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Abstract: Identification of disease-associated autoantibodies is of high importance. Their assessment
could complement current diagnostic modalities and assist the clinical management of patients. We
aimed at developing and validating high-throughput protein microarrays able to screen patients’ sera to
determine disease-specific autoantibody-signatures for pancreatic cancer (PDAC), chronic pancreatitis
(CP), autoimmune pancreatitis and their subtypes (AIP-1 and AIP-2). In-house manufactured
microarrays were used for autoantibody-profiling of IgG-enriched preoperative sera from PDAC-,
CP-, AIP-1-, AIP-2-, other gastrointestinal disease (GID) patients and healthy controls. As a top-down
strategy, three different fluorescence detection-based protein-microarrays were used: large with
6400, intermediate with 345, and small with 36 full-length human recombinant proteins. Large-scale
analysis revealed 89 PDAC, 98 CP and 104 AIP immunogenic antigens. Narrowing the selection to
29 autoantigens using pooled sera first and individual sera afterwards allowed a discrimination of
CP and AIP from PDAC. For validation, predictive models based on the identified antigens were
generated which enabled discrimination between PDAC and AIP-1 or AIP-2 yielded high AUC values
of 0.940 and 0.925, respectively. A new repertoire of autoantigens was identified and their assembly
as a multiplex test will provide a fast and cost-effective tool for differential diagnosis of pancreatic
diseases with high clinical relevance.
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1. Introduction

Investigation tools to diagnose pancreatic ductal adenocarcinoma (PDAC) are of unsatisfactory
sensitivity and specificity. Indeed, around 10% of patients that undergo surgery for suspected PDAC
have benign inflammatory diseases, mainly chronic (CP) or autoimmune pancreatitis (AIP) [1,2].
However, these benign diseases do not usually require surgical resection except for compromised
quality of life by major pain symptoms, deterioration of nutritional status or inability to determine
the exact nature of the lesion. Moreover, AIP can be treated by steroids where a high response
to corticosteroid therapy is an important diagnostic criterion. The distinction between AIP and
particularly AIP-type 2 and PDAC can be challenging [1–3]. An international multicentre survey
conducted in 2011, showed that 60% (123 of 204) and 78% (50 of 64) of respectively AIP-1 and AIP-2 were
evaluated retrospectively from resected pancreas on suspicion of pancreatic cancer [4]. The need of new
diagnostic tools is crucial to decrease these numbers. Therefore, an accurate diagnosis may pre-empt
the misdiagnosis of cancer, allowing the appropriate medical treatment of AIP and consequently
decrease the number of unnecessary pancreatic resections.

Few tumour-associated antigens are established in clinical routine as serological markers for
discrimination of PDAC and the most frequently used is the carbohydrate antigen CA 19-9 [5].
Although CA 19-9 is not sufficient enough for the screening of PDAC, it helps for the differential
diagnosis between PDAC and pancreatitis, to assess treatment response, prognosis and follow-up of
PDAC. Furthermore, Lewis antigen-negative individuals do not secrete CA 19-9 or secrete it in small
amounts [6].

A distinguishing feature of autoimmune diseases and cancer is the expression of disease-associated
autoantibodies. Their release into the blood circulation and their assessment could aid early diagnosis of
high-risk populations and assist the clinical management of patients. Tumour associated autoantibodies
(TAAbs) are promising serum biomarkers for detection of early stage disease [7–11]. Indeed, TAAbs can
be detected earlier before the disease progresses to an advanced, incurable stage. The mechanisms by
which autoantibodies are produced accompanying the development of cancer are complex and poorly
understood. The immune system induces immunologic processes causing autoantibody production
in response to mutations, overexpression of proteins, altered antigen folding, aberrant degradation,
aberrant glycosylation and/or the release of proteins from damaged tissue [12,13]. Another explanation
is that B cells generate autoantibodies (AAbs) by escaping the self-tolerance checkpoints of the immune
system [14]. AAb may be detectable both at early onset of the disease and in higher concentrations as
compared with the tumour antigen itself. Their long presence and synthesis due to limited proteolysis
and clearance of the tumour antigen representing an in vivo amplification of signal detection [15].
As biomarkers, AAbs are highly specific and easily purified from serum which makes them an
interesting tool for diagnosis and distinction between different disease groups. High-throughput
screenings on larger sample cohorts, including patients with well-defined early stage diseases, are
required to differentiate autoantibodies’ expression in malignant and benign pancreatic diseases and
define disease specific signatures. Protein microarrays are modern high-throughput tools applicable
to detect new disease-specific antigen signatures recognized by AAbs for diagnosis and prognosis,
but also to help gain more insight into the molecular nature of diseased conditions [16].

Applying antigen microarray technology [17] we describe here the array manufacture process and
subsequent analysis procedures leading to the identification of disease specific AAbs through profiling
of preoperative sera derived from patients with resectable PDACs, CP, both AIP types, other GI-tract
diseases and healthy controls.



