatten-q norm as the low-
rank penalty sparsity, which can yield much better 
reconstruction results than k-t SLR method. However, 
reshaping a high-order tensor into a matrix or vec-
tor may neglect the inherent data redundancy, thus 
greatly degrading the reconstructed image quality. To 
promote the signal sparsity representation by explor-
ing the redundancy of the high-dimension data for-
mat, Yu et  al. proposed tensor decomposition-based 
sparsifying transform, that is, high-order Singular 
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Value Decomposition (HOSVD) [36], which can out-
perform the conventional sparse recovery methods 
for high-dimensional cardiac imaging reconstruction 
accuracy given the same amount of k-space data set 
[37].

In this paper, we will further improve the HOSVD 
based CS-MRI method to synergistically inte-
grate 3D-TGV algorithm and HOSVD-based Ten-
sor Decomposition, termed as k-t TGV-TD method. 
In the proposed method, the low rank structure of 
the 3D dynamic cardiac MR data is performed by the 
HOSVD method, and the localized image sparsity is 
achieved by the 3D-TGV method. Meanwhile, the Fast 
Composite Splitting Algorithm (FCSA) method [6], 
combining the variable splitting with operator split-
ting techniques, is employed to solve the low-rank and 
sparse problem [38]. Two different cardiac MR data-
sets (cardiac perfusion and cine MR datasets) are used 
to evaluate the performance of the proposed method.

Theory of k‑t TGV‑TD method
In the proposed CS-MRI technique, 3D-TGV and 
HOSVD based tensor decomposition are used to pro-
mote the sparsity of the dynamic MR signals, and the 
k-t TGV-TD optimization problem can be formed as:

where Au is undersampled Fourier operator of the MR 
image, b is undersampled measurement of k-space data, 
and χ is a third order tensor used to represent the spa-
tial–temporal 3D cardiac MR data. �1 and �2 are two 
positive regularization parameters that determine the 
trade-off between the data consistency and the sparsity 
regularization terms. ϕ(χ) is the tensor decomposition, 
and TGV 2

α (χ) is the second order TGV penalty function.
Fast composite splitting algorithm processes the 

original and composite regularization problem into 
two simpler sub-problems, which are then solved by 
using the fast iterative shrinkage-threshold algorithm 
(FISTA). In this way, we could finally reconstruct the 
dynamic images via an iterative combination [39]. 

(1)

arg min
χ

{

∥

∥Au(χ)− b
∥

∥

2

2
+ �1 · TGV

2
α (χ)+ �2ϕ(χ)

}

Specifically, the complex composite reconstruction 
problem in Eq.  (1) can be decomposed into two sim-
pler regularization subproblems, that is, TGV sub-
problem and TD subproblem, as shown in Eqs. (2) and 
(3):

The basic idea of FISTA is to build regularization for 
the linearized differentiable part of the objective func-
tion in each iteration [38–40]. Therfore, the subprob-
lem Eqs. (2) and (3) can be extended into two parts 
respectively:

where f (χ) = 1
2

∥

∥Au(χ)− b
∥

∥

2

2
 is a smooth convex func-

tion which is continuously differentiable with Lipschitz 
constant Lf (usually large); and g(χ) = �1 · TGV

2
α (χ) or 

�2ϕ(χ) is a continuous convex function which is nons-
mooth. According to the FISTA algorithm, given a con-
tinuous function g(u) and any scalar L > 0, the proximal 
map associated with function g(χ) can be built as follows:

Equations (2) and (3) are solved in an iterative fashion. 
Let X1 be the solution of the TGV subproblem Eq. (2) and 
X2 be the solution of the TD subproblem Eq. (3) respec-
tively; in each k iteration, the solutions χk to the overall 
problem Eq. (1) can be found by a linear combination as 
follows:

The FCSA-based algorithm for solving the k-t TGV-
TD problem-based CS-dMRI reconstruction can be 
described in the algorithm 1.
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Materials and methods
To test the reconstruction performance of the pro-
posed k-t TGV-TD method, two different MR raw 
datasets, i.e. cardiac perfusion and cardiac cine, were 
employed in this study. The cardiac perfusion MR 
datasets was obtained on a 3 T Siemens scanner with 
saturation recovery sequence (TR/TE = 2.5/1  ms, sat-
uration recovery time = 100  ms) at the University of 
Utah [30]. It contained 70 frames, and the data from 
a single slice was acquired on a Cartesian grid with 
a k-space matrix of 90 × 190 (phase encoding × fre-
quency encoding) at a temporal resolution of one 
heartbeat. The cardiac cine MR data was acquired on 
a 1.5  T Philips system at Yonsei University Medical 
Center [41, 42]. The dataset is composed of 25 frames 
of full k-space data. The matrix size for scanning is 
256 × 256, which corresponds to 256 phase encod-
ing steps and 256 samples in frequency encoding. The 
cardiac cine dataset was obtained using steady-state 
free precession (SSFP) sequence with a flip angle of 
50 degree and TR = 3.45  ms. The field of view was 
345 mm × 270 mm, and the slice thickness was 10 mm. 
In addition, the radial sampling pattern was used to 
undersample the k-space of these two datasets, which 
was simulated by rounding the sample locations to the 
nearest Cartesian location [30, 41].

