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The goal of the National Cancer Institute’s (NCI’s) Genomic Data Commons (GDC) is to

provide the cancer research community with a data repository of uniformly processed

genomic and associated clinical data that enables data sharing and collaborative analysis in

the support of precision medicine. The initial GDC dataset include genomic, epigenomic,

proteomic, clinical and other data from the NCI TCGA and TARGET programs. Data pro-

duction for the GDC started in June, 2015 using an OpenStack-based private cloud. By June of

2016, the GDC had analyzed more than 50,000 raw sequencing data inputs, as well as

multiple other data types. Using the latest human genome reference build GRCh38, the GDC

generated a variety of data types from aligned reads to somatic mutations, gene expression,

miRNA expression, DNA methylation status, and copy number variation. In this paper, we

describe the pipelines and workflows used to process and harmonize the data in the GDC.

The generated data, as well as the original input files from TCGA and TARGET, are available

for download and exploratory analysis at the GDC Data Portal and Legacy Archive (https://

gdc.cancer.gov/).
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The National Cancer Institute’s (NCI’s) Genomic Data
Commons (GDC)1,2 currently contains NCI-generated
data from some of the largest and most comprehensive

cancer genomic datasets, including The Cancer Genome Atlas
(TCGA, https://cancergenome.nih.gov/) and Therapeutically
Applicable Research to Generate Effective Therapies (TARGET,
https://ocg.cancer.gov/programs/target). Each of these projects
contains a variety of processed and unprocessed molecular data
types, including genomics, epigenomics, proteomics, imaging,
clinical, and others.

These data, as well as data from future projects, are often
generated using different methods, so that joint analysis of
multiple datasets are often confounded by batch effects. Based on
the lessons learned from TCGA, one of the major goals of the
GDC is to create a uniform set of molecular datasets that mini-
mize batch effects due to differences in reference genomes, gene
models, analytical algorithms, and processing pipelines. In the
GDC, this process is called harmonization and is broken up into
two stages: alignment and higher level data generation. In the
alignment stage, reads from Next Generation Sequencing (NGS)
data are extracted and aligned, or re-aligned, to a single human
reference genome sequence using a single pipeline for that par-
ticular data type. In the second stage, different higher level data
generation pipelines utilize the GDC aligned data to derive
summary results, such as somatic mutations or gene expression.

Data production started with processing of Whole Exome
Sequencing (WXS) alignment and somatic mutation calling,
Whole Genome Sequencing (WGS) alignment, mRNA-Seq
alignment and gene/exon level quantification, miRNA-Seq
alignment and quantification, TCGA Affymetrix Genome-Wide
Human SNP Array 6.0 array copy number segmentation, and
Illumina Infinium HumanMethylation450/27 methylation array
re-annotation. By the end of May 2016, we had successfully
processed more than 56,168 BAM files and FASTQ bundles,
including 27,594 WXS, 4691 WGS, 11,969 RNA-Seq and 11,914
miRNA-Seq, from 12,487 patients with a total input file size of
1001.7 TB. From GDC harmonized BAMs, more than 100,000
higher level derived data files have been generated. A total of
more than 1400 TB of generated data, including intermediate
files, have been produced by GDC data processing pipelines, and
stored in GDC storage. Many of them have been imported into
the GDC database (described in a companion submission), and
have become queryable and downloadable from the GDC Data
Portal (https://portal.gdc.cancer.gov/) and API. Users are able to

get the up-to-date file summary directly from data repository
facet view.

In this work, we discuss the general considerations, imple-
mentation details and quality comparisons of a large-scale uni-
form genomics data analysis that was used by the NCI’s Genomic
Data Commons for processing and harmonizing the cancer
genomics data that it shares with its users.

Results
Reference genome and gene model. The GDC chose GRCh38 as
the reference human genome build for all data analyses, because
of its improved coverage and accuracy over the previous major
build GRCh373. The GRCh38 major human genome assembly
was released by Genome Reference Consortium (GRC) on
Dec 2013 with GenBank assembly accession GCA_000001405.15.
The complete assembly downloaded from NCBI contains
456 sequences, including 25 continuous chromosomal and
mitochondrial sequences, 42 unlocalized scaffolds, 127 unplaced
scaffolds, 261 alternative scaffolds, and 1 EBV decoy sequence.

At the time of the development of the GDC pipelines, there was
a lack of tool support for alternative scaffolds analysis. As a result,
the GDC excluded alternative contigs from the GDC reference
sequence, and used GCA_000001405.15_GRCh38_no_alt_analy-
sis_set from the NCBI ftp site as a modified GCA_000001405.15
reference contig set without alternative loci and patches.

In addition to the continuous chromosomal and mitochondrial
sequences, unlocalized and unplaced scaffolds described above,
the GDC reference sequence also includes 2385 human decoy
sequences, together named hs38d1 with GenBank assembly
accession GCA_000786075.2. These human decoy sequences are
additional unlocalized sequences not officially recognized by GRC
at the time of reference release, and having them in the GDC
reference helps to reduce false alignments of such reads in other
regions4.

Similar to the idea of improving alignment quality with human
decoy sequence, we collected genomic sequences from ten
types (200 subtypes) of cancer related viruses in the
reference genome, together called “virus decoy” as a collection.
The additional benefit of having such virus sequences in the
reference genome is to give users the opportunity to directly
identify virus genome derived reads. These viruses include
Human Cytomegalovirus (CMV, HHV-5), Epstein-Barr virus
(EBV, HHV-4), Hepatitis B virus (HBV), Hepatitis C virus

Table 1 Virus Sequences included in the GDC reference genomea.