Int. J. Mol. Sci. 2020, 21, 2403 3 of 19

2. Results

2.1. Screening of Pooled IgG Enriched Sera Fractions on Large Protein Microarrays

The initial screening was performed on 16 large scale arrays with the first sample set composed of
60 serum samples assembled in four groups (PDAC-, CP-, AIP- patients and Co). Each group as a pool
made of 15 individual sera was profiled on four arrays covering 6400 antigens each. Representative
scans of four identical arrays profiled for the PDAC, CP, AIP and Co group are shown in Figure 1A.
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Figure 1. (A) Example of four microarrays equally spotted with 1600 human recombinant proteins
each after incubation with enriched IgG serum fractions from healthy Co, PDAC, CP and AIP. Red
dots indicate specific autoantigen/autoantibody complex formation and colour intensity represents
the amount of the specific autoantibody bound. White dots indicate saturated signals with maximal
intensity. For technical reasons, background signals were higher at the top and bottom end of the arrays.
Still, the selection criteria permitted identification of real positive signals. (B) Number of autoantigens
retrieved from the first sample set. The profiling allowed discrimination between disease-specific
and disease-overlapping autoantibodies for PDAC, CP, and AIP. (C) Sample set 1 patients’ data was
composed of 60 serum samples assembled in four groups.

The fold-change of PDAC, CP and AIP fluorescence intensity for each protein was evaluated.
The median of all disease groups (PDAC, CP and AIP) arrays were normalized according to the mean of
all array spots of the healthy control group (Co). The normalized median fluorescence intensity (MFI)
of each antigen recognized/detected in the three different pools of patients’ sera (PDAC, CP and AIP)
was compared to the MFI of the antigen recognized by the healthy Co pool. The antigens were selected
as promising candidates when the normalized log-values revealed a fold change greater than 1.5 for
PDAC, CP and AIP compared to Co. This allowed the identification of 425 autoantigens discriminating
between disease-specific and disease-overlapping autoantibodies (Figure 1B). The candidates that were
assigned to PDAC (n = 89), assigned to CP (n = 98) and to AIP (n = 104), and candidates overlapping CP
and AIP (n = 54) were selected for the manufacture of intermediate-sized microarrays with 345 antigens
and subjected to profiling with a larger cohort the sample set 2.

Of note, only 28 autoantigens were found overlapping between the three disease groups PDAC,
CP and AIP. The list of selected candidate proteins is summarized in Supplementary Table S1.
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2.2. Screening of Multiple Sera of a Large Cohort

For the first refinement the above-mentioned intermediate-sized microarrays were used. On these
260 IgG enriched fractions were profiled as 52 pools of five patients each (pools: Co n = 14, PDAC
n = 8, CP n = 7, GID n = 10 AIP-1 n = 10, and AIP-2 n = 3). Patients’ data are presented in Table 1 under
“sample set 2”. After scanning the microarrays, an MFI was assigned to all proteins. Internal positive
controls (EBV VCA p18) and negative controls (PBS) were used on each slide for quality control.
All values were converted into log values. T-test was applied to compare all sets of observations and
all p values were adjusted using false discovery rate (FDR) method. Out of 345 candidates, 29 were
differentially recognized among the different disease groups. Identification of the 29 autoantigens is
shown in Table 2.

Table 1. Patient data in the three sample sets used for protein microarray profiling, n: number
of observations.

Patients Type Sample Set Patients (n) Median Age (Range) Male (n) (%)

Co
1 15 33.0 (25–71) 7 (46.7)
2 70 40.5 (20–83) 29 (70.0)
3 48 48.5 (20–81) 31 (64.6)

PDAC
1 15 66.0 (54–77) 6 (40.0)
2 40 68.0 (32–85) 22 (55.0)
3 25 68.0 (41–85) 15 (60.0)

CP
1 15 55.0 (37–75) 9 (60.0)
2 35 52.0 (36–68) 21 (60.0)
3 24 53.5 (36–68) 16 (66.7)

GID
1 0 0 0
2 50 63.5 (25–83) 33 (66.0)
3 26 63.0 (43–81)) 19 (73.1)

AIP-1 1 8 56.5 (29–76) 6 (75.0)
2 50 68.0 (29–84) 38 (76.0)
3 47 65.0 (29–83) 35 (74.5)

AIP-2
1 7 43.0 (37–67) 5 (71.4)
2 15 45.0 (32–76) 11 (73.3)
3 15 45.0 (32–76) 11 (73.3)

All patients 1 60 63.0 (25–77) 33 (55.0)
2 260 58.0 (20–85) 154 (59.2)
3 185 59.0 (24–85) 127 (68.6)

Table 2. Characterization of the selected 29 autoantigens for individual screening.

Gene Symbol Antigen Description ORF Length (bp)

CCKBR Cholecystokinin B receptor 1341
CRYZL1 Crystallin, zeta (quinone reductase)-like 1 1050
TRUB1 TruB pseudouridine (psi) synthase homolog 1 (Escherichia coli) 1047
WDR45 WD repeat domain 45 1083
CYP3A5 Cytochrome P450, family 3, subfamily A, polypeptide 5 1509
IL13RA2 Interleukin 13 receptor, alpha 2 1140
ANXA4 Annexin A4 963

PAICS Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole
succino-carboxamide synthase 1278

EIF2S2 Eukaryotic translation initiation factor 2, subunit 2 beta, 38 kDa 1002
SLC7A7 Solute carrier family 7 (cationic amino acid transporter, y+ system), member 7 1536
RNF138 Ring finger protein 138 738

CNP 2’,3’-cyclic nucleotide 3’ phosphodiesterase 1263
AK1 Adenylate kinase 1 585

YTHDF2 YTH domain family, member 2 1740
ELF4 E74-like factor 4 (ets domain transcription factor) 1992

RAB31 RAB31, member RAS oncogene family 585
CHGA Chromogranin A (parathyroid secretory protein 1) 1374
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Table 2. Cont.

Gene Symbol Antigen Description ORF Length (bp)

PSMC6 Proteasome (prosome, macropain) 26S subunit, ATPase, 6 1167
GPR3 G protein-coupled receptor 3 993

TOR1B Torsin family 1, member B (torsin B) 1011
XRCC3 X-ray repair complementing defective repair in Chinese hamster cells 3 1038
ISOC1 Isochorismatase domain containing 1 708
LENG1 Leukocyte receptor cluster (LRC) member 1 792
PPA1 Pyrophosphatase (inorganic) 1 870

ZNF581 Zinc finger protein 581 594
PRSS1 Protease, serine, 1 (trypsin 1) 720

PPP1R15A Protein phosphatase 1, regulatory (inhibitor) subunit 15A 2025
LTF Lactotransferrin 2136

PRDX-4 Peroxiredoxin 4 813

The ID correctness was confirmed by sequencing the PCR products, from which the relevant
proteins were produced recombinantly. Of note, four of these proteins—annexin A4 (ANXA4), protease
serine 1 (PRSS1), lactotransferrin (LTF) and peroxiredoxin 4 (PRDX 4)—were already previously
reported as AIP autoantigens [7,18]. The normalized median log2 MFI for each candidate for the six
compared groups are reported in Table 3.

Table 3. Selected autoantigens and their normalized autoantibody levels (log2 of median fluorescence
intensity) for all compared groups.

Gene Symbol Co PDAC CP GID AIP-1 AIP-2

CCKBR 8.6305 8.7447 9.0325 8.6781 8.7038 8.9954
CRYZL1 8.7371 8.8043 8.9705 8.7381 8.8542 8.8528
TRUB1 8.7193 8.8316 9.1490 8.7414 8.7844 8.9571
WDR45 8.6397 8.7019 9.0841 8.8597 8.8556 8.8729
CYP3A5 8.6718 8.7179 9.0051 8.7582 8.7711 8.8270
IL13RA2 8.6985 8.7315 9.0586 8.7002 8.7162 8.9898
ANXA4 8.6938 8.7661 9.3695 8.7482 8.9397 8.8128
PAICS 8.6322 8.5264 9.2560 8.5043 9.0537 9.0789
EIF2S2 8.7413 8.6949 9.2072 8.6407 8.8949 8.7997
SLC7A7 8.6244 8.6772 9.1777 8.6259 8.7772 8.8422
RNF138 8.6440 8.6127 9.0573 8.5893 8.6385 9.0285
CNP 8.5802 8.5065 8.8401 8.4649 8.5370 8.9146
AK1 8.6401 8.6145 8.9979 8.5715 8.5416 8.9238
YTHDF2 8.4544 8.5643 8.8103 8.5429 8.4154 8.8491
ELF4 8.6501 8.6388 9.0962 8.7032 8.6739 8.8977
RAB31 8.6347 8.6322 9.0612 8.7034 8.7708 9.0932
CHGA 8.5721 8.5743 9.0147 8.5691 8.6180 8.6760
PSMC6 8.6986 8.7140 9.0575 8.6634 8.7957 8.7146
GPR3 8.7187 8.7172 9.0569 8.7065 8.7890 8.7467
TOR1B 8.6135 8.7880 9.1709 8.7872 8.8545 8.9956
XRCC3 8.6368 8.7289 9.1951 8.7563 8.7511 9.1535
ISOC1 8.6692 8.7422 9.0783 8.7196 8.7657 8.9872
LENG1 8.8537 8.8802 9.3380 8.8457 8.8833 8.8929
PPA1 8.9197 8.90522 9.5752 8.8729 9.1075 9.1996
ZNF581 8.9016 8.6838 9.2369 8.6845 9.0998 8.9404
PRSS1 8.4126 8.3032 8.9181 8.3791 8.4931 8.7592
PPP1R15A 8.8223 8.7876 9.5294 8.8394 9.1736 9.4495
LTF 8.5557 8.5745 8.906 8.4974 8.6029 8.4205
PRDX-4 7.9297 8.0862 8.7052 8.1987 8.0611 8.3418

In order to visualize the differential abundance of the 29 AAb between the 52 analysed pools, heat
maps were generated (Figure 2A). Comparing all 29 candidates’ abundance in CP and its autoimmune
variants AIP-1 and AIP-2 versus PDAC clearly segregates the benign from malign pancreatic diseases
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as presented in Figure 2B and demonstrates the lower immunogenic response in the PDAC group
confirming an earlier microarray profiling report by Gnjatic et al [8].
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Figure 2. Overview of pooled serum antibody reactivity to the selected autoantigens. AIP-1, AIP-2
and CP mostly show higher autoantibody reactivity than PDAC and, thus, help to differentiate PDAC
from primarily inflammatory pancreatic diseases. Heatmaps generated from intermediate-sized
protein microarrays data presenting serum antibodies reactivity with the indicated antigens in the
six tested cohorts. High autoantibody reactivity values are presented by red, low autoantibody
reactivity by blue boxes. Data are presented as differential median fluorescence intensity MFI (MFI log2
scale) levels of the response to the 29 autoantigens. (A) For comparison of all cohorts the following
pools were used: Co (n = 14); PDAC (n = 8); CP (n = 7); GID (n = 10); AIP-1 (n = 10), and AIP-2
(n = 3). (B) Hierarchical clustering using the log2 MFI of the 29 autoantigens between the three different
pancreatic diseases and visualization of higher reactivity of CP- and both AIP subtypes-serum antibodies
versus PDAC-serum antibodies.
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2.3. Autoantibody Profiling of Selected Autoantigens with Individual Samples