In each experiment, the regularization parameters λ1 
and λ2 in the problem (1) were determined by param-
eter sweeping. The following stopping criteria were 
adopted for all experimental settings: the tolerance as 
shown in the FCSA-based reconstruction algorithm 
was set as tol = 10–4, and the maximum number of iter-
ations was 30. All reconstructions were implemented 
in the Matlab programming environment (Version 
2017b, Mathworks, Natick, MA), and the experiments 
were performed on a personal computer with 3.6 GHz 
Intel Core i9-9900 K CPU, 32 GB of memory and Win-
dows 10 operating system. In addition, we compared 
the proposed k-t TGV-TD reconstruction method with 
four state-of-the-art dynamic CS-MRI reconstruction 
methods, that is, HOSVD-based tensor decomposition 
method [37, 43], k-t SLR [30], 3D-TGV, and low-rank 
plus sparse method [44].

To further quantitatively evaluate the reconstruc-
tion methods, the peak SNR (PSNR) and structural 
similarity index (SSIM) were adopted in this work 
[45]. Furthermore, the reconstructed images and the 
corresponding error images (the absolute difference 
between reconstructed image and the full sampled MR 
image) were also compared visually. The PSNR and 
SSIM were formulated as follows:
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Fig. 1  Performance evaluation of k-t TGV-TD method in comparison with HOSVD, k-t SLR, 3D-TGV, and L + S methods on the cardiac perfusion 
dataset. The first row is the reconstructed MR image with acceleration factor 6; the second row is the error map. a MRI reconstructed with 
fully sampled k space data; b–f reconstructed MRI and the corresponding error images by using HOSVD, k-t SLR, 3D-TGV, L + S, and k-t TGV-TD 
respectively

Table 1  Comparisons in terms of PSNR and SSIM of different acceleration factors on the cardiac perfusion dataset

Methods Acceleration factor

6 8 10

PSNR SSIM PSNR SSIM PSNR SSIM

HOSVD 32.07 0.8700 30.75 0.8017 29.36 0.7301

k-t SLR 32.08 0.8705 30.81 0.8056 29.64 0.7465

3D-TGV 36.42 0.9108 35.72 0.9021 34.78 0.8906

L + S 36.94 0.9306 36.16 0.9221 35.42 0.9136

k-t TGV-TD 38.66 0.9392 37.08 0.9315 36.10 0.9210
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Fig. 2  The PSNR and SSIM of the reconstructed cardiac perfusion images by using HOSVD, k-t SLR, 3D-TGV, L + S, and k-t TGV-TD, with acceleration 
factor 6. a PSNR; b SSIM

Fig. 3  Performance evaluation of k-t TGV-TD method in comparison with HOSVD, k-t SLR, 3D-TGV, and L + S methods on the cardiac cine dataset. 
The first row is the reconstructed MR image with acceleration factor 6; the second row is the error map. a MRI reconstructed with fully sampled 
k-space data; b–f reconstructed MRI and the corresponding error images by using HOSVD, k-t SLR, 3D-TGV, L + S, and k-t TGV-TD respectively

Table 2  Comparisons in terms of PSNR and SSIM of different acceleration factors on the cardiac perfusion dataset

Methods Acceleration factor

4 6 8

PSNR SSIM PSNR SSIM PSNR SSIM

HOSVD 26.25 0.9182 23.43 0.8298 21.59 0.7569

k-t SLR 27.90 0.9412 24.47 0.8632 22.54 0.7948

3D-TGV 28.92 0.9227 27.63 0.8880 24.53 0.8209

L + S 31.07 0.9520 28.19 0.9137 26.87 0.8857

k-t TGV-TD 31.13 0.9586 28.60 0.9249 26.88 0.8994
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where MAXIref (r) is the maximum signal intensity of 
Iref (r) . µIref  and µI are mean signal values of Iref (r) and 
I(r) , σ 2

Iref
 and σ 2

I  are variance of Iref (r) and I(r) , σIref I is 
the covariance of Iref (r) and I(r) , c1 and c2 are two varia-
bles to stabilize the equation when the denominator is 
too small.

Results
Comparisons on the cardiac perfusion dataset
The proposed k-t TGV-TD method was employed to 
reconstruct the cardiac perfusion data with variously 
reduced k-space sampling data. Figure  1 displays the 
performance evaluation of k-t TGV-TD method in com-
parison with HOSVD, k-t SLR, 3D-TGV, and L + S [44] 
methods on the cardiac perfusion MR dataset with accel-
eration factor 6. The reconstructed MR image of one 
representative frame (13th frame) and the error map 
were provided as a comparison. As can be seen in Fig. 1, 
the proposed k-t TGV-TD method outperformed the 
HOSVD, k-t SLR, 3D-TGV and L + S methods in reduc-
ing artifacts, which was presented clearly in the error 
maps (the second row).