Contig_Name Virus_Name GenBank_Accession PaVE_ID Sequence Revised

CMV Human Cytomegalovirus, Human herpes virus 5 AY446894.2 N/A
EBV Epstein-Barr virus,, Human herpes virus 4 AJ507799.2 N/A
HBV Hepatitis B X04615.1 N/A
HCV-1 Hepatitis C AF009606.1 N/A
HCV-2 Hepatitis C AF177036.1 N/A
HIV-1 Human immunodeficiency virus 1 AF033819.3 N/A
HIV-2 Human immunodeficiency virus 2 M30502.1 N/A
KSHV Kaposi’s sarcoma-associated herpesvirus, Human herpes

virus 8
AF148805.2 N/A

HTLV-1 Human T-lymphotropic virus 1 AF033817.1 N/A
MCV Merkel cell polyomavirus HM011556.1 N/A
SV40 Simian vacuolating virus 40 J02400.1 N/A
HPV16 Human papillomavirus 16 K02718 HPV16REF Yesb

HPV18 Human papillomavirus 18 X05015 HPV18REF Yesb

aThe full table is provided as Supplementary Information Table S1.
bAll HPV sequences are retrieved from the Papillomavirus Knowledge Source (PaVE)4 as of May 2015. Genomic sequences of 18 HPV subtypes were corrected by re-sequencing or efforts to maintain
integrity of characterized open-reading frames4, and thus are not consistent with sequences in the GenBank.
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(HCV), Human immunodeficiency virus (HIV), Human herpes-
virus 8 (KSHV, HHV-8), Human T-lymphotropic virus 1
(HTLV-1), Merkel cell polyomavirus (MCV), Simian vacuolating
virus 40 (SV40), and Human papillomavirus (HPV) (Table 1).
All HPV sequences were obtained from The PapillomaVirus
Episteme (PaVE, http://pave.niaid.nih.gov/) instead of NCBI,
because this group updated the sequences as new information
is confirmed5. The GDC reference including all human
and viral decoys can be downloaded from the GDC at the
following link (https://api.gdc.cancer.gov/data/62f23fad-0f24-
43fb-8844-990d531947cf).

For variant annotation and RNA-Seq alignment/quantification,
we use Human GENCODE release version 22 as the default
GRCh38 gene model5,6. This version contains 60,483 genes,
including 19,814 protein-coding genes, 15,900 long non-coding
RNA genes, 9894 small non-coding RNA genes, and many other
types, such as pseudogenes. For miRNA-Seq annotation and
qualifications, GDC uses miRBase version 217.

Reproducibility of analysis. All major GDC data production
pipelines are written in the Common Workflow Language (CWL,
https://www.commonwl.org/). In each workflow, a main CWL file
describes how tools and sub-workflows, also written in CWL, can
be used in clearly defined steps. All major tools have been con-
tainerized using Docker containers to support reproducibility and
portability of the workflows. The GDC will be redistributing the
main GDC workflows to the research community to support
reproducible research.

DNA-Seq alignment, mutation calling, annotation, and
somatic variant aggregation. The DNA-Seq alignment process
includes initial alignment and a post-alignment optimization
process. In the initial alignment step, reads are mapped to
GRCh38 using BWA, followed by BAM sorting, merging of read
group BAMs into a single BAM, and then duplicate-marking
using Picard. When the read length of a read group is larger than
70 bps, BWA MEM8 is used for alignment; or otherwise, BWA
Aln8,9 is used.

After initial alignment of WXS data, we follow GATK Best
Practices (https://software.broadinstitute.org/gatk/best-practices/)
to process all BAMs from the same patient together for a post-
alignment optimization process called “co-cleaning” in which
includes GATK IndelRealigner and BaseQualityScoreRecalibra-
tion (BQSR). IndelRealigner performs local realignment to
further improve mapping quality acrossing all reads at loci close
to indels, and BQSR detects and fixes systematic errors made by
the sequencer when it estimates the quality score of each base
call10–12. For post-alignment optimization of WGS data, we only
employ BQSR, but not IndelRealigner.

GDC uses four somatic variant callers, MuSE13, MuTect212,
VarScan214, and SomaticSniper15. MuSE and SomaticSniper only
detect point mutations, while MuTect2 and VarScan2 can detect
both point mutations and small insertions and deletions
(INDELs). The GDC provides these point mutations and small
INDELs together as Simple Nucleotide Variants (SNV). INDEL
calls from VarScan2 were not included in the initial GDC data
release, but are included since release 10.

Artificial chimera reads can form during the Multiple
Displacement Amplification reaction16, such as the one used
to generate the WGA libraries by REPLI-g. This phenomenon is
most obvious in MuTect2 calls as we observed about 10 folds
increase of INS/SNP ratio when tumor is a WGA sample
(data not shown), compared to other cases in the same project,
and most of such INDELs are primarily supported by soft-
clipped reads. In order to increase specificity, we re-analyzed

all TCGA tumor WGA samples with MuTect2 option
–dontUseSoftClippedBases, and successfully removed most of
these false-positive INDELs. However, as these artifacts were
introduced during library preparation, they could also exist in
MuTect2 SNPs, as well as variants called by other tools, in a
smaller scale. We recommend users to consume these WGA calls
with care.

Raw Somatic Variant Call Format files (VCFs) generated from
each pipeline are further processed by caller-specific filters to tag
low quality variants in the FILTER column in VCF. For
SomaticSniper, variants with Somatic Score (SSC) < 25 are
removed. These VCFs are then annotated using Variant Effect
Predictor17 to generate Annotated Somatic VCFs.

To allow easier investigation of variants and annotations, the
VCFs are transformed into project-level tab-delimited Mutation
Annotation Format (MAF) files18. This is done with a custom
tool based upon VCF2MAF (https://github.com/mskcc/vcf2maf)
from Memorial Sloan Kettering Cancer Center. VCF and MAF
files may contain germline variants and therefore all VCFs and
MAFs described above are only available as controlled-access
files. To access controlled-access files in the GDC, users must
obtain approval from the Data Access Committee through dbGaP
(database of genotypes and phenotypes)19.

We have also created open-access MAF files by applying
stringent criteria to remove potential germline variants. These
open-access MAF files are used to support variant visualization
and simpler data sharing. We did not produce open-access MAFs
for the TARGET program because of privacy concerns of child
sample donors. Mutation loads of point mutations and INDELs
from both open-access (public) and controlled-access (protected)
MAFs of all TCGA projects are displayed in Fig. 1. Of note, this
germline-masking process is so stringent that some real somatic
variants, for example somatic variants in areas of low sequencing
coverage in the paired normal samples, may have been removed
from open-access MAF. We encourage users to explore
controlled-access MAFs to view additional variants.

Quality assessment of GDC somatic variants. Somatic variant
detection is still in a stage of rapid algorithm development, and
no single caller is superior to others in every respect20–23. As
shown in Fig. 2a, a direct comparison of SNV calls from different
callers show significant overlaps, but also many tool-specific calls.
Here, we only compared high quality variants, which means they
do not have a non-PASS caller assigned FILTER value or GDC
assigned GDC_FILTER values in the somatic MAF files of data
release version 10. In summary, 56.0% of the clean variants have
been identified by all four callers, 15.1% by three callers, 14.0% by
two callers, and 14.9% called by only one caller. Among all four
somatic callers, MuTect2 has detected the highest number of
unique calls, while SomaticSniper has the least. Additional efforts
are needed to examine the validity of such calls, especially those
not called by all pipelines, in order to evaluate the performance of
each tool, and hopefully lead to machine-learning algorithms that
help to unify caller outputs. Please note that these results are only
relevant to the GDC implementation of these pipelines and fil-
tering strategy.

Evaluation of somatic variant callers often requires comparison
with a so-called gold standard dataset that has been extensively
sequenced using multiple independent methods23, or using a
simulated dataset. In a previous effort to evaluate quality of
somatic variant callers, TCGA re-sequenced regions of many
called variants using orthogonal sequence technologies, such as
Sanger Sequencing, and therefore have produced a set of validated
variants that GDC can use to evaluate False-Negatives in current
GDC callers. However, no validation experiments were designed
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for GDC-called variants, thus False-Positives or specificity
will not be evaluated in this paper. An independent analysis
has been performed by comparing GDC-generated somatic
variants to variants previously identified by the TCGA Con-
sortium the same samples, and concluded that both datasets are
highly concordant24.

We extracted and lifted over all TCGA validation information
from 196 MAFs available on May 2016 to GRCh38 coordinates,
and selected mutation calls from the same tumor samples that
GDC has also successfully analyzed with all four pipelines. This
results in 1,911 unique tumor samples and 115,476 validated
variants, across 13 TCGA projects (BLCA, BRCA, CESC, COAD,
GBM, KIRC, LAML, OV, PAAD, READ, SARC, THYM, and
UCS). Comparison to GDC called somatic variants of the sample
tumor sample shows that only 3.2% of TCGA validated variants
are not re-discovered by any of the GDC pipelines (Fig. 2b). This
number further decreases to 1.6% if we only compare variants
from exactly the same tumor and normal aliquot pairs. 95.6% of

the validated variants are called by at least two GDC pipelines;
86.2% by at least three pipelines; and 71.6% called by all four
GDC pipelines.

To further investigate the impact of cancer type or project to
each caller, we analyzed the validated variant recall rate for each
pipeline (Fig. 3). In most of the cancer types, MuTect2, MuSE,
and VarScan2 show good performance, while SomaticSniper
typically recalls less. In particular, SomaticSniper displays a very
low average recall rate of <50% in PAAD (Pancreatic Adeno-
carcinoma). Interestingly, SomaticSniper has the best recall rate
for LAML. The algorithm of SomaticSniper may have been
designed to better tolerate high-level tumor contaminations in
germline control samples, which often exists as infiltration of
liquid tumor cells in skin or buccal swabs of LAML patients.

RNA-Seq data processing and quality assessment. RNA-Seq
analysis by the GDC makes use of a modified workflow (https://
github.com/ucscCancer/icgc_rnaseq_align) created by the

Fig. 1 Mutation loads of TCGA projects. GDC-detected somatic variants per sample are displayed by each pipeline (rows), and grouped in each project
(columns). Combined counts of point mutations (SNP) and INDELs of either public MAF (dark blue) or protected MAF (light blue) are plotted in separate
colors.