Using the profiling results of pooled sera on intermediate-sized arrays, the 29 selected candidates
were spotted on new slides together with seven additional autoantigens for AIP (ANXA1, ANXA2,
CA-I, CA-II, ENO1, YWHA and 14-3-3 ζ) repeatedly reported in the literature, by that forming a 36 spot
array. Hence, a small array was formed comprising internal positive (EBV VCA p18) and negative (PBS)
controls spotted in several replicates. For the analysis, the sample set number 3 (Table 1) consisting
of 185 individual patients (Co n = 48, PDAC n = 25, CP n = 24, GID n = 26, AIP-1 n = 47, AIP-2
n = 15) was profiled. All groups were compared using ANOVA and Tukey’s multiple comparison tests.
Initially, comparison of autoantigens between PDAC and all AIP patients (AIP-1 and AIP-2 together)
was performed. Table 4 displays 10 antigens that significantly differ between these two groups.

Table 4. Autoantigens and their corresponding reactivity in PDAC and AIP patients’ sera. Selected
autoantigens and their normalized autoantibody levels (log of median fluorescence intensity).

Gene Symbol PDAC AIP p Value

PAICS 6091 6765 0.0436
BOK 6324 8439 0.0025

RNF138 4214 6352 0.0016
TOR1B 6727 10,077 5.56 × 10−6

PPP1R15A 5576 6458 0.0017
LENG1 5560 6391 0.0016
CYP3A5 5141 6717 0.0075

GPR3 4970 6481 0.0137
CA2 5576 4667 0.0173

HDAC3 4214 6352 0.0016

Nine of them revealed significantly higher median MFI in AIP than in PDAC sera. Surprisingly
CA-II, representing a well-known autoantigen in AIP (p = 0.0173), was recognised significantly more
in PDAC compared to AIP sera. Subsequently, all antigens were separately compared among all
groups of patients’ sera. The selected candidates with corresponding median MFI and p values and
for each disease group that were significantly different among the disease groups are presented in
Supplementary Table S2.

Among the antigens that discriminated between PDAC and benign inflammatory disease (Figure 3),
three showed significantly different MFI between both AIP subtypes: PP1R15A (p = 0.0387), CYP3A5
(p = 0.0173) and WDR45 (p = 0.0173). Other antigens that do not discriminate PDAC from AIP but were
found to discriminate between both AIP subtypes were MAGEA2 (p = 0.0306), FCGR2B (p = 0.0272)
and WDR45 (p = 0.0280). Furthermore, three out of seven autoantigens that were previously reported
to be associated with AIP—ANXA2 (p = 0.0173), ANXA4 (p = 0.0280) and ENO1 (p = 0.0280)—reacted
significantly more with AIP-1 sera.

2.4. Validation of the Marker Panel

In order to assess the validity of the 29 identified autoantigens regularized logistic regression using
an elastic net was applied to build statistical models for the discrimination between, first, benign (AIP-1
+ AIP-2 + CP) vs. malignant (PDAC), second, AIP-1 vs. PDAC and, third, AIP-2 vs. PDAC. For each
classification two prediction models were built, one based on the selected 29 antigens (Table 2) and the
other incorporating the additional seven antigens above mentioned and previously reported as AIP
antigens. The variable importance was measured based on the mean absolute values of the regression
coefficients estimated during cross-validation (upper graphs in Figure 4). For the discrimination
between CP+AIP-1+AIP-2 and PDAC, nearly all antigens received mean absolute coefficients unequal
to zero. To discriminate between AIP-2 and PDAC only 13 of the 29 antigens showed calculated
mean absolute coefficients unequal zero (Supplementary Table S3). Notable is that often the same
candidates, such as PPP1R15A, EIF2S2, PAICS, TOR1B, PRSS1, LENG1 and WDR45 were selected
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and showed large coefficients. The predictive performance of the models was quantified using ROC
curves (Figure 4). The curves illustrate that achieving high sensitivity is only possible at the expense of
specificity, and vice versa. The models based on the 29 and 36 antigens, respectively, only showed
slight differences in their accuracy.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  9 of 22 
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Figure 3. Comparison of antibody reactivity for serum antibodies (MFI) to autoantigens between the
different pancreatic diseases. Differences were considered statistically significant when the p-value was
less than 0.05 and are marked with an asterisk: * p < 0.05, ** p < 0.01 and *** p < 0.001.

The models discriminating between PDAC and AIP-1 and AIP-2, respectively, yielded high AUC
values of 0.940 and 0.925, respectively.
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Figure 4. The predictive performance of the models. Upper graphs present the variable importance
measured as mean absolute values of the coefficients estimated during cross-validation of the models
incorporating the 29 identified antigens. Below, corresponding ROC curves of the statistical models
discriminating between AIP-1+AIP-2+CP vs. PDAC (left), AIP-1 vs. PDAC (middle), and AIP-2 vs.
PDAC (right). The ROC curves for the models based on the 29 antigens are depicted as continuous
lines and the ROC curves for the models based on the 36 antigens as dashed lines. The corresponding
confidence intervals of the AUC values are indicated in the square brackets. Confidence intervals for
the AUC values were computed by the formula according to Wilson [19].

3. Discussion

Interest on antibodies as biomarkers for both autoimmunity and cancer has been a subject of
debate these last decades [20,21]. Profiling on protein microarrays is one of the most powerful
techniques that allow large-scale quantitative protein determination in a high-throughput way for
initial protein biomarker discovery. The majority of autoantibody profiling investigations determined
antigens recognized by autoreactive IgG antibodies. To this end they have been used to identify
biomarkers for cancer diseases [22–24]. Microarrays assembled of thousands of different proteins
have been already reported and used to identify tumour associated autoantibodies in the context of
colorectal cancer [25], bladder cancer [26], ovarian cancer, and pancreatic cancer [8,27]. Furthermore,
several studies described elevated autoantibody concentrations in sera of patients with AIP including
anti-lactoferrin [28,29], anti-carbonic anhydrase II, anti-carbonic anhydrase IV, anti-pancreas secretory
trypsin inhibitor, anti-anionic and cationic trypsinogens, anti-amylase-1, anti-heat shock protein 10
and anti-plasminogen-binding protein peptide autoantibodies [7,18,30]. However, their performance
as diagnostic markers is still under debate. Some of these antibodies are organ-specific mainly against
antigens from the pancreatic ducts and acini [28,30], whereas others are not organ-specific and directed
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against nuclear antigen (ANA). Recently, additional autoantibodies have been identified against
pancreatic enzyme precursors in AIP patients [7]. The study also reported different expression of
anti-pancreatic lipase and anti-transaldolase in the two AIP-subtypes.

Though AIP have been clearly recognized as two entities with distinct clinical profiles the aetiology
and the pathophysiological mechanisms of AIP remain still unknown [4,31–34].

In the current study we aimed at the identification of new biomarkers able to discriminate between
very similar pancreatic diseases. We showed the usefulness of a custom protein microarray approach
that provides specific serum antibodies pattern in patients affected by PDAC, CP, AIP and GID. Starting
with 6400 human recombinant proteins with subsequent two steps refinement strategy as selection, we
identified 29 autoantigens which were differentially and significantly recognized by autoantibodies
present in the IgG-enriched fraction sera of patients with pancreatic diseases.

Our study cohort was able to address the three following unsolved issues: (i) can autoantibodies
differentiate between benign pancreatic diseases from PDAC, (ii) can autoantibodies differentiate
AIP-patients particularly those with AIP type 2 from PDAC-patients and (iii) can autoantibodies
differentiate both subtypes of AIP. We identified TOR1B, RNF138, PPP1R15A, PAICS, LENG1, GPR3
and CYP3A5 as autoantigens that allowed discrimination between PDAC, CP and AIP.

Many previously described proteins used in the clinic to distinguish PDAC from healthy patient
actually fail to discriminate PDAC from pancreatitis (CP and AIP), a spectrum of diseases that shares
many molecular and imaging features with PDAC [35]. In these patients, CT scan can be non-diagnostic
and more invasive endoscopic testing may be required toward a final diagnosis. A non-invasive
pancreatitis-biomarker panel may be helpful for the investigation of such patients. From a clinical
standpoint, the actual utility of a biomarker would depend on the context in which it is used. Indeed,
biomarkers for PDAC necessarily need to have a very high specificity because of the low prevalence
of the disease (0.01%) that would lead to numerous false positive. CA 19-9 is the most extensively
studied and validated serum biomarker for the diagnosis of PDAC. With an overall sensitivity and
specificity in the range of 80–86% both values do not reach the necessary sensitivity and specificity for
pancreatic cancer detection. This unsatisfactory performance is partly due to elevated CA19-9 levels
in benign diseases such as acute and chronic pancreatitis, biliary obstruction, cholangitis, and liver
cirrhosis but also in other gastrointestinal cancers resulting in a significant number of false positive.
Additionally in patients with Lewis negative genotype (5–10% of population) CA 19-9 is not expressed
leading to false negative results.

On the other hand, the prevalence of CP, including autoimmune subtype, approaches 1–5% of the
population and in such a population less specificity could be tolerated as long as the biomarker test
can distinguish healthy controls.

Some of the markers reported in this study are able to distinguish PDAC from AIP-1 but fail
to discriminate between PDAC and AIP-2. This finding may be related to the fact that the clinical
spectrum of AIP-1 is a systemic disease compared to AIP-2. Furthermore, it is difficult to distinguish
AIP-2 from PDAC as both can induce the same clinical profile. We therefore assessed different antigen
profiles between both types of AIP and PDAC and were able to generate predictive models with high
AUC values for AIP1 and AIP2 vs. PDAC.

The most interesting biomarker is Torsin 1B (TOR1B) because it is capable to discriminate AIP
from other diseases. Torsin Family 1, member B also known as TOR1b or DQ1 is found primarily in
the endoplasmic reticulum and nuclear envelope and can act as a chaperone allowing the maintenance
of the integrity of the nuclear envelope and endoplasmic reticulum.

Surprisingly only a small number of antigens have been identified that differentiate PDAC from
other diseases. We can extrapolate that it could be related to the desmoplastic reaction that often takes
place in this tumour [8]. Furthermore, heterogeneity among our patients with PDAC (stage and grade)
could also explain variation of recognition of antigens. Nevertheless, the protein microarray screening
was able to identify candidate proteins that show strong differential recognition between the pancreas
diseases PDAC, CP and both AIP forms.
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We took a step-by-step analysis approach with three different but interlocking profiling parts.
The third part involved analysis of a large cohort of patients tested individually. MFI were used to
address statistical analysis. The statistical prediction models revealed high predictive performance
with AUC values that reached about 90%. This leads us to conclude that the identified antigens might
serve as a basis to establish accurate predictive models. However, valid models need to be calculated
including a much larger sample size. The uncertainty of the predictive strength can be recognized by
the moderate-sized confidence intervals.

