
Physics and Imaging in Radiation Oncology 28 (2023) 100501

Available online 13 October 2023
2405-6316/© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Original Research Article 

Real-world validation of Artificial Intelligence-based Computed 
Tomography auto-contouring for prostate cancer radiotherapy planning 

Gabriele Palazzo a, Paola Mangili a, Chiara Deantoni b, Andrei Fodor b, Sara Broggi a, 
Roberta Castriconi a, Maria Giulia Ubeira Gabellini a, Antonella del Vecchio a, 
Nadia G. Di Muzio b,c, Claudio Fiorino a,* 

a Medical Physics, IRCCS San Raffaele Scientific Institute, Milano, Italy 
b Radiotherapy, IRCCS San Raffaele Scientific Institute, Milano, Italy 
c Vita-Salute San Raffaele University, Italy   

A R T I C L E  I N F O   

Keywords: 
Auto-contouring 
Artificial Intelligence in radiotherapy 
Prostate cancer 
Radiotherapy 
Planning 

A B S T R A C T   

Background and purpose: Artificial Intelligence (AI)-based auto-contouring for treatment planning in radiotherapy 
needs extensive clinical validation, including the impact of editing after automatic segmentation. The aims of this 
study were to assess the performance of a commercial system for Clinical Target Volumes (CTVs) (prostate/ 
seminal vesicles) and selected Organs at Risk (OARs) (rectum/bladder/femoral heads + femurs), evaluating also 
inter-observer variability (manual vs automatic + editing) and the reduction of contouring time. 
Materials and methods: Two expert observers contoured CTVs/OARs of 20 patients in our Treatment Planning 
System (TPS). Computed Tomography (CT) images were sent to the automatic contouring workstation: automatic 
contours were generated and sent back to TPS, where observers could edit them if necessary. Inter- and intra- 
observer consistency was estimated using Dice Similarity Coefficients (DSC). Radiation oncologists were also 
asked to score the quality of automatic contours, ranging from 1 (complete re-contouring) to 5 (no editing). 
Contouring times (manual vs automatic + edit) were compared. 
Results: DSCs (manual vs automatic only) were consistent with inter-observer variability (between 0.65 for 
seminal vesicles and 0.94 for bladder); editing further improved performances (range: 0.76–0.94). The median 
clinical score was 4 (little editing) and it was <4 in 3/2 patients for the two observers respectively. Inter-observer 
variability of automatic + editing contours improved significantly, being lower than manual contouring (e.g.: 
seminal vesicles: 0.83vs0.73; prostate: 0.86vs0.83; rectum: 0.96vs0.81). Oncologist contouring time reduced 
from 17 to 24 min of manual contouring time to 3–7 min of editing time for the two observers (p < 0.01). 
Conclusion: Automatic contouring with a commercial AI-based system followed by editing can replace manual 
contouring, resulting in significantly reduced time for segmentation and better consistency between operators.   

1. Introduction 

The manual delineation of target volumes (CTV) and organs at risk 
(OARs) remains a crucial phase of the radiotherapy chain for prostate 
cancer patients, and represents a substantial amount of working time for 
radiation oncologists. Manual contouring on Computed Tomography 
(CT) images is not only cumbersome, but is also affected by uncertainties 
that translate into clinically significant inter-observer variability, both 
in delineating CTV (i.e.: prostate and seminal vesicles) as well as OARs 
[1–5]. Automatic tools aiming to both reduce contouring time and 
improve contouring consistency have been developed over the past 

10–15 years [6–15]. 
As is the case in other branches of Radiation Oncology, AI-based 

solutions seem to have great potential in supporting and partially 
replacing repetitive human activities through proper model training 
using large datasets, and may represent a major clinical challenge to 
professionals in terms of safety, accuracy and confidence [16–21]. In the 
last few years, the application of advanced AI-based methods for auto-
matic segmentation based on deep learning (DL) in the prostate cancer 
scenario have been developed for both CT and Magnetic Resonance 
Imaging (MRI) [7]: it was also suggested that AI-based automatic con-
touring may have significant potential applications in the Quality 
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Assurance (QA) of clinical trials [22], and in facilitating adaptive 
radiotherapy through fast (re)-contouring on CT/Cone Beam CT (CBCT), 
as well as on MRI [23]. 