Fig. 2 Comparison of GDC somatic variant caller pipelines. The Venn Diagram on the left (a) shows the overlap among four GDC somatic callers. Among
all clean variants, 56.0% have been identified by all four callers, 15.1% by three callers, 14.0% by two callers, and 14.9% by only one caller. The Venn
Diagram on the right (b) shows recall rate of validated TCGA variants by GDC somatic callers. Among 115,476 TCGA validated variants collected, 3.2% are
not recalled by any of the GDC pipelines; 1.2% are recalled by only one pipeline; 9.4% are recalled by two pipelines; 14.6% are recalled by three pipelines;
and 71.6% are recalled by all four GDC pipelines.
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International Cancer Genome Consortium. Input RNA-Seq
FASTQ files were aligned to GRCh38 using the STAR 2-pass
method25, and quantified using HTSeq26 and DEXSeq27. The
GDC uses GENCODE v22 as the default gene model for both
mRNA-Seq alignment and quantification. DEXSeq exon-level
quantification results have not yet been imported into GDC Data
Portal at the time of publication.

Gene expression is measured using HTSeq. In this pipeline,
only reads or read pairs that can be uniquely assigned to a gene
are counted. HTSeq supports mapping of both stranded (either
forward or reverse) and unstranded libraries; however, the read
assignment is different between these two different modes
resulting in an inability to compare across these library types.
Because the GDC emphasizes data comparability across projects,
we have run HTSeq on all projects as if they were unstranded
libraries.

For convenience to the scientific community, the GDC also
produces gene level quantification in the units of FPKM (Fragments
Per Kilobase of transcript per Million mapped reads)28 and FPKM-
UQ (Upper-Quartile Normalized FPKM)28,29. The definition of
these units is described in the “Materials and Methods”
section. Note that the denominators of such normalizations
are read counts of all the protein coding genes, instead of all

genes. If users are interested in a different set of genes, they are
encouraged to perform a normalization based on the genes they are
working on, or to use a more sophisticated method, such as
DESeq30 or EdgeR31. In addition, GDC does not perform RNA
expression batch corrections.

We also compared GDC FPKM-UQ expression data to the
original TCGA upper-quartile normalized RSEM expression
values using Spearman correlation. This comparison was
performed over 10,243 shared aliquots and 18,038 shared genes
in both dataset. The average correlation between the same sample
from two datasets (Fig. 4. Top) is 0.944, and the majority of the
samples have correlation higher than 0.90.

We can also measure the relative expression of the same gene
among different samples. The average correlation between the
same gene from two datasets is 0.929. We suspected that most
of the deviation is from sporadic low-level expressed genes. To
address this concern, we further categorized genes into four
quartile groups (Q1–Q4) based on their average expression
values in the GDC, and then examined gene level correlations
within each of these four groups with TCGA results (Fig. 4.
Bottom). We observed an average correlation of 0.98 in high-
level expressed Q3 and Q4 groups and much lower values in Q1
and Q2.

Fig. 3 Recall rate of TCGA validated variants by project. In both plots, n= 125/123/192/182/223/141/215/148/48/200/107/57 biologically
independent samples for projects BLCA/BRCA/CESC/COAD/KIRC/LAML/OV/PAAD/READ/SARC/THYM/UCS, respectively. Top: Boxplots of recall
rate of TCGA validated variants by 13 projects and four GDC somatic variant calling pipelines. Each dot represents a unique tumor sample. Projects are
ordered by decreasing average recall rate from left to right. Bottom: Boxplots of recall rate of TCGA validated variants by number of pipelines combined.
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miRNA data processing and quality assessment. The GDC
miRNA quantification analysis workflow is based on the profiling
pipeline that was developed by the British Columbia Genome
Sciences Centre32. After realignment of miRNA-Seq reads to
GRCh38 using BWA Aln, the profiling pipeline generates TCGA-
formatted miRNA gene expression and isoform expression results
by comparing the individual reads to sequence feature annota-
tions in miRBase v.217. Of note, however, the tool only annotates
those reads that have an exact match with known miRNAs in
miRBase and therefore does not identify novel miRNA or tran-
script with mutations. Similar to RNA-Seq, miRNA expression
data has not been batch corrected.

We compared TPM (Transcripts Per Kilobase Million)
normalized miRNA gene expression from GDC GRCh38 pipeline
to the original TCGA Hg19 pipeline of the same aliquot using
Spearman correlation. Similar to what we have described before
for mRNA expression, only 9516 shared aliquots, and 641 shared
mature miRNAs are used in this comparison. As shown in the
boxplots at the bottom of Fig. 5, the majority of the samples have
a correlation coefficient of greater than 0.975, with an average of
0.984. Three cancer types, colon adenocarcinoma (COAD),
rectum adenocarcinoma (READ), and ovarian carcinoma (OV),
have relatively lower correlation, which may reflect specific
sensitivities of miRNA species in these cancer types to the
reference genome and miRNA database versions.

Expression level groups are also created in the miRNA datasets
for detailed correlation comparisons (Fig. 5. Bottom). Because
there are many fewer miRNAs compared to mRNA genes, and

many of them are expressed at low expression levels, we
categorized miRNA into two groups. In the “Low-Expressed”
group, all miRNAs show low (Q1 or Q2) in both TCGA and GDC
quantifications; and the rest of miRNAs belong to the “Other”
group. The average Spearman correlation in these two groups are
about 0.956 and 0.979, respectively.

Array-based copy number variation data processing. TCGA
used Affymetrix Genome-Wide Human SNP 6.0 (SNP6) array
data to identify genomic regions that have Copy Number Var-
iations (CNV) by aggregation of typed loci into larger contiguous
regions. Direct liftover of region boundaries from hg19 to
GRCh38 results in fragmented segments with poor data quality
due to change of probe loci between different genome builds. For
this reason, the GDC SNP6 pipeline is built onto the existing
TCGA level 2 tangent-normalized copy number data generated
by Birdsuite33 and uses the DNAcopy version 1.44.034 R-package
to perform a Circular Binary Segmentation (CBS) analysis35 with
GRCh38 probeset metadata. This pipeline normalizes noisy
intensity measurements into chromosomal regions of equal copy
number in the form of segment mean values, which are equal to
log2(copy-number/2), so that diploid regions will have a segment
mean of zero, amplified regions will have positive values, and
deletions will have negative values.

To be consistent with the original TCGA data, two different
output files were produced for each input: copy number segment
files that generated from all probes, and masked copy number

Fig. 4 Boxplots of Spearman correlation between GDC and TCGA mRNA expression. Top: Boxplots of Sample to Sample Correlation between GDC and
TCGA by Project. n= 79/427/1202/309/45/328/48/171/170/546/89/603/321/145/525/423/573/550/86/265/182/186/548/105/265/472/404/
156/564/121/199/56/80 biologically independent samples for projects ACC/BLCA/BRCA/CESC/CHOL/COAD/DLBC/ESCA/GBM/HNSC/KICH/KIRC/
KIRP/LAML/LGG/LIHC/LUAD/LUSC/MESO/OV/PAAD/PCPG/PRAD/READ/SARC/SKCM/STAD/TGCT/THCA/THYM/UCEC/UCS/UVM,
respectively. Bottom: Combined Boxplots and Density Plots of Gene to Gene Correlation between GDC and TCGA. All genes are categorized by four GDC
groups (Q1–4) based on their average expression values. Mean and standard deviation of gene to gene Spearman’s correlations are calculated by these
four groups.
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segment files, equivalent to the original TCGA “nocnv” file,
generated by excluding certain probes that have been previously
identified to carry copy number variations in a pool of germline
samples.

Array-based methylation data processing. TCGA used Illumina
Infinium HumanMethylation27 (HM27) and HumanMethyla-
tion450 (HM450) BeadChip to measure the level of methylation
at known CpG sites as beta values, calculated from array inten-
sities (Level 2 data) as Beta = M/(M+U), where M is the
methylated probe intensity and U is the unmethylated probe
intensity. The GDC inherited these beta values from existing
hg19-based TCGA Level 3 DNA methylation data, and re-
annotated each probeset with new metadata information based on
GRCh38 and GENCODE v22.

Integrated genomic data clustering. To show how users can take
advantages of GDC harmonized datasets for cross-project ana-
lysis, here we demonstrate integrated analysis with t-distributed
stochastic neighbor embedding (t-SNE)36,37 to reduce high

dimensional information in the molecular data to two dimensions
(Fig. 6). We utilized four distinct GDC generated molecular
features of TCGA primary tumor samples, including mRNA
expression, miRNA expression, methylation and copy number
variation. Our results are shown only for TCGA data, but could
be expanded to other GDC projects.

In our result, different cancer types are well separated and
some interesting patterns arise. For example, it has been
previously suggested that colon and rectum cancer should be
grouped as one colorectal cancer38 and that esophageal
adenocarcinomas resembles a subtype of stomach cancer39. Our
method supports those observations. In our 2D-clustering the
majority of the colon cancer (COAD) samples are co-clustered
with rectum cancer (READ) samples, and some esophageal
cancer samples cluster together with stomach cancer (STAD)
samples. We also identify a few samples designated as primary
tumor in one cancer type, but which cluster together with samples
from another cancer type. For example, a paraganglioma and
phenochromocytoma sample is located within a cluster of
adrenocortical carcinoma samples.

Fig. 5 Boxplots of Spearman correlation between GDC and TCGA miRNA expression. Top: Boxplots of Sample to Sample Correlation between GDC and
TCGA by Project. n= 80/429/849/312/45/221/47/198/5/532/91/326/326/103/526/424/498/387/87/461/183/187/547/76/263/452/430/156/
569/126/444/56/80 biologically independent samples for projects ACC/BLCA/BRCA/CESC/CHOL/COAD/DLBC/ESCA/GBM/HNSC/KICH/KIRC/
KIRP/LAML/LGG/LIHC/LUAD/LUSC/MESO/OV/PAAD/PCPG/PRAD/READ/SARC/SKCM/STAD/TGCT/THCA/THYM/UCEC/UCS/UVM,
respectively. Bottom: Combined Boxplots and Density Plots of miRNA to miRNA Correlation between GDC and TCGA by Average Expression Level. All
miRNAs are categorized in “Low-Expressed” and “Other” groups. Mean and standard deviation of miRNA to miRNA Spearman’s correlations are shown.
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Discussion
The rapid decrease in sequencing costs has led to a rapid increase
in the resources needed for storage and computation. The GDC
provides a solution for this problem by centralizing storage and
processing of genomics data. This model currently enables
researchers to perform analysis in three different ways: (1) Quick
data analysis and exploration using existing GDC visualization
tools without the need to download files; (2) Data analysis using
GDC generated high level processed data. These files are much
smaller than the raw data; (3) Resource-extensive data analysis by
downloading raw sequencing data to other data centers or com-
mercial clouds.

The genomic data available through the GDC are analyzed
uniformly using common algorithms and pipelines, and will be
reanalyzed in the future as improved algorithms and methods are
developed. As there is no consensus among the scientific com-
munity on the best algorithms on somatic variant detection, the
GDC implements four callers, and each generates its own set of
variant calling output. As shown in Fig. 2a, b, only 55.97% of the
variants are called by all four pipelines; while this category also
includes 71.57% of the TCGA validated variants. This suggests a
simple strategy to combine results from multiple callers to
increase specificity. The boxplots in the bottom of Fig. 3 show the
effect of a combined caller approach to the recovery rate of TCGA
validated variants by different cancer types. The downside of
using a consensus call is a decrease in sensitivity. While we cannot
measure sensitivity directly, a good approach may be to combine
results from only two somatic callers rather than require a variant
be called by all four pipelines. The GDC is in the development
stage to generate a new set of MAFs that contain merged results
from each tool.

The GDC data harmonization process also makes cross-project
analysis much simpler, and reduces artificial findings due to
differences in algorithms. Users will be then able to perform joint
analysis of data originating from different projects because all
data are processed by the same tools and represented in the same
format.

Major GDC production workflows are available in GitHub
https://github.com/NCI-GDC/gdc-workflow-overview. As work-
flow updates are inevitable for an on-going data processing
project like the GDC, users are able to find workflow versions
using the GDC data portal and API. In addition, major version
changes are also described in detail in the GDC workflow doc-
umentation. When new workflows are introduced, GDC will
reprocess old data if necessary.

The NCI’s Genomic Data Commons has provided a feasible
and scalable model for easy sharing of large set of genomics data.
We hope our efforts in data sharing and uniform data processing
will be valuable not only to researchers, but also to clinicians,
patients, and other interested parties, and help accelerate the
long-term goal of precision oncology.

Methods
Pipeline development and production. The GDC takes advantage of contain-
erization technology and built pipelines using Docker (www.docker.com) to ensure
pipeline scalability, portability, and reproducibility. The alignment was managed by
an in-house job management system that creates new virtual machines of the
designated configuration on demand in an OpenStack environment. The corre-
sponding Docker container that holds the entire workflow then runs inside of the
virtual machine for an additional layer of security.

During development of high-level data generation pipelines, we transitioned
from single Docker workflows to using Common Workflow Language (CWL,
www.commonwl.org) to describe analysis workflows of multiple Dockerized tools.
CWL provides an additional transparent layer between workflow description and

Fig. 6 2D t-SNE clustering of 32 TCGA projects. Combined genomic and epigenomic signals of 4 data types from each TCGA patient, including somatic
gene-level copy number, somatic RNA expression, somatic miRNA expression and somatic DNA CpG methylation patterns, are aggregated and
superimposed into a 2-dimensional space using t-SNE algorithm. Each dot in the plot represents one patient, and patients from different TCGA projects
(and cancer types) are distinguished color and shape of the dot.
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workflow execution, that allows even better scalability through parallel execution
and portability. The GDC managed CWL pipeline production uses the Slurm
Workload Manager (slurm.schedmd.com).

DNA-Seq alignment and co-cleaning. The GDC DNA-Seq alignment pipeline
follows GATK Best Practices (https://software.broadinstitute.org/gatk/best-
practices/). The main steps include regenerating FASTQ files from BAM input on a
per-read group basis using biobambam240 and alignment by read group using
BWA (version 0.7.12) in both paired-end and single-end mode. This was followed
by BAM sort, merge, and MarkDuplicates using Picard41,42. The GDC maps reads
using either BWA MEM mode if length is equal or larger than 70 bp or BWA Aln
mode if below. BWA Aln is also used when mapping older FASTQ reads formatted
with Illumina-1.3 and Illumina-1.5 quality scores. Multiple QC metrics were col-
lected both before and after realignment using FastQC43, samtools41 and Picard42.
Re-aligned BAM files from the same patient are then collected together for co-
cleaning using GATK 3.6 IndelRealigner and BaseQualityScoreRecalibration.

The TCGA and TARGET BAMs to be harmonized were originally processed
over a relatively large time scale in relation to the development of NGS technology.
Some originated from as early as 2010 and were generated by a variety of
workflows and reference genomes (11 different reference genomes in total
including variants of hg18, hg19, GRCh36, and GRCh37). Some of the workflows
had introduced incorrect information into the data, such as sample swapping and
mislabeled experimental strategies, which were corrected in the GDC
harmonization process.

Somatic variant calling, filtering, and MAF generation. The initial GDC release
includes four somatic variant callers: MuTect2, VarScan2, MuSE, and
SomaticSniper.

MuTect2 is built upon the capability of local de novo assembly by
HaplotypeCaller and somatic genotyping engine of Mutect. Mutect applies a
Bayesian classifier to detect somatic mutations11. The GDC uses MuTect2 tools
from the GATK nightly-2016-02-25-gf39d340 version. Before tumor normal pairs
can be used for somatic variant calling, it is important to generate a Panel of
Normals (PoNs) filter that contains calling artifacts and potential germline
variants. As mentioned previously, whole genome amplified (WGA) samples are
analyzed with dontUseSoftClippedBases turned on.

VarScan2 is another somatic variant caller that identifies both SNV and
INDELS. It uses heuristics and statistics to identify variants and considers the
confounding impacts of read depth, base quality, variant allele frequency and
statistical significance13. GDC uses VarScan2 version 2.3.9. The first step of
VarScan2 calling is to generate a mpileup file of both tumor and normal BAMs
using samtools for a single mpileup file. We set the quality cutoff for samtools to be
1 and also disabled Base Alignment Quality score computation. The mpileup is
then used as input to VarScan Somatic to generate a VCF file that contains both
SNP and INDEL calls. The resulting VCF is filtered for significant calls using
VarScan ProcessSomatic.

MuSE calls somatic variants using Markov Substitution model for Evolution12.
The first step, “MuSE call”, estimates the equilibrium frequencies of all four alleles
and presents the maximum a posteriori on every genomics locus. The second step,
“MuSE sump”, performs a tier based cutoff based on a sample-specific error model
which also takes dbSNP information into account. GDC uses MuSE version
1.0rc_submission_c039ffa. Parallelization can be implemented for the first step of
MuSE, based on genomic chunks, which can accelerate the production close to
linear. The GDC currently only passes calls with quality filter “PASS” to the GDC
public MAF files; however, variants with other quality Tier values could also be
considered a user’s discretion.

SomaticSniper is a somatic variant caller that only identifies SNPs. It uses a
bayesian inference to compare genotype likelihoods between tumor and normals14.
GDC uses the default parameter settings of SomaticSniper version 1.0.5.0.

In addition to the built-in filters in each somatic caller, the GDC also applies
additional filtering tools to label caller-generated variants. Because these filters are
frequently updated, we have highlighted only a few of the major steps below.

A. False Positive Filter (FPFilter, https://github.com/ucscCancer/fpfilter-tool)
was applied to both VarScan2 and SomaticSniper VCFs.

B. SomaticSniper variants with SSC < 25 are removed from annotated VCFs.
This is the only step in the entire GDC somatic variant pipeline in which
low-quality variants are removed, instead of tagged.

C. A WXS Panel of Normals was generated internally by MuTect2 calling on
about 5,000 TCGA normal WXS samples in artifact detection mode and
combined using GATK CombineVariants. The GDC received the sample list
from the TCGA Genomics Data Analysis Center (GDAC) as TCGA normal
samples that were previously identified to be free of hematopoiesis events
(unpublished) at the time of GDC data processing. This PoN is not only
used as a MuTect2 built-in filter44, but also applied to the other three
somatic calling outputs in a similar manner.

D. d-ToxoG (http://archive.broadinstitute.org/cancer/cga/dtoxog) is used to
remove oxoG artifacts from point mutation calls. These artifacts were
generated due to oxidative DNA damage during sample preparation45.

E. DKFZ Strandbias Filter (https://github.com/eilslabs/DKFZBiasFilter) is used
to tag variants that are supported with significant bias from one strand
direction compared to the other.

Mutation Annotation Format (MAF) is a tab-delimited text file with aggregated
mutation information from VCF Files and are generated on a project-level. The
GDC currently produces two types of MAF files: controlled-access MAFs that
contain all variants in VCFs, and open-access somatic MAFs that contain filtered
variants and reduced germline contaminations and thus considered “high quality”.
Any user can explore the open-access somatic MAF for high quality calls; while a
more sophisticated user may want to apply for dbGaP access to obtain the superset
of mutations in the controlled-access MAF. With the larger set of mutations they
may perform custom filtering based on FILTER and GDC_FILTER columns, or
collect information that was removed from the open-access version, such as
supporting read depth in the normal samples.

The specification of the GDC MAF can be found at https://docs.gdc.cancer.gov/
Data/File_Formats/MAF_Format/.

RNA-Seq alignment. The RNA-Seq alignment pipeline performs alignments of
raw reads against the reference genome using a two-pass approach using STAR25.
The first pass alignment recognizes splice junctions in the sample, and the second
pass uses those splice junctions to perform the final alignment. STAR version
2.4.0f1 was initially used and we then switched to version 2.4.2a that fixed a bug
and allowed us to complete processing all the input files. If both BAM and FASTQ
input files existed, only FASTQ files were used.

HTSeq mRNA quantification. The HTSeq (version 0.6.p1)26 pipeline is used for
calculating the number of reads that align to different genes in the genome. As
mentioned previously, only reads that can be uniquely assigned to a gene are
counted. The GDC ran HTSeq on all samples as unstranded libraries in order to
maintain consistency for cross-sample comparisons.

The raw counts are normalized into Fragment per kilobase million mapped
reads (FPKM) and Upper Quartile Normalized FPKM (FPKM-UQ) using all
protein-coding genes as the denominator.

FPKM ¼ RCg ´ 10
9

RCpc ´ L
ð1Þ

FPKM � UQ ¼ RCg ´ 10
9

RCg75 ´ L
ð2Þ

where,

● RCg: Number of reads mapped to the gene
● RCpc: Number of reads mapped to all protein-coding genes
● RCg75: The 75th percentile read count value for genes in the sample
● L: Length of the gene in base pairs

DexSeq exon quantification. The GDC has also generated exon-level quantification
using the DEXSeq27,46 pipeline. The first step in this pipeline is to create the
flattened General Feature Format (GFF) file, which essentially collapses the
information for multiple transcripts spanning the same exon into exon counting
bins for that exon. Once the flattened GFF file is obtained, the number of reads that
overlap with each exon counting bin are calculated. The result is a flat file which
has raw counts for each exon. This data type is not currently available in the GDC
data portal and will appear in a later data release.

miRNA-Seq alignment and profiling. The GDC miRNA harmonization pipeline
begins with a realignment of TCGA and TARGET miRNA-Seq reads using a
similar strategy of the GDC DNA-Seq alignment pipeline. Because reads of
miRNA-Seq are typically short, only BWA Aln was used.

miRNA quantification is done with a modified version of the miRNA Profiling
Pipeline v0.2.732 from BCGSC (British Columbia Genome Sequencing Center). In
this pipeline, miRNA species and miRNA isoforms are counted differently, and
normalized Reads Per Million values are also derived. The final results from each
miRNA-Seq sample is a miRNA species quantification file and a miRNA isoform
quantification file, in a human-readable format compatible to the original
TCGA data.

SNP 6.0 array copy number segmentation. The hg19-based probeset metadata were
obtained from the Affymetrix website, and then lifted over to GRCh38. Probes with
reference bases not matching between hg19 and GRCh38 were removed.

To generate Copy Number Segment file, all SNP and CNV probes are used for
CBS calculation, with the only exception that probes in the Pseudo-Autosomal
(PAR) regions were removed in males prior to calculation. To generate the Masked
Copy Number Segment file from this result, all probesets in chromosome Y and in
the frequent copy number variant regions in germlines obtained from GenePattern
were also removed prior to calculation.
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Methylation array beta value annotation. Using probe sequence information
provided in the manufacturer’s manifest, HM27 and HM450 probes were
remapped to the GRCh38 reference genome47. Type II probes with a mapping
quality of <10, or Type I probes for which the methylated and unmethylated
probes map to different locations in the genome, and/or had a mapping quality
of <10, had an entry of ‘*’ for the ‘chr’ field, and ‘−1’ for coordinates47. These
coordinates were then used to identify the associated transcripts from GEN-
CODE v22, the associated CpG island, and the CpG sites’ distance from each of
these features. Multiple transcripts overlapping the target CpG were separated
with semicolons. Beta values were inherited from existing TCGA Level 3 DNA
methylation data (hg19-based) based on Probe IDs.

Variant comparison. The same genetic variant can be represented in VCF format
in multiple different ways48, and many of these discrepancies can not be
easily solved by existing normalization tools. In order to reduce false-positive
annotations, GDC requires a strict matching of Chromosome, Position, and
Alternative Alleles during implementation of MAF annotations. However, in
various variant comparisons in this paper, we applied a loose matching strategy
to regard two variants the same if they have overlapping regions between
starting and ending positions. This is particularly useful when a non-INDEL
caller, such as SomaticSniper or MuSE, represents INDEL sites as point
mutations.

t-SNE clustering. mRNA expression count, miRNA expression count, Copy
Number Segmentation, and Methylation Beta Values were collected from the
GDC Data Portal. For mRNA expression and miRNA expression, we removed
low-expressed genes and miRNAs if 99% or more samples have less than or
equal to 1 count. For Copy Number Segments, we computed average segmen-
tation means on each gene weighted on overlapped length between segments
and genes. For methylation data, we removed probes that are empty in more
than 5% of the samples, and imputed the remaining empty values with the
probeset mean. The methylation data is also randomly down-sampled by 25% of
the probes to reduce computational burden.

To integrate these data together for t-SNE clustering, we first computed the
top 200 Principal Components (PCs) from each of the four data types using the
R function prcomp. The top 200, ranked by “variation explained”, from these
800 combined PCs were selected and further scaled to the arbitrary weights of
3:3:1:1 for mRNA:Methylation:miRNA:CNV, and finally used as input for the t-
SNE analysis with the R package Rtsne. We gave less weights to miRNA and
copy number because they don’t separate cancer types as well compared to the
other two data types. We found that the 3:3:1:1 ratio gives the best visual
performance in the scatter plot compared to the other combinations tested. We
ran t-SNE 1000 times with random seeds and displayed the result that
minimizes the cost function49.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during the current study are all available in the NCI’s Genomic
Data Commons (GDC, https://portal.gdc.cancer.gov/). These include the raw data used
to generate all figures and statistical analysis. While the majority of the data used in the
paper is open-access, access to TCGA protected MAFs from the GDC requires dbGaP
approval (phs000178, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000178.v11.p8). The following databases were used in data production: the
GRCh38 major human genome assembly with GenBank assembly accession
GCA_000001405.15 https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/;
hs38d1 human decoy sequences with GenBank assembly accession GCA_000786075.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_000786075.2/; HPV sequences from The
PapillomaVirus Episteme (PaVE, http://pave.niaid.nih.gov/); gene model of GENCODE
version 22 from https://www.gencodegenes.org/human/release_22.html; and, miRNA
database miRBase version 21 from http://www.mirbase.org/. GenBank accessions of
additional virus sequences are listed in Table 1. The remaining data are available within
the Article, Supplementary Information or available from the authors upon
request. Source data are provided with this paper.

Code availability
The workflows used to generated the data during the current study are available at
https://github.com/NCI-GDC/gdc-workflow-overview. The code used to generate
summary stats and plots in this study is available at https://github.com/ZhenyuZ/gdc-
pipeline-paper and released at https://doi.org/10.5281/zenodo.4118754.
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