(7)PSNR = 20 log10

(

MAXIref (r)

/

√

1

mn

∑m

i=1

∑n

j=1

(

Iref (r)− I(r)
)

)

(8)SSIM(Iref, I) =
(

2µIref µI + c1

)(

2σIref I + c2

)/((

µ2
Iref

+ µ
2

I
+ c1

)(

σ 2
Iref

+ σ 2
I + c2

))

Fig. 4  The PSNR and SSIM of the reconstructed cardiac cine images by using HOSVD, k-t SLR, 3D-TGV, L + S, and k-t TGV-TD, with acceleration factor 
6. a PSNR; b SSIM

As listed in Table 1, the PSNR and SSIM of cardiac per-
fusion dataset were provided by using HOSVD, k-t SLR, 
3D-TGV, L + S, and k-t TGV-TD with acceleration factors: 
6, 8, and 10 respectively. It can be found that, compared with 
the other methods, the proposed k-t TGV-TD method can 
achieve significantly better reconstruction results in terms 
of PSNR and SSIM. In addition, notched box plots about 
PSNR and SSIMR comparison among the above five meth-
ods were provided for cardiac perfusion datasets, as shown 
in Fig. 2. Since the notches in the box plot do not overlap, it 
is concluded that, the proposed k-t TGV-TD method out-
performs state-of-the-art methods with 95% confidence. 
Meanwhile, PSNR and SSIM of the reconstructed MR 
images by using k-t TGV-TD method were more stable than 
those by HOSVD, k-t SLR, and L + S methods.

Comparisons on the cardiac cine dataset
Figure  3 shows the visual comparisons of the recon-
structed results by the proposed k-t TGV-TD method, 
HOSVD, k-t SLR, 3D-TGV, and L + S methods with 
radial  sampling pattern at reduction factor 6. The first 
row was the reconstructed MRI (13th frame of the 
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cardiac cine data), and the second row showed the error 
map. Visually, as shown in Fig.  3, one can find that the 
proposed method outperformed the HOSVD, k-t SLR, 
3D-TGV, and L + S methods in reconstructing MRI with 
better defined borders and less reconstruction artifacts. 
Reconstructions by using the HOSVD and k-t SLR meth-
ods were contaminated by aliasing artifacts and noises, 
and the image reconstructed by using 3D-TGV method 
was over-smoothed.

As listed in Table  2, the PSNR and SSIM of car-
diac cine dataset were provided by using HOSVD, k-t 
SLR, 3D-TGV, L + S, and k-t TGV-TD with accelera-
tion factor: 4, 6, and 8 respectively. It can be found 
that, compared with the other methods, the proposed 
k-t TGV-TD method can achieve better reconstruc-
tion results in terms of PSNR and SSIM. In addition, 
notched box plots about PSNR and SSIMR comparison 
among the above five methods with acceleration factor 
6 were provided for cardiac cine datasets, as shown in 
Fig. 4. It can be found obviously that the proposed k-t 
TGV-TD method outperforms the other methods with 
higher PSNR and SSIM in most of the frames.

Discussion
In this work, based on combination of the tensor 
decomposition and 3D-TGV method, the k-t TGV-TD 
method was proposed to reconstruct highly undersam-
pled cardiac perfusion and cine MR images. The tensor 
decomposition-based sparsity regularization method 
exploited both the intra and inter sparsity of each 
frame, therefore it was an effective way to make use of 
the three-dimensional redundancy in dynamic cardiac 
datasets. Moreover, the TGV method can effectively 
alleviate the staircase artifacts of TV based MR image 
reconstruction, and the 3D-TGV method can further 
apply the sparsity between and within the frames to 
improve the reconstruction accuracy.

From the reconstruction results, as shown in Figs.  1 
and 3, it can be observed that the proposed method can 
outperform the HOSVD, k-t SLR, 3D-TGV and L + S 
methods in the investigated different dynamic cardiac 
datasets. The k-t TGV-TD method can reconstruct the 
MR images with less error artifacts than those by using 
HOSVD, k-t SLR, 3D-TGV and L + S methods. From 
the quantitative evaluation indexes PSNR and SSIM, 
advantages of the proposed k-t TGV-TD method over 
other methods were apparent.

In this work, the proposed k-t TGV-TD method 
explored the correlations and sparsity of the dynamic car-
diac datasets, but did not integrate with partially parallel 
imaging (PPI). In addition, a combination of compressed 
sensing and parallel imaging was proposed to reconstruct 
the MR image [46, 47], which can further reduce the 

k-space acquisition. In the future work, we will consider 
combining the k-t TGV-TD method with the PPI recon-
struction method to further improve dynamic cardiac MR 
image reconstruction quality at higher reduction factors.

Conclusion
In this paper, a novel technique, termed k-t TGV-TD, that 
combines the tensor decomposition and 3D total gener-
alized variation, was proposed for dynamic cardiac MR 
imaging reconstruction. The method was evaluated with 
cardiac perfusion and cine datasets. The experimental 
results indicated that, compared with the HOSVD, k-t SLR, 
3D-TGV and L + S methods, the proposed k-t TGV-TD 
method could achieve improved reconstruction accuracy 
in all the cases under investigation.
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