Quite recently, several AI-based commercial systems for auto- 
contouring have begun to appear. Commercial software for AI-based 
automatic contouring should be validated in terms of its ability in con-
touring prostate cancer patients on CT images, including both CTVs 
(prostate and seminal vesicles) and OARs in a real-life context. On the 
one hand, some studies have shown promising results in terms of both 
substantial reduction of contouring time and improvement in quality of 
delineation in real-life clinical contexts [13,14,24,25]. On the other 
hand, the reported experiences are still very limited, especially when 
considering true clinical impact. Very few studies have clearly compared 
performances of AI-based auto-contouring against manual delineation 
[25], or against inter-institution variations [24]. Reasonable editing is 
expected especially for CTV, at least in a fraction of patients, as already 
shown in other scenarios [26]. 

The aims of our study were to assess the quality of performances of a 
commercial system, by comparing automatic against manual segmen-
tation. We also quantified the need for additional manual editing, and its 
impact on the agreement between automatic (+edited) and manual 
contours, evaluating any improvement in consistency between different 
radiation oncologists due to automatic contouring. Moreover, we 
quantified the contouring time saved by automatic contouring, 
including the editing after automatic contour generation. 

2. Materials and methods 

2.1. Study design 

The study was approved by the Ethical Committee of San Raffaele 
Institute, Milano (187/INT/2021 on Feb 3, 2022). Two radiation on-
cologists of our Institution with >10 years’ experience in contouring 
prostate cancer patients for planning purposes were asked to manually 
contour planning CT images of 20 intermediate/high risk prostate can-
cer patients. All patients were randomly selected from among those 
treated with radical intent within the previous year, according to an 
Institutional protocol delivering 74.2 Gy in 28 fractions to prostate 
Planning Target Volume (PTV), using a Knowledge Based (KB) auto-
matic plan optimization approach [27–29]. Planning CT images were 
acquired with a 0.3–0.5 cm step from below the external genitals up to 
the L2 vertebral body, and sent to our treatment planning station 
(Eclipse v 13.5 Varian) for contouring. The two observers, blinded from 
each other’s delineations, contoured bladder, femoral heads + femurs, 
rectum, prostate and seminal vesicles, according to our Institutional 
policy: in particular, the rectum was contoured from the anus up to the 
point at which it turns into the sigmoid [2], and the femoral heads +
femurs were contoured up to approximately the expected caudal limit of 
PTV. CTs were sent to MIM (v. 7.2.8), on which we set up a workflow for 
the generation of AI-based automated segmentation of OARs and CTVs 
using the MIM Protegè system, v. 1.1.2 (Prostate CT 2.0.0). As reported 
by internal documentation of the vendor, the system runs a U-Net model 
trained on a multi-institution dataset. Once generated, contours were 
sent back to Eclipse in order to allow radiation oncologists to visualize 
them in the more familiar environment. An independent copy of the 
structures was also generated to allow editing to be performed (if 
necessary). 

Regarding femoral heads + femurs, the automatically generated 
contours extended up to the most caudal CT slice. Since only the upper 
part of the contour is relevant for treatment planning, and is usually 
contoured by the radiation oncologists (as previously described), auto-
matic contours were cut a posteriori at the same level as the manual 
structures for each observer in order to render the contours comparable. 
The two observers were also asked to report the time spent for the 
manual contouring for each patient and that spent editing. 

2.2. Assessing performances of automatic (with/without editing) 
contouring 

The clinical validity of automatic segmentation was quantified for 
each observer by first comparing volume values, DSCs and Hausdorff 
Distances (HDs) [30] between automatically generated vs manual con-
tours. Contour volumes and all other metrics were computed using 
SimpleITK Python library [31]. DICOM CT images were converted into 
nifti files (of size 512 × 512 × number of DICOM slices), maintaining the 
same CT voxel spacing (0.98 mm × 0.98 mm × 5 mm). DICOM RT 
Structure sets were converted into nifti files using the same voxel grid 
size and the same voxel spacing. RT Structure nifti masks were expanded 
into 0.5 mm × 0.5 mm × 5 mm voxels using linear resampling along the 
xy plane, in order to make segmentation masks smoother. 