Not only might the novel autoantibody panel help to improve diagnostics and to understand the
pathophysiology of AIP, but the autoantibodies could also lead to new possible immunotherapeutic
targets. Customized, small-sized arrays or similar assay formats could be a useful and affordable
way to diagnose and discriminate pancreatic cancer from benign inflammatory diseases and avoid
unnecessary surgery on patients with AIP-1 and AIP-2.

4. Materials and Methods

4.1. Patients and Samples

Serum samples of patients with pathologically confirmed PDAC, CP, AIP-1, AIP-2, gastro-intestinal
diseases (GID) and controls were obtained from the Pancobank of the

European Pancreas Center (EPZ/Department of Surgery, University Hospital Heidelberg; Ethical
Approval Votes no. 301/2001 and 159/2002), a member of BMBH/Biomaterial Bank Heidelberg.
Additional sets of serum samples were provided from the Department of Gastroenterology, Kobe
University Graduate School of Medicine, Kobe, Japan.

Data of patients who were referred for an operation were collected in a prospectively designed
database. The clinico-pathological parameters included age, gender, TNM classification and AJCC
stage of tumour location are listed in Table 5.

Table 5. Patients’ clinico-pathological parameters.

Variables Patients (n)

Total 315
Pancreatic cancer (PDAC) 65
Age (years)
Mean ± SD 66.2 ± 11
Range (median) 32–85 (68)
Gender: male/female 32/33
Grade
G1 0
- G2 32
- G3 33
TNM-stage (AJCC stage, 8th edition)
- T1a 1
- T1c 10
- T2 34
- T3 14
- T3 * 6
N-stage
- N0 11
- N1 26
- N1* 3
- N2 25
M-stage
- M0 53
- M1 12
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Table 5. Cont.

Variables Patients (n)

AJCC Stage
- IA 5
- IB 6
- IIA 2
- IIB 19
- IIB * 3
- III 18
- IV 12
Tumour location
- head 42
- body 8
- tail 15
Autoimmune pancreatitis (AIP) 70
AIP type 1 55
Age (years)
Mean ±SD 64.47 ± 12.21
Range (median) 29–84 (68)
Gender: male/female 42/13
AIP type 2 15
Age (years)
Mean ±SD 51.86 ± 14.7
Range (median) 32–76 (44.5)
Gender: male/female 10/5
Chronic pancreatitis (CP) 50
Age (years)
Mean ±SD 53.34 ± 9.6
Range (median) 36–75 (53.5)
Gender: male/female 33/17
Gastrointestinal diseases (GID) 60
Benign diseases 11
Malign diseases 49
- gastro, liver, colon, renal, other 6, 6, 17, 4, 16
Age (years)
Mean ±SD 63.28 ± 10.75
Range (median) 25–83 (63)
Gender: male/female 41/19
Healthy controls (Co) 70
Age (years)
Mean ±SD 46.8 ± 19.47
Range (median) 20–83 (40.5)
Gender: male/female 48/22

* AJCC stage, 7th edition (AJCC stage, 8th edition not available).

The first group, the PDAC sera (65 patients mean age 66.2 ± 11 years) derived from patients with
operable pancreatic tumours. The second investigated group, chronic pancreatitis (CP) consisted of
50 serum samples from patients who have undergone duodenum preserving pancreatic head resection
(mean age 53.3 years ± 9.6). The histopathological analysis of all patients confirmed CP. The third
group, represented by 55 AIP-1 patients, is a cohort composed of 25 and 30 serum samples from
Heidelberg and Kobe, respectively (mean age 64.5 ± 12.2 years). The fourth group, AIP-2 consisted
of 15 patients from Heidelberg only. All AIP cases were confirmed using histology whenever tissues
were available. If histology was not available, the HISORt Mayo Clinic criteria or the International
Consensus Diagnostic Criteria (ICDC) for AIP were used to confirm the disease. The fifth patient group
was composed of benign and malign extra-pancreatic gastrointestinal diseases (GID), and consisted of
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60 patients, (mean age 63.3 ± 10.8 years).As controls, a group of 70 healthy volunteers (Co) (mean age
47 ± 19.5 years) including 25 healthy controls from Kobe was used.

These six groups were used in three dependent sample sets in this study. Sample set 1 consisted of
60 pooled sera IgG fractions (15 sera/group), sample set 2 consisted of 260 sera pooled in 52 IgG fractions
(5 sera/pool) and sample set 3 was composed of 185 individual patient sera. Exact numbers of the sera
and the patients’ clinical data in each sample set used for controls, gastrointestinal diseases (GID),
chronic pancreatitis (CP), autoimmune pancreatitis (AIP-1 and AIP-2) and pancreatic adenocarcinoma
(PDAC) cohorts are presented in the Table 1, text and figures.

4.2. IgG Enrichment

To limit artifacts in the array binding process and increase specificity, serum samples were
enriched for IgGs using the NAb protein A/G spin column and buffers (ThermoScientific, Rockford,
IL). The purification procedure was performed according to the manufacture’s protocol. The collected
fractions were neutralized by adding 40 µL of 1.0 M Tris, pH 8.8, measured at 280 nm to assess the
amount of purified antibodies and subsequently used for profiling procedures.

4.3. Generation of DNA Templates for Recombinant Human Antigens from Bacterial Library

The ORF-clone library of the ORFeome Collaboration was provided by the DKFZ Genomic
and Proteomic Core Facility [36]. Clones were selected according to the encoded protein’s role in
inflammation and/or cancer. Two microliters of each selected clone were transferred with 150 µL of
LB-kanamycin-medium and incubated at 37 ◦C overnight. The day after, the cultures were spun down
at 1900× g for 30 min. The pellets were resuspended in 100µL of PCR-grade water, heated in a ventilated
oven at 75 ◦C for 20 min and spun down once more as above-described. Subsequently, the supernatants
containing plasmid DNA were transferred into standard 96-well PCR plates. DNA-samples were
stored at−20 ◦C. Five microliters of the isolated plasmid DNA used as a template for the synthesis of the
gene of interest was amplified using PCR with a Taq DNA polymerase kit (Qiagen, Hilden, Germany).
The kit was used according to the manufacturer’s instructions manual during 40 cycles of denaturation
at 94 ◦C for 30 sec, annealing at 52 ◦C for 30 sec and elongation at 72 ◦C for 210 sec. This allowed
the gene of interest to be amplified with a pair of expression primers carrying regulatory sequences
and fusion tags: forward expression primer: 5’-GAAATTAATA CGACTCACTA TAGGGAGACC
ACAACGGTTT CCCTCTAGAA ATAATTTTGT TTAAGAAGGA GATATACATA TGCATCATCA
TCATCATCAT AAAGCAGGCT CCACCATG-3’; reverse expression primer: 5’-CTGGAATTCG
CCCTTTTATT ACGTAGAATC GAGACCGAGG AGAGGGTTAG GGATAGGCTT ACCAACTTTG
TACAAGAAAG CTGGGTC-3’. The C-terminal V5 sequence was intended for the detection of
full-length expressed proteins. Agarose gel (1.3%) electrophoresis was performed to verify the amplified
DNA fragments for correct DNA bp-length. The identity of the last 29 candidate autoantigens was
further confirmed by sequencing using a Mix2seq kit (Eurofins).

4.4. Manufacture of Protein Microarrays

The fabrication of protein microarrays was performed applying the multiple spotting technique,
an approach that uses DNA templates to synthesize proteins directly on microarray slides [17,37].
The protein microarrays were spotted on epoxysilane coated slides (SCHOTT Nexterion AG, Jena,
Germany) using a microarray non-contact printer, the Nanoplotter 2 (GeSIM, Radeberg, Germany)
following the protocol described by Hufnagel et al. [38]. The protein microarrays manufacture process
is outlined in Figure 5. Briefly, during a first spotting step 900 pL of each DNA template was transferred
onto the epoxysilane slides. On top of each DNA spot, in a second spotting event, droplets were
printed consisting of 3.6 nL of the cell-free expression mixture (S30 T7 High-Yield Protein Expression
kit, Promega). Protein synthesis occurred during an incubation phase at 37 ◦C for one hour followed by
an overnight incubation (12-16 hours) at 30 ◦C. Each candidate was spotted in duplicates. In addition,
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an experimental positive control (Epstein–Barr Virus VCA p18) and negative control consisting of PBS
in PCR mixture were printed in several replicates on each array.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  16 of 22 
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Figure 5. Simplified flow chart of the nine major steps for the manufacture of protein microarrays
and their application for autoantibody detection and profiling. 1: cDNAs selection from library
2: Two-step PCR for enrichment cDNAs and fusion with tag primers. 3: Spotting of cDNAs on the
epoxisilane-coated slides. 4: Addition of expression mixture to each DNA spot. 5: Incubation of the
DNA/expression mixture for cell free transcription and translation. Removal of unbound proteins
by washing. The recombinant proteins were retained through an epoxy-amino reaction. 6: Addition
of IgG serum fractions and formation of antigen/antibody complexes. 7: Removal of unbound IgGs.
8: Incubation with fluorescence-conjugated secondary antibodies (anti-human IgG, IgM and IgA)
directed against the primary antibodies from the patient sera. 9: Scanning of microarrays using a
635 nm laser (assessment of fluorescence intensity of each spot and normalization and microarray
data analysis.

All antigens corresponded to distinct human recombinant proteins. A quality control of the spotting
procedure was performed randomly on 10% of each batch of production. The percentage of proteins
that were successfully expressed on the protein microarray was assessed using fluorescence-conjugated
antibodies directed against fusion tags (6xHis and V5) present at either end of the expressed proteins.
Briefly, the slides were blocked using a 2% BSA buffer for one hour. All incubations were performed
on a shaker at room temperature. After two washing steps with PBST, the Penta-His Alexa Fluor 647
conjugate antibody (Qiagen) and the anti-V5 Cy3 monoclonal antibody (Sigma) were incubated at a
dilution of 1:1000 both in 2% BSA for one hour. The slides were then washed three times and dried
in an oven at 30 ◦C prior to scanning using the Powerscan (Tecan, Männedorf, Switzerland) at two
wavelengths (532 and 635 nm). The signal intensity was considered to be representative of the amount
of expressed proteins on the slides.

4.5. Immunoassay with Patient Antibodies

In order to compare the reactivity of each antigen equally in the different patients, all IgG fractions
used for profiling on microarrays were adjusted to a protein concentration of 10 µg/ml prior to
incubation on the slides. As first step, the slides were blocked using SuperBlock (ThermoScientifc)
for one hour at room temperature on a shaker. After two washing steps with PBST, 10 µg of IgG
fractions diluted in PBS with 0.81 mg of E. coli lysate were incubated for 15 h to allow the antibodies
to bind to the recombinant antigens on the microarray. Since an E. coli-based expression mixture
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was used for protein synthesis, remaining E. coli proteins on the slide could otherwise react with
antibodies against E. coli proteins in the serum and thereby produce unspecific signals. After two more
washing steps with PBST, a fluorescence-conjugated secondary antibody (goat anti-human whole IgG,
(Jackson ImmunoResearch, Europe Ltd., Cambridgeshire, UK) diluted 1:200 in PBS directed against the
primary antibodies from the patient sera on the microarray was added for two hours. The slides were
afterwards washed three times for 15 min, rinsed in Milli-Q sterile water and dried at 30 ◦C. All slides
were scanned (Powerscan, Tecan, Männedorf, Switzerland) using a 635 nm laser. The signal intensity
obtained from the fluorescence-conjugated antibody was approximately proportional to the amount of
primary antibody in the enriched-IgG sera that recognize the antigens on the protein microarray.

4.6. Construction and Optimization of the Protein Microarrays

Applying the top-down strategy as a stepwise refinement for selection of the best differentiating
autoantigens, three differently sized protein microarrays were manufactured.

The large scale arrays (n = 16, four per profiled group, each with 1600 individual antigens/array
covering a total of 6400 antigens) were printed and incubated with a small cohort of total 60 serum
samples assembled in four groups of PDAC, CP, AIP patients and Co. Each group consisted of
15 individual sera (20 µL) combined in a pool (300 µL) and subjected to IgG-enrichment. The patients’
characteristics in this sample set 1 are presented in Table 1.

The intermediate size microarrays, n = 60, consisted of 345 antigens spotted in duplicates/array.
On these 260 IgG-enriched fractions were analysed: Co: n = 70; PDAC: n = 40; GID: n = 50; CP: n = 35
AIP-1: n = 50; AIP-2: n = 15; they were profiled as 52 pools of 5 patients per group (pools: Co n = 14,
PDAC n = 8, CP n = 7, GID n = 10 AIP-1 n = 1 0, and AIP-2 n = 3).

Finally, small-size arrays of 36 antigens in duplicates were printed and tested in sample-set 3 on
cohorts of 185 patients individual IgG-enriched fractions (PDAC: n = 25; CP: n = 24; AIP-1: n = 47;
AIP-2: n = 15; GID: n = 26; and Co: n = 48).

4.7. Data Analysis

GenePix Pro software (Molecular Devices, Sunnyvale, CA, USA) was used to analyse the
fluorescence intensity of each spot and to eliminate spatial artifacts. Several negative controls
consisting of PBS in PCR mixture spotted on each array were used to assess possible nonspecific signals.

After analysing the microarrays using the GenePixPro Software, the signal intensity expressed in
median fluorescence intensity values (MFI), was normalized by linear scaling of log-ratios for all array
probes. As variables were not normally distributed, the nonparametric two-sided Kruskal–Wallis test
was used to assess differences of an antigen between disease groups. All p values were adjusted using
false discovery rate (FDR) method. Adjusted p-values of < 0.05 were considered to be significant.

Logistic regularized regression using an elastic net [39] was applied to build a prediction model
based on selected antigens. The elastic net hyper-parameters α (elastic net mixing parameter) and
λ (shrinkage parameter) were tuned by conducting a five-fold cross-validation, assessing variable
importance maximize the AUC. An advantage of cross-validation is that each observation is assigned
to the test data exactly once. Hence, for each patient the estimated probability for its classification can
be extracted. Model building was performed with R version 3.6.2 [40] using the packages “glmnet”
and “caret‘ [41,42]. ROC curves were plotted with the “pROC” package [43]. Confidence intervals for
the AUC values were computed by the formula according to Wilson [19].

All graphs except Figure 5 were designed in GraphPad Prism software (version 5; La Jolla, CA,
USA). The normalized MFI of each candidate were graphically presented as box-and-whisker plots.

5. Conclusions

This work aimed at the identification of antigen signatures in patients with pancreatic cancer,
a devastating disease often diagnosed at late stage and misdiagnosed with benign inflammatory
diseases, such as CP and AIP. The medical needs for such biomarkers are not only important for
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diagnostic and discrimination but may also help to identify new possible immunotherapeutic targets.
Indeed, the clinical diagnose of PDAC requires different investigation tools such as tissue sampling
through CT scan or endoscopic fine needle aspiration, as well as serological markers (CA19-9 and
CEA), that have several limitations [44]. Both markers are not only of poor sensitivity but also of poor
specificity among other gastrointestinal diseases. To our knowledge this is the first study comparing
serum from such an important and diverse cohort. The distinction between chronic and autoimmune
pancreatitis is also important in terms of medical treatment and long-term outcome. Though, chronic
pancreatitis has diverse etiological treatments, AIP requires in the vast majority of cases a long-term and
specific corticoid-therapy. Furthermore, erroneous administration of corticoids to patients suffering
from PDAC can not only exacerbate the cancer in terms of tumour invasion but also greatly contribute
to delay the diagnosis of a very lethal disease. Our results revealed not only panels of biomarkers
useful to discriminate between PDAC, CP and AIP but also markers able to distinguish between both
types of AIP. This recognition pattern detected via custom protein array is a cheap, non-invasive,
high specific test that should be used routinely in the clinic. The functional role of these antibodies
is poorly described in the literature. Further experiments should address the role on the biological
function of autoantibodies present in the IgG-fraction of patients that are targeting these antigens.
Regardless of the heterogeneity of the antigens among the patient groups, these candidates could
provide useful insight in mechanistic pathways and therapeutic intervention. Statistical modelling
revealed potential to establish a predictive model based on the identified antigens for the differential
diagnosis of pancreatic diseases. However, for this purpose, a larger sample size is required and the
models need to be validated in a prospective manner.
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