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Abstract

Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data repre-

sents a major challenge for high-resolution structure determination. Unsupervised classifi-

cation may serve as the first step in the assessment of structural heterogeneity. However,

traditional algorithms for unsupervised classification, such as K-means clustering and maxi-

mum likelihood optimization, may classify images into wrong classes with decreasing sig-

nal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs.

Overcoming these limitations requires further development of clustering algorithms for high-

performance cryo-EM data processing. Here we introduce an unsupervised single-particle

clustering algorithm derived from a statistical manifold learning framework called generative

topographic mapping (GTM). We show that unsupervised GTM clustering improves classifi-

cation accuracy by about 40% in the absence of input references for data with lower SNRs.

Applications to several experimental datasets suggest that our algorithm can detect subtle

structural differences among classes via a hierarchical clustering strategy. After code opti-

mization over a high-performance computing (HPC) environment, our software implementa-

tion was able to generate thousands of reference-free class averages within hours in a

massively parallel fashion, which allows a significant improvement on ab initio 3D recon-

struction and assists in the computational purification of homogeneous datasets for high-

resolution visualization.

Introduction

Single-particle cryo-EM is evolving into a mainstream approach in visualizing the three-

dimensional (3D) structures of biomolecules in their native functional states at near-atomic
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resolutions [1,2]. Since individual biomolecules may sample multiple conformations, a prereq-

uisite for high-resolution structure determination is to obtain a ‘pure’ dataset that only

includes particle images in the same conformational state [3]. To distinguish different confor-

mations in raw particle images, unsupervised two-dimensional (2D) clustering is commonly

used as the first step in the evaluation of structural heterogeneity [1,4–6], or used as an inter-

mediate step during the alteration of 2D and 3D classifications for in silico purification [7,8].

Besides, high-quality unsupervised 2D class averages are essential for reliable initial recon-

struction and its verification [1,9,10].

Although several classification schemes were proposed for single-particle analysis [11–15],

there are mainly two approaches for unsupervised 2D clustering of single-particles imple-

mented in multiple end-user software packages [16–21] and widely used in cryo-EM structure

determination: (1) K-means clustering following reference-free alignment through cross-cor-

relation (CC) and multivariate statistical analysis (MSA) [1,22–24], and (2) unsupervised max-

imum-likelihood (ML) or maximum a posteriori (MAP) classification [25–27]. In the former

approach, the classification accuracy is affected by the noise-induced misalignment resulting

from false peaks in cross-correlation computation. Noise may also introduce errors in the dis-

tance calculation in K-means clustering. Hence, its performance is dramatically reduced as the

signal-to-noise ratio (SNR) decreases. By contrast, the ML-based approach explores optimal

probability in measuring image similarity, and exhibits robust resistance to noise-induced mis-

alignment [27]. However, a prominent drawback lies in that the likelihood matching insuffi-

ciently differentiates structural heterogeneity among similar but critically different views. In

each ML-classified group of single-particles one could find a mixture of heterogeneous 2D

projection structures with a large variation of likelihood. This effect causes a decrease in the

effective number of classes with increasing the number of iterations during ML optimization.

To date, there has been a lack of unsupervised single-particle clustering methods that can effi-

ciently sort out highly heterogeneous single-particles into thousands of homogenous 2D clas-

ses while still keeping computation efficient [5].

Manifold learning encompasses the disciplines of geometry, computation, and statistics,

and has become an important research frontier in data mining and machine learning. It is a

class of algorithms devised for recovering a low-dimensional manifold embedded in a high-

dimensional data space. Perhaps the most popular algorithm for linear dimensionality reduc-

tion is principal component analysis (PCA). Given a data set, PCA finds the directions along

which the data have maximum variance in addition to the relative importance of these direc-

tions. Most real-world high-dimensional data are intrinsically governed by hidden variables

through nonlinear relationships. When linear approximation in dimensionality reduction

fails in finding a good low-dimensional representation of high-dimensional data, nonlinear

dimensionality reduction can be exploited as an alternative solution. Major breakthroughs in

methods for recovering low-dimensional nonlinear embeddings of high-dimensional data

[28,29] have led to the construction of a number of algorithms carrying out nonlinear mani-

fold learning. Unlike PCA, nonlinear manifold learning attempts to use nonlinear kernel func-

tions or mapping to find the directions along which the data have significant variance. To

date, several nonlinear manifold learning frameworks have been proposed, such as isometric

feature mapping (Isomap) [28,30–32], generative topographic mapping (GTM) [33–35],

locally linear embedding (LLE) [29,36,37], and semidefinite embedding (SDE) [38]. Further-

more, several algorithms for manifold learning have been successfully applied to high-dimen-

sional data for specific tasks, such as discriminant image clustering [39], image feature

extraction [40] and person-independent precise 3D pose estimation [41].