In addition, a clinical quality score of automatic contouring ranging 
from 1 to 5 was reported by each radiation oncologist according to the 
following scale: 1-Very poor quality (need for major correction, re- 
contouring); 2-Major editing necessary; 3-Moderate editing necessary; 
4-Minor editing necessary; 5-Acceptable editing (no or negligible edit-
ing). DSC and HD between contours obtained by automatic generation 
followed by editing were then compared also against manual ones to 
better assess performance in the more realistic scenario of operator 
intervention after automatic segmentation. In all cases, average values 
were considered across all patients, using the standard deviation as 
error. The signed-rank Wilcoxon test was used to assess whether dif-
ferences between groups were statistically significant. Intra-observer 
DSC and HD were compared by averaging values across all observers. 

2.3. Inter-observer variability and time spared in a clinical setting 

Inter-observer consistency was evaluated using DSC and HD for both 
manual contours and contours resulting after editing of the automatic 
ones, aiming to estimate possible improvements in inter-observer 
agreement due to the introduction of automatic segmentation fol-
lowed by final editing by the radiation oncologist. This procedure is 
expected to be operatively implemented in the clinical activity. 

In order to assess the contouring time, the average time spent for 
manual and automatic + edit contouring and their difference were 
considered across all patients. Mann-Whitney test was used to assess 
possible improvements of inter-observer variability and time spent for 
contouring between manual vs automatic + edit contouring. 

Additionally, an automated workflow for automatic segmentation 
takes about 8 min per patient with our current hardware configuration 
(CPU: Intel® Xeon® Silver 4208 with 8 cores and 16 threads, RAM: 32 
GB); this time was not computed as it does not involve any operator time 
as the workflow is completely automated. 

3. Results 

3.1. Performances of automatic (with/without editing) contouring 

The results regarding the consistency between manual and automatic 

Table 1 
DSC for edited segmentation compared against manual contours for both ob-
servers (O1 and O2). DSC between manual and automatic segmentation is also 
shown in order to better appreciate the performance. DSC values were compared 
between different observers with the Wilcoxon test (p value shown in the table).   

Manual vs edited DSC Manual vs automatic DSC  

O1 O2 p value O1 O2 p value 

Bladder 0.95 0.94 0.12 0.94 0.94 0.99 
Prostate 0.90 0.82 < 0.001 0.83 0.81 0.11 
Seminal Vesicles 0.78 0.73 0.16 0.65 0.66 0.76 
Rectum 0.85 0.83 0.13 0.82 0.82 0.99 
Femoral Heads 0.94 0.73 < 0.001 0.93 0.71 < 0.001  
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(with/without editing) contours are shown in Table 1 and Fig. 1. The 
average values between the two observers of DSC regarding manual vs 
(fully) automatic contours showed values ranging between 0.65 for 
seminal vesicles and 0.94 for bladder with significant differences be-
tween the two observers for prostate (after editing) and for femoral 
heads + femurs (this last not clinically relevant). After editing, DSC 
significantly improved (p ≤ 0.002) for both OARs and CTVs: the larger 
gain was found for seminal vesicles (0.76 vs 0.65) and for prostate (0.86 
vs 0.82). The values near 1 for OARs and lower for CTVs suggested that 
editing was in general very limited or none for OARs and greater for 
CTVs. Results regarding HD are shown in the Supplementary Fig. S1, 
with values below 20 mm for most patients for Bladder, Prostate and 
Seminal Vesicles. Larger values were found for Rectum and Femoral 
Heads, due to the variability of the cranio-caudal limit of the structures 
chosen by different radiation oncologists in manual contours. 

Considering the volumes, manual CTVs (Fig. 2) were statistically 
larger than unedited automatically generated volumes (Wilcoxon p 
value: Prostate: p < 0.001, Seminal Vesicles: p = 0.001). In contrast, 
there was no statistical difference between manual and automatic OAR 
volumes. 

Regarding the clinical scores, as shown in the Supplementary ma-
terial (Fig S3 and S4), they reflected generally high satisfaction. Median 
value was 4 (i.e.: little editing) for both operators, with only one patient 
(only for Obs2) showing a score of 2, and two patients (for both Obs1 
and Obs2) with a score of 3. Despite the excellent performances, in a 
limited fraction of patients the segmentation was not fully satisfactory (2 
and 3 out of 20 patients for the two observers, respectively), requiring 
more extensive editing for a few patients. 

3.2. Improvement of inter-observer variability 

As shown in Table 2, apart from femoral heads + femurs, inter- 
observer variability of manual contours in terms of DSC ranged be-
tween 0.73 (seminal vesicles) and 0.93 (bladder): the poorer value for 
femoral heads + femurs depended on the variable caudal limit chosen by 
the observers and has no clinical significance. After automatic con-
touring and manual editing, inter-observer variability improved 

significantly, particularly for femoral heads + femurs, rectum and 
seminal vesicles. As shown in Fig. 3, apart from femoral heads + femurs, 
inter-observer variability of manual contouring was quite similar to the 
(intra-observer) consistency between manual vs automatic contour 
(without editing). The DSC values between the two observers for all 
patients for prostate, seminal vesicles, bladder and rectum are shown in 
the Supplementary material. In Supplementary Fig. S2, inter-observer 
variability of HD are also shown, with values <20 mm for Bladder, 
Prostate and Seminal Vesicles; larger values were found for Rectum and 
Femoral Heads, showing a significant reduction from manual contours 
to automatic edited contours, due to the same cranio-caudal limit of the 
structures drawn by the software. 

3.3. Time sparing 

As shown in the Supplementary material (Supplementary Fig. S5), 
the time for contouring (manual vs automatic + editing) was signifi-
cantly reduced (p < 0.01) for both operators: for Obs 1 it was reduced 
from 24 (±3.5) to 7 min (±3) and for Obs 2 from 17 (±2.5) to 3 min 
(±1.5). In Fig. 4, the detailed results regarding editing times for the two 
observers for all patients were shown. 

4. Discussion 

In this work, we assessed the quality of a currently available com-
mercial system for automated contouring, considering its impact on 
contour quality and on the spared time by radiation oncologists. Even 
though contours generated by the neural network were generally not 
fully accepted, little editing was required by radiation oncologists, thus 
causing a significant reduction in contouring time. Additionally, fast 
editing of the automatic contours translated into a significant reduction 
of inter-observer variability, both for OARs and prostate/seminal 
vesicles. 

The current study was planned by medical physicists together with 
clinicians, with the above described aims and the final objective of 
adding an automatic workflow for contouring [29] to the currently used 
automatic plan workflow [29], rendering the entire treatment chain 
preparation for prostate cancer patients nearly fully automated. 

For this reason, great attention was devoted to estimating the per-
formance of our system in an operatively clinical scenario, including the 
possibility of editing the automatic contours before contouring 
approval, keeping the final decision to the doctors. Linked to this, the 
estimate of the extent of editing also in terms of additional time spent by 
the radiation oncologist, was quantified. Importantly, we verified a 
much lower time spent relative to manual contouring: the time saved for 
an expert radiation oncologist was typically about 15 min per patient. 

Time-saving was not the only gain identified: the doctors reported 
that the clinical scores (based on the subjective degree of editing 
needed) was very good, with very few cases (3/20 and 2/20 for the two 
observers) of moderated/limited satisfactoriness. Agreement between 
automatically generated vs manual contours were also satisfactory, with 
DSC values comparable to inter-observer variability, apart from femoral 
heads + femurs, due to the specific (and clinically negligible) variability 
in assessing the caudal limit of this structure. 

More importantly, after fast (typically of a few minutes) editing, 
performances showed significant further improvement, including a clear 
reduction of inter-observer variability when considering the final edited 
contours. In particular, the improvement in inter-observer variability 
was also significant for prostate and for seminal vesicles, with final DSC 
values for the two CTVs of 0.88 and 0.83 respectively, against values 
referred to manual contouring of, respectively, 0.83 and 0.73. The 
explanation of such results likely depend on the “supervised” guide of 
automatically generated contours toward more similar contouring be-
tween observers compared to manual delineation ab initio. In the case of 
OARs, where consistency is dependent also on the definition of the 
cranial/caudal limits, such as femoral heads + femurs and, in a minor 

Fig. 1. Comparison of DSCs between manual and edited, between manual and 
automatic unedited and between edited and automatic unedited contours. Red 
lines show median values. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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extent, rectum, this phenomenon is still stronger, as shown in Table 2. 
Even though DSC does not correlate well with editing time [32], it 

has been always used in similar studies, therefore allowing for a broader 
comparison. However, we also considered another metric (HD) which is 
more sensitive to slight changes in contours: apart from femoral heads +
femurs, HD results were found to be reasonably low, and consistent with 
few other recent studies [33,34]. 

Of note, HD values for manual contours of femoral heads were rather 
large due to the different (arbitrary) caudal limit of the structures, which 
has not clinical relevance. 

Similarly, HD values for inter-observer manual rectum contours were 

also rather large due to the different cranial limit chosen by different 
radiation oncologists. 

More generally, when trying to compare our results with similar 
recent studies dealing with the validation of AI-based auto-contouring 
commercial systems in the prostate cancer scenario (as summarized in 
the Supplementary material (Table S1)), our results are generally in 
quite good agreement with the literature. The findings that can be better 
compared are those referring to the DSC values between automatic 
(unedited) vs manual contours: apart from femoral heads + femurs, the 
results are comparable with or slightly better than the findings reported 
by using both MIM [13,34] and other systems [14,24,25,34,35]. In 
particular, results in segmenting rectum and bladder were better than 
those reported by Walker et al [24]; results referring to prostate and 
seminal vesicles were better than those reported by Duan et al [34].The 
estimates of time reduction were also similar [25,33,35] or better 
[14,24] than in other reported studies. Unfortunately, the results 
regarding the impact of editing are difficult to compare, as, to our 
knowledge, only one very recent study has clearly reported results 
concerning contours edited by doctors after automatic segmentation. In 
this study, Doolan et al [33] validated five commercial systems 
(different from the one used in this study) reporting a range of DSC 
values very similar to those reported by our study: for instance, DSC 
values for prostate ranged between 0.85 and 0.91 (against our value of 
0.86). Interestingly, the same study reported average editing times 

Fig. 2. Segmentation volumes comparison (manual vs unedited automatic). Average manual contour volumes are compared to unedited automatic volumes for all 
patients. Error bars show the standard deviation between the two observers. 

Table 2 
DSC between the manual segmentation and the edited automatic segmentation 
for different operators. *this result was due to the shift of the caudal limit to the 
same level as for the observer (i.e.: not due to manual editing).  

Organ Edited inter-observer 
DSC 

Manual inter-observer 
DSC 

p value 

Bladder  0.98  0.93 <0.001 
Prostate  0.88  0.83 0.009 
Seminal 

Vesicles  
0.83  0.73 0.001 

Rectum  0.96  0.81 <0.001 
Femoral Heads  0.97*  0.65 <0.001  
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(0.3–7.4 min) consistent with ours (3–7 min). 
Another important result of our study is the quantification of the 

reduction of inter-observer variability due to the use of AI-based auto- 
contouring followed by editing, compared to manual segmentation. The 
reduction of inter-observer variability after editing of automatic con-
tours was not reported by previous studies, although it may be reason-
ably expected and has been reported for other districts (see for instance 
[24]). 

Our study has some limitations: first, the number of observers was 

limited to two, and current findings could benefit from further confir-
mation by the addition of new observers. Another limitation concerns 
the monocentric characteristic of the study: inter-institute contouring 
variability may be an issue, and the quantitative results reported here 
cannot therefore be automatically translatable to other Institutes. Our 
results would be clearly reinforced by replications in other Institutions. 

At the moment, a fully automated workflow has been implemented 
and clinically activated: once the patient CT is imported into the TPS 
station, it may be sent to the auto-contouring workstation where a 
proper scripting automatically starts the segmentation and sends the 
automatic generated contours, which are easily imported, back to the 
TPS. The entire procedure requires less than 8 min, while operator time 
is less than 2 min. In the future, further efforts should be made to extend 
this approach to the case of pelvic node irradiation, which will require 
proper training for pelvic node CTVs, and for bowel loops. 

In conclusion, the current study demonstrated the benefit of imple-
menting AI-based automatic segmentation for prostate cancer radio-
therapy in terms of both time-saving and improvement in contouring 
quality, including the reduction of inter-observer variability. 
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