Recently, manifold embedding via diffusion map was applied to study the continuous con-

formational changes of the 80S ribosome by single-particle cryo-EM [42]. In this approach, a
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one-dimensional manifold was used to describe a continuous conformational spectrum that

can be discerned through a narrow angular aperture. The approach begins with a classification

of data into different orientations with respect to a common 3D reference, with the assumption

that the changes in the structure are relatively small so that a projection-matching based refine-

ment algorithm with a single 3D reference can be used. However, this assumption does not

necessarily hold for molecules exhibiting dramatic conformational changes, in which a small

angular aperture is not sufficient to distinguish the conformational spectrum. Hence, such an

approach is yet to be adapted for more general conditions.

Here we introduce an unsupervised clustering method for single-particle cryo-EM data

based on GTM [33–35], which is a framework for statistical manifold learning, without any

assumptions regarding how the molecules assume their conformations in the cryo-EM data

[33–35]. We implemented the GTM-based unsupervised single-particle clustering algorithm

in a software package named ROME (Refinement and Optimization based on Machine lEarn-

ing), which has been optimized for both Intel1 Xeon1 multi-core processors and Intel1

Many-Integrated Core (MIC) architecture [43] to enable efficient computation of thousands

of reference-free class averages in a highly affordable fashion. Algorithmic implementations of

unsupervised clustering methods in the existing software packages [16–21] normally allow the

efficient computation of tens to a few hundred of classes. In this study, through adapting GTM

to cryo-EM image data and optimizing its computational efficiency against Intel1 MIC archi-

tecture, we can achieve unsupervised data clustering with the number of classes on the order

of magnitude of 103 or higher within several hours in a highly parallel fashion. Our unsuper-

vised clustering approach can markedly improve the quality and resolution of ab initio 3D

models with angular reconstitution[44]. We further tested our approach using several cryo-

EM datasets to demonstrate the advantage of GTM-based unsupervised clustering in discern-

ing subtle structural differences directly from 2D class averages corresponding to distinct

conformations.

Methods

Mathematical model for statistical manifold learning

The goal of GTM is to find a representation for the distribution p(t) of a dataset in a J-dimen-

sional data space t = (t1, . . ., tJ) in terms of L-dimensional latent variables s = (s1, . . ., sL). One

may consider a non-linear, parametric function t = A(s; W), which maps points s in the latent

space into corresponding points A(s; W) in the data space [33] (Fig 1A). The mapping is con-

trolled by a set of parameters W, which represent the weights and biases in the case of a feed-

forward neural network as the mapping. In the situation in which the dimensionality L of the

latent space is less than the dimensionality J of the data space, the nonlinear transformation A

(s; W) maps the latent space onto an L-dimensional non-Euclidean manifold S embedded

within the data space. Previous studies have established GTM as an alternative to self-organiz-

ing maps (SOM) [45] and that the GTM framework overcomes most limitations of SOM while

introducing no significant disadvantages [33,34].

To adapt the general framework of GTM to the single-particle cryo-EM data clustering

problem, we built the contrast transfer function (CTF) into the non-linear mapping function

in Fourier or reciprocal space, which allows for an efficient correction of the aberration effect

of the objective lenses in electron microscopy [1]. A vector in data space xi represents the Fou-

rier transform of a particle image. A latent variables s reflects the inherent degrees of freedom

controlling the 2D structural differences observed in single-particle images, which arise either

from distinct conformational states of the imaged biomolecules or from different viewing

angles. For the sake of simplicity, we used ti to represent the translated and rotated version of

Statistical manifold learning for single-particle cryo-EM
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xi, so that ti = T-τ(xi), where T-τ denotes the operator of in-plane image rotation and transla-

tion; τ = (θ, rx, ry) is the in-plane rotation angle and translation, which can be determined

through a 2D image alignment procedure, such as the regularized ML method [25–27]. Thus,

an image ti in the frequency domain can be modelled as:

tij ¼ CTFijAjðsk; WÞ þ nij ð1Þ

where tij is the j-th component of the 2D Fourier transform of the i-th experimental image;

CTFij is the j-th component of the contrast transfer function for the i-th image; nij is Gaussian

noise; and Aj(sk; W) is the j-th component of the 2D Fourier transform of the underlying k-th

molecular projection.

Fig 1. Strategy for unsupervised single-particle clustering via statistical manifold learning. (A) The fundamental principle of GTM is

to establish a numerical relationship between variables in the latent space and a non-Euclidean manifold composed of the Fourier

transformed image data in the data space. The manifold embedding can be determined by a set of nonlinear basis functions and a weighted

parametric matrix. The likelihood function for the nonlinear mapping is solved by the expectation-maximization algorithm. (B) The workflow

of implementing the unsupervised clustering strategies in ROME is as follows: (I) All images are aligned using MAP2D in a reference-free

manner, and are subsequently classified into many groups by unsupervised GTM. (II) The unsupervised classes obtained in step (I) are

further classified into many sub-classes by unsupervised GTM in a hierarchical fashion.

https://doi.org/10.1371/journal.pone.0182130.g001

Statistical manifold learning for single-particle cryo-EM

PLOS ONE | https://doi.org/10.1371/journal.pone.0182130 August 7, 2017 4 / 25

https://doi.org/10.1371/journal.pone.0182130.g001
https://doi.org/10.1371/journal.pone.0182130


The nonlinear function A(s; W) is expanded by a set of basis functions {ϕ1, ϕ2, . . ., ϕM}

through the weight matrix W:

Aðs; WÞ ¼ ΦðsÞW ð2Þ

where A(s; W) is a K × J matrix with elements Aj(sk; W); Ф(s) is a K ×M matrix with elements

ϕkm = ϕm(sk); and W is an M× J matrix containing the weight and bias parameters. In our algo-

rithmic design, we used a combination of one fixed basis function and many Gaussians basis

functions in the form:

�mðskÞ ¼
exp �

ksk � mmk
2

2s2

� �

;m � MNL

1;m ¼ MNL þ 1

8
><

>:
ð3Þ

where MNL is the number of Gaussian basis functions; μm is the mean of the Gaussian distribu-

tion; and σ is the variance of the Gaussian distribution.

Although the noise in cryo-EM data may take multiple forms, potentially including both

white and non-white noises, previous studies have established that cryo-EM noise can be

largely approximated with the normal distribution without obvious detrimental effects on data

analysis [1,25–27]. Thus, in our algorithm we chose the Gaussian distribution for the probabil-

ity density function in the data space:

pðtijs;W;βÞ ¼
YJ

j¼1

bij

2

� �1
2

exp �
bij

2
ðtij � CTFijAjðs; WÞÞ

2

� �

ð4Þ

where 1/βij is the variance of noise for the j-th pixel of the i-th image.

Since we manage to classify a dataset consisting of N images {t1, t2, . . ., tN} into K classes,

this can be translated into the problem of finding K points {s1, s2, . . ., sK} in the latent space

that are mapped onto {t1, t2, . . ., tN} in the data space through Eq (1). To make the problem

tractable, we considered a specific form for the probability distribution p(s) given by a sum of

delta functions centered on K nodes of a regular grid in the latent space:

pðsÞ ¼
1

K

XK

k¼1

dðs � skÞ ð5Þ

By integrating over the s-distribution on the manifold, the distribution p(ti|W, β) in the

data space for a given value of W is:

pðtijW; βÞ ¼
Z

pðtijs;W; βÞpðsÞds ¼
1

K

XK

k¼1

pðtijsk;W; βÞ ð6Þ

The joint probability density of observing the collection of N images t = {t1, t2, . . ., tN} is

pðtjW; βÞ ¼
YN

i¼1
pðtijW; βÞ. The ML estimate of the model parameters Θ = {W, β} can be

found by maximizing the logarithmic form of the joint probability, namely,

bΘ ¼ arg maxΘ
XN

i¼1
lnpðtijΘÞ. As we would like to consider the prior probability of the weight

matrix, a regularized ML estimator, also called the maximum a posteriori (MAP) estimate,

with respect to Θ can be used to describe the nonlinear mapping problem. Thus, the model
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parameters are sought to maximize the MAP:

bΘ ¼ arg max
Θ

XN

i¼1

lnpðtijΘÞ þ lnpðΘÞ

" #

ð7Þ

Here we assume a Gaussian prior distribution over W:

pðWÞ ¼
a

2p

� �W=2

exp �
a

2
kWk

2
� �

ð8Þ

Where 1/α is the variance of the Gaussian prior distribution over the weight matrix W, and W
is the total number of elements in the matrix W.

Expectation-maximization algorithm

The unsupervised clustering problem is ill-posed due to a high level of noise, potentially miss-

ing orientations and discontinuity between different conformational states in single-particle

cryo-EM data. To enable effective computation, the expectation-maximization (E-M) algo-

rithm can be used to estimate the model parameters Θ corresponding to the optimal cluster-

ing. The E-M algorithm alternates between two steps: the expectation step (E-step) and the

maximization step (M-step). In the E-step, the old model parameters W(n) and are used to

evaluate the posterior probabilities, or responsibilities, Rki(Θ(n)) of each latent variable sk for

every image ti using Bayes’ theorem:

RkiðΘ
ðnÞÞ ¼ pðskjti;W

ðnÞ; βðnÞÞ ¼
pðtijsk;W

ðnÞ; βðnÞÞpðskÞ
XK

k0¼1
pðtijsk0;W

ðnÞ; βðnÞÞpðsk0Þ
ð9Þ

In the M-step, Q(Θ, Θ(n)) is maximized with respect to the model parameters Θ:

QðΘ;ΘðnÞÞ ¼
XN

i¼1

XK

k¼1

RkiðΘ
ðnÞÞlnpðtijΘÞ þ lnpðΘÞ ð10Þ

To this end, the partial derivatives of Eq (10) with respect to each model parameter should

equal zero when Q(Θ, Θ(n)) is maximized. This allows us to estimate the model parameters

iteratively. Maximizing Q(Θ, Θ(n)) with respect to W thus gives rise to the following equation,

which uses RkiðΘ
ðnÞÞ; b

ðnÞ
ij to update the weight matrix W(n+1) in the (n+1)-th iteration:

XN

i¼1

XK

k¼1

RkiðΘ
ðnÞÞb

ðnÞ
ij �mðskÞCTFij tij � CTFij

XM

m0¼1

�m0 ðskÞW
ðnþ1Þ

m0 j

 !

� aWðnþ1Þ

mj ¼ 0 ð11Þ

Similarly, by maximizing Eq (10) with respect to β, we obtained the following re-estimation

formula that uses Rki(Θ(n)) and W(n+1) to update b
ðnþ1Þ

ij :

1

b
ðnþ1Þ

ij

¼
XK

k¼1

RkiðΘ
ðnÞÞðtij � CTFijAjðsk; W

ðnþ1ÞÞÞ
2

ð12Þ

During the iteration of the E-M algorithm, no class averages need to be computed. None-

theless, upon convergence of the E-M algorithm, one can calculate the class averages using the
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posterior probability Rki:

Akj ¼

PN
i¼1

RkiðYÞbijCTFijtij
PN

i¼1
RkiðYÞbijCTF2

ij þ a
ð13Þ

Note that this equation is derived from Eqs (11) and (12) and resembles the Wiener filter.

Note that Eq (11) is a system of linear equations. Solving this system of equations is equiva-

lent to separately solving J systems of linear equations Cjwj = bj, j = 1, . . ., J, where

Cj ¼

XN

i¼1

XK

k¼1

RkiðΘ
ðnÞÞb

ðnÞ
ij �

2

1
ðskÞCTF2

ij þ a � � �
XN

i¼1

XK

k¼1

RkiðΘ
ðnÞÞb

ðnÞ
ij �1ðskÞCTF2

ij�mðskÞ

..

. . .
. ..

.

XN

i¼1

XK

k¼1

RkiðΘ
ðnÞÞb

ðnÞ
ij �mðskÞCTF2

ij�1ðskÞ � � �
XN

i¼1

XK

k¼1

RkiðΘ
ðnÞÞb

ðnÞ
ij �

2

mðskÞCTF2

ij þ a

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

wj ¼

W1j

..

.

WMj

0

B
B
B
@

1

C
C
C
A

, bj ¼

B1j

..

.

BMj

0

B
B
B
@

1

C
C
C
A

, and Bmj ¼
XN

i¼1

XK

K¼1
RkiðΘ

ðnÞÞb
ðnÞ
ij �mðskÞCTFijtij. This

decomposition allows us to distribute the numerical computation of Eq (11) to many com-

puter nodes in parallel. To further reduce the computational cost, we used a mean to replace

b
ðnþ1Þ

ij in the numerical solution of Eq (11), as follows:

b
ðnþ1Þ

ij ¼
N � J

XN

i¼1

XJ

j¼1

1

b
ðnþ1Þ

ij

ð14Þ

where N is the total number of the images and J is the total number of pixels in each image.

The convergence of the E-M algorithm can be monitored by the weighted loss function

LðnÞ ¼
XN

i¼1

XJ

j¼1

XK

k¼1

RkiðΘ
ðnÞÞðtij � CTFijAjðsk; W

ðnÞÞÞ
2

ð15Þ

Thus, a convergence criterion can be devised based on the weighted loss function LðnÞ, i.e.,

the program is terminated when LðnÞ does not change more than 0.1% for six consecutive

iterations.

Implementation of the GTM algorithm

Based on the above mathematical framework, we have implemented the following algorithm

in the ROME software package.

Input: Particle images ti, and their corresponding CTFi, i = 1, 2, 3, . . ., N.

Output: Class assignment and class averages Ak

1. Set the fixed number of latent points {sk}, k = 1, 2, 3. . . K. The space between two adjacent

points is 1.

2. Set the values of basis function centers{μm}, m = 1, 2, 3. . . M. mm ¼
M
M � 1
þ
ðK� 1ÞmM
ðM � 1Þ

2

3. Select the value of basis function width s ¼
ðK� 1ÞM
ðM � 1Þ

2 .
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4. Calculate the basis function ϕ from Eq (3).

5. Initialize the weighted matrix W from a Gaussian circle and β; and set α to a fixed value of

0.01.

6. Iterate until the convergence criterion, j Lðn� iÞ� Lðn� i� 1Þ

Lðn� i� 1Þ j < 0:1% (i = 0, 1, . . ., 5), is satisfied:

a. Set iteration number n = n + 1;

b. E-step:

i. Compute the δij distance between the latent space and data space

dij ¼ ðtij � CTFij

XM

m¼1
�mðskÞWmjÞ

2
;

ii. Compute the probability matrix P from Eq (4) using ϕ, δij and W;

iii. Compute the responsibility matrix R from Eq (9) using P, δij and W.

c. M-step:

i. Use Eq (11) and R to update W;

ii. Use R and δij to update βij and calculate its mean from Eq (14).

7. Calculate class averages from Eq (13).

Hierarchical strategy for unsupervised clustering

Although our GTM-based algorithm may be advantageous for unsupervised classification, it is

not computationally efficient for image alignment, a procedure that determines three geomet-

rical parameters for each image: x-y translation and in-plan rotation. Thus, we employed the

adaptive MAP-based 2D alignment method (hereafter referred to as MAP2D) [19,46] to align

single-particle images prior to the GTM-based clustering procedure (Fig 1B). Averages from

random subsets of unaligned images were used to initialize the MAP2D-based image align-

ment. Furthermore, a Gaussian model was used to initialize the parameters W of the E-M algo-

rithm in GTM solution. Thus, in both steps of the MAP2D-based alignment and GTM-based

clustering, no external initial model or reference was needed, ensuring the unsupervised

nature of our approach.

The unsupervised single-particle clustering may be conducted in a hierarchical fashion.

First, all particles are aligned based on the translations and rotations determined by MAP2D.

Then GTM is applied to partition these shifted and rotated particles into different classes.

However, some classes might be mixtures of non-identical conformational states. For these

classes, the aligned particles in each class can be further classified into tens or hundreds of ref-

erence-free sub-classes by GTM clustering. This hierarchical clustering strategy can be further

iterated and used in different scenarios. For example, if large numbers of classes are needed to

assess sample heterogeneity, the strategy can be used to obtain relatively more unsupervised

classes without any human intervention. If one needs to verify the structural homogeneity

within individual classes, the hierarchical clustering strategy can help examine structural vari-

ability within specific classes at a deeper level.

Statistical manifold learning for single-particle cryo-EM
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Comparative benchmarking with simulated data

Each simulated dataset, including 50,000 projections, was generated by projecting the density

map of the Escherichia coli 70S ribosome along random orientations [20]. We uniformly chose

500 orientations covering half a sphere. Each orientation was regarded as a Gaussian center,

around which 100 projections were generated with a Gaussian distribution. To simulate realis-

tic situations, we added random shifts in the range of -2.0 to 2.0 pixels relative to the image

center. We further generated defocus values in the range of -1.0 to -3.5 μm and modified the

projection images with the CTF in the Fourier domain. The projections were then additively

contaminated with Gaussian noise at SNRs of 1/50, 1/100, 1/150, and 1/200, which allowed us

to benchmark the proposed algorithm at different noise levels.

Using the simulated data, we compared the results from our approach with those obtained

using RELION [19], EMAN2 [47] and SPIDER [20]. All procedures were set to classify these

50,000 particles into 500 classes. In all cases described below, the alignment or classification

was run for 30 rounds. Both in our approach and in the unsupervised 2D classification in

RELION, we set up an in-plane rotational search with an angular increment of 2.5˚, a transla-

tional search in the range of -3 to 3 pixels, and 100 classes for MAP2D alignment. We also con-

ducted a classification based on an alternative method in RELION, which was implemented

using the ‘skip_align’ option to classify pre-aligned particles without doing further alignment

during classification. To enable a fair comparison, in the pre-alignment step, we set up the

same control parameters for MAP2D alignment as the ones without using the ‘skip_align’

option in RELION.

EMAN2 uses multivariate statistical analysis (MSA) [1,22–24] with multi-reference align-

ment (MRA) method [24,47]. PCA was used in the MSA to reduce the dimensionality of

images [47]. The particles were first CTF-corrected through phase flipping. Then, translational

and rotational invariants were calculated and used for initial clustering. Next, PCA in the MSA

step was used to capture the principal features, which were then used as multiple references for

image alignment and K-means clustering in the MRA step. We set up 20 MSA basis vectors,

12 alignment references and 8 iterations for the EMAN2 procedure.

SPIDER combines reference-free alignment (RFA) with PCA and K-means clustering [48].

It involves three steps. First, all CTF-corrected noisy images were filtered through a low-pass

Butterworth filter, with the pass band and stop band frequencies at 0.08 and 0.12, respectively.

These particle images were then aligned globally in a reference-free manner, in order to find

rotations and translations for all images that minimize the sum of squared deviations from

their mean using the AP SR command in SPIDER. Second, PCA was used to solve the eigen-

value and eigenvector of all rotated and shifted images in the MSA step. Third, all particles

were classified by K-means clustering [20].

Experimental cryo-EM datasets

We used three experimental cryo-EM datasets to examine if our clustering approach could

yield useful classes and detect subtle structural difference among classes. The experimental

cryo-EM datasets were collected using an FEI Tecnai Arctica microscope, operated under an

acceleration voltage of 200 kV and equipped with Gatan K2 Summit direct electron detector.

The inflammasome [8] and 26S proteasome [7] were imaged at a nominal magnification of

21,000 times. The proteasomal 19S regulatory particle (RP) [49] was imaged at a nominal mag-

nification of 54,000 times. Cryo-EM data were collected semi-automatically using Leginon

[50]. Movies comprising 36 frames per exposure were collected for the inflammasome and the

19S RP with an accumulated dose of 50 electrons/Å2. For the 26S proteasome, movies of 30

frames per exposure and an accumulated dose of 30 electrons/Å2 were obtained. The physical
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pixel size and the super-resolution pixel size of the inflammasome and 26S proteasome data-

sets were 1.72 Å and 0.86 Å, respectively. The calibrated physical pixel size of 19S RP was 0.98

Å. The defocus in data collection were set in the range of -1.0 to -3.0 μm. See S1 Fig for typical

micrographs and class averages.

Ab initio 3D reconstruction

To examine the effect of GTM-based clustering on ab initio 3D reconstruction, 117,471 RP

complex particles were classified, by unsupervised GTM clustering implemented in ROME,

into 1,000 classes (S2 Fig). We set the in-plane rotational search to a 2.5˚ increment, the transla-

tional search in the range of -4 to 4 pixels and 100 classes for MAP2D alignment. We used 234

class averages of the highest quality from the 1,000 GTM-produced classes to generate an initial

model of the RP complex using e2initialmodel.py in EMAN2. In this step, 8 refinement itera-

tions were performed with outputs of 10 initial models in search of a good one. As a control, we

used the traditional method to obtain an initial model of the RP complex in EMAN2 from

10,000 raw RP complex images. These particles were first classified into 100 classes using

e2refine2d.py. 12 MSA basis vectors, 5 alignment references and 8 iterations were set up for this

EMAN2 procedure. 72 good classes were used to generate an initial reconstruction of RP com-

plex by e2initialmodel.py in EMAN2. In this step, 8 refinement iterations were performed with

outputs of 10 initial reconstructions. The best reconstruction was chosen for further analysis.

Parallel implementation and code optimization

Both the MAP2D and GTM implementations in ROME are optimized specifically for Intel1

Xeon1 processors and Intel1 Xeon Phi™ coprocessors. In analogy to MAP2D in RELION, algo-

rithm-level optimizations such as an adaptive E-M approach were adopted in ROME. In addi-

tion, the particle image stack was divided based on the unit of individual images across multiple

computer nodes in the parallelization of the data flow in the MAP2D module. However, the

image stack was divided based on the unit of individual image pixels in the GTM implementa-

tion. This allowed the problem to be distributed across multiple cluster nodes and attached

coprocessors, while minimizing data transfer and memory requirements. Next, complex data

structures were converted from arrays of structures to structures of arrays, making it easier to

implement the inner loops of compute-intensive kernels with processor instructions that can be

executed on multiple data elements in parallel (vectorization). Loops were also restructured so

that independent threads of execution work on data elements that are near one another in

memory. This ‘cache blocking’ attempts to lower the pressure that the algorithms put on the

memory subsystem as the number of threads climbs, and tries to make the most effective use of

the processor memory caches. To further improve the use of memory and decrease serialization

overhead, memory allocation and deallocation were moved from the middle of the algorithm to

the initialization phase. Finally, a single-precision data type instead of a double-precision one

was used to store the image data in parts of the algorithm where the extra precision is not neces-

sary. This treatment can improve performance by about a factor of two.

Results

Classification accuracy with simulated data

To quantify the classification accuracy of our approach, we generated a series of synthetic data-

sets with various SNRs, each of which was composed of 50,000 simulated images as described

above. Since all the original angles of the simulated data were known, the angular difference

between any pair of images classified into each class (hereafter named ‘angular distances’)
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could be computed. We adopted the statistical behavior of the angular distances as a measure

of the quality of the corresponding classes [13]. Supposing that n images are classified into one

class, we have
n

2

 !

pairs of angular distances in this class. The histogram distribution of the

angular distances from all the classes is a good way to compare the results from different algo-

rithms [13]. A sharper, higher peak at lower angular distances in the distribution curve is

expected from a better and more accurate clustering. We also used a second plot that ranks the

number of particles over all classes to show the effective classes in the results. With the dataset

at a SNR of 0.02, the classification accuracy of our approach is almost the same as that of SPI-

DER, and was better than that of both EMAN2 and RELION (S3C Fig). For the data at a SNR

of 0.01, our approach yielded the sharpest and highest peak at lower angular distances in the

distribution plot (Fig 2D), with a total of 495 effective classes (Fig 2E). This feature remained

when the SNR was further reduced to 0.005. By contrast, the MAP2D classification imple-

mented in RELION yielded a lower peak (Fig 2D), but only 162 effective classes (Fig 2E). The

RELION results obtained with the ‘skip_align’ option were much worse than those from the

standard MAP2D classification procedure (Fig 2D and 2E). Conventional PCA/K-means

approaches in EMAN2 and SPIDER resulted in a much lower, wider peak at greater angular

distances (Fig 2D and 2E). When the SNR was decreased to 0.005, the classification accuracies

of these approaches were further reduced (Fig 2F and 2G and S3E and S3F Fig). These results

suggest that a high level of noise significantly compromises the performance of data clustering

by conventional PCA/K-means clustering approaches. By contrast, our GTM approach signifi-

cantly improved the classification accuracy under conditions of reduced SNRs.

We further examined the impact of the dimensionality of the latent space on the classifica-

tion accuracy in the GTM algorithm. Using the same datasets of simulated images, we com-

pared the measurements of the classification accuracies for the latent spaces assumed in one,

two and three dimensions. The experiment with 2D latent space yielded slightly better classifi-

cation accuracies than those with 1D and 3D latent space in our GTM algorithm for SNRs of

0.01, 0.0067 or 0.005 (Fig 3). This result suggests that the increased dimensionality in manifold

learning does not necessarily improve classification accuracy.

We also examined the impact of several control parameters in the GTM algorithm on classi-

fication accuracy. First, there are two independent hyper-parameters in GTM: MNL and α.

Using the simulated datasets with a SNR of 1/100, we compared the measurements of the clas-

sification accuracy for different MNL and α values. The experiment with MNL = 0.8×K, where K
is the class number, yielded better classification accuracy than those with smaller MNL values

(S4 Fig). This result suggests that an increased number of nonlinear basis functions can

strengthen the classification capability of GTM. For the hyper-parameter α, the experiment

with α = 0.01 yielded a better classification accuracy than those with smaller or larger α values

(S5 Fig). This result suggests that an appropriate α value can penalize the ‘peaky’ elements in

the weight matrix W to prevent overfitting and to improve the classification ability of GTM.

Next, we compared the classification accuracies for different numbers of classes, namely,

K = 100, 300 and 500. We found that the classification accuracy increases with increasing class

number (S6 Fig). However, this was not the case for the other classification methods imple-

mented in RELION and SPIDER (S6 Fig). Finally, we investigated the robustness of our GTM

clustering algorithm by varying the initialization. We used different characteristic radii of the

Gaussian circles and different values of β, as well as the outputs of PCA, for GTM initialization

(S7 Fig). The results indicate that the performance of our GTM clustering is insensitive to the

parameters of Gaussian circle inputs, which generally gave rise to better performance than

those obtained by the PCA-based initialization (S7 Fig).
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Applications to experimental cryo-EM datasets

To demonstrate the applicability of our clustering approach, we applied our method to several

experimental cryo-EM datasets (S1 Fig). First, ROME was used for an unsupervised clustering

of a 17,103-particle dataset of the inflammasome complex [8]. The resulting class averages

Fig 2. Benchmarking the performance of unsupervised clustering using simulated data. (A) A projection of the 70S ribosome model.

(B and C) Examples of the simulated images of the 70S ribosome with SNRs of 1/100 (B) and 1/200 (C). The right panel in (B) and (C)

shows the low-pass filtered version of each simulated image. (D and F) The normalized histogram exhibits the distributions of angular

distances resulting from the five classification methods that were applied to the simulated images with SNRs of 1/100 (panel D) and 1/200

(panel F). (E and G) The sizes of classes were ranked for the five classification methods with SNRs of 1/100 (panel E) and 1/200 (panel G).

https://doi.org/10.1371/journal.pone.0182130.g002
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directly presented three different conformations of the complexes corresponding to 10-, 11-

and 12-fold symmetry (Fig 4A and S8A Fig). For comparison, 300 classes were produced by

reference-free MAP2D classification implemented in RELION [19] (S8B Fig). Second, unsu-

pervised GTM clustering of 96,488 particles of the proteasomal regulatory particle associated

with the core particle (RP-CP) sub-complex directly revealed different local features among

class averages (Fig 4B) [2,7]. These local differences were verified as corresponding to distinct

conformational states through further 3D reconstruction [2,7]. Our results thus indicate that

unsupervised GTM clustering can sort out not only the projections of underlying structures

into relatively homogenous 2D classes but can also unearth incomplete structures or junk par-

ticles, allowing the efficient in silico purification of single-particle datasets.

Unsupervised GTM clustering with improved accuracy can help identify hidden heteroge-

neity in the reference-free classes generated by other methods. For instance, after initial

reference-free clustering, particle images of specific classes could be selected for deeper unsu-

pervised clustering by GTM in a hierarchical fashion. Delicate differences between GTM-gen-

erated class averages may reveal features corresponding to distinct conformational states. To

test this idea, a class of 281 particles resulting from MAP2D-based classification (Fig 4C),

whose average visually resembles the side view of the 11-fold inflammasome complex, was fur-

ther classified into 30 sub-classes by GTM (Fig 5A). Based on the length of the intrinsic struc-

ture, the GTM-based reference-free clustering identified the side views of 10-fold and 12-fold

inflammasome complexes among the 30 sub-classes (the red boxes in Fig 4D), suggesting that

the MAP2D-generated initial class is a mixture of the complexes with 10-, 11- and 12-fold

symmetry. Another MAP2D-classified image group with 3961 particles, whose average visually

represents a tilted view of the free 19S regulatory particle (RP) that is not associated with a 20S

core particle (CP), was further classified by GTM (Fig 4E). This deeper clustering identified

448 single-particle images (11.3%) of RP-CP subcomplexes that were misclassified into the

dataset of free RP (Fig 4F).

Fig 3. Classification accuracy with one-, two- and three-dimensional latent space in our GTM algorithm. (A) Normalized histograms

exhibit the angular distances for the one- and two-dimensional latent space under different SNRs. (B) The sizes of classes are for different

latent space dimensions with varying SNRs. The label ‘GTM_D’ in (A) and (B) represents the number of dimensions. GTM_1D denotes that

500 points in one dimensional latent space were sampled in the GTM algorithm. GTM_2D denotes that 100 points in one dimension and 5

points in the other dimension, a total of 500 points, were sampled by the GTM algorithm. GTM_3D denotes that 20 points in the first

dimension and 5 points in each of the other two dimensions, giving a total 500 points, were sampled in the GTM algorithm.

https://doi.org/10.1371/journal.pone.0182130.g003
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Fig 5 presents a further comparison with other algorithms including MAP2D and K-means

clustering, which suggests that our GTM outperforms those algorithms in unambiguously

identifying hidden heterogeneity with the hierarchical clustering strategy. In this comparison,

we selected a MAP2D-classified image group comprising 281 side views of the inflammasome

complexes (red boxes in Fig 4C), which was further classified into 30 classes by unsupervised

GTM clustering in ROME, by reference-free MAP2D classification in RELION, and by K-

Fig 4. Unsupervised clustering by GTM. (A) Typical class averages of inflammasome particles generated by unsupervised

GTM clustering in ROME. Red, yellow and green boxes indicate the top views (first row) and the side views (second row) of

10-, 11-, and 12-fold inflammasome complex, respectively. The side views of the complex structure differ by length. Besides,

the purple box denotes the class average of an incomplete inflammasome complex. (B) Typical class averages of RP-CP sub-

complexes generated by unsupervised GTM in ROME. The red or yellow boxes indicate a pair of class averages showing

differences in local features corresponding to the local movement of the Rpn5 subunit of the RP-CP subcomplex [7]. The

green box indicates a pair of class averages showing the movement of the Rpn1 subunit of RP-CP subcomplex [7]. The purple

box labels the class average of the incomplete RP-CP subcomplex. (C) Typical side-view class averages of the inflammasome

were initially classified using the MAP2D classifier in a reference-free manner. Two classes among 50 classes visually

resemble the 11-fold inflammasome complex particles. (D) The class average highlighted by red box in panel (C) was further

classified by GTM. The red boxes indicate the 11-fold inflammasome particles. The green boxes indicate the 10-fold

inflammasome particles that were misclassified by MAP2D into the same class as the rest 11-fold structures. The yellow boxes

indicate the 12-fold inflammasome particles that were misclassified by MAP2D into the same class as the rest of the 11-fold

structures. (E) A 57,001-particle dataset of free RP was initially classified using the MAP2D classifier in a reference-free

manner. (F) The class marked by the red box in panel (E) was further classified by GTM in ROME. Several classes of RP-CP

sub-complex particles (red boxes) were found to be misclassified into this free RP class.

https://doi.org/10.1371/journal.pone.0182130.g004
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Fig 5. Comparison of hierarchical unsupervised clustering using ROME, RELION, SPIDER and EMAN2. (A)

Unsupervised classification of a MAP2D-generated class into 30 sub-classes using the GTM algorithm in ROME. The red

box marks the side view projection of the 11-fold inflammasome complex. The green box marks the side view projection of the

10-fold inflammasome complex, whose length is smaller than that of the others. The yellow box marks the side view projection

of the 12-fold inflammasome complex, whose length is larger than that of the others. (B) Unsupervised classification of the

same MAP2D-generated class into 30 sub-classes in RELION. The major class exhibits the side view projections of 11-fold

inflammasome complex, whereas all the other classes present ‘junk’ features. (C) Unsupervised K-means clustering of the
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means clustering in SPIDER and EMAN2. The sub-classes resulting from the GTM algorithm

all showed clear 2D structural features, indicating a mixture of the side views of 10-, 11- and

12-fold complexes in this dataset, as manifested by their length variation (green box and yellow

box in Fig 5A). By contrast, only two meaningful classes were obtained by RELION, while the

other sub-classes were either featureless or empty (Fig 5B). The results from SPIDER and

EMAN2 appear to be improved over RELION. However, there were still more than 10 sub-

classes in both cases that were either featureless or presented aberrant features likely resulting

from mis-classification. Our comparative studies suggest that, unlike our GTM-based cluster-

ing, other unsupervised clustering approaches, such as MAP2D, PCA and K-means, are either

less efficient or ineffective for directly detecting subtle structural variations using the hierarchi-

cal clustering strategy.

GTM-based clustering improves ab initio reconstruction

To demonstrate the clustering capacity of our approach, 117,471 particles of the free RP com-

plex were classified into 1,000 classes by GTM implemented in ROME in an unsupervised

manner. The computation was completed in 228 minutes with 30 rounds of E-M optimization

on a computing cluster comprising 512 Intel Xeon E5 CPU cores (S1 Table) and 858 effective

classes were obtained (S2 Fig). We used 234 class averages of the highest quality from the 1,000

unsupervised classes to generate an initial 3D reconstruction of the RP complex in EMAN2

(Fig 6A, S2 Fig). As a control, we used the conventional multivariate data analysis (MDA) and

K-means clustering to obtain an initial reconstruction of RP complex in EMAN2 from 10,000

raw images of the RP complex (Fig 6B). The FSC curves between the atomic model and the

two initial reconstructions using a 0.5-cutoff suggest that the resolution of the initial model

using GTM-based class averages was 20.6 Å, which was significantly higher than the resolu-

tion, 29.1 Å, of the other initial reconstruction obtained by the conventional approach (Fig

6C). Next, we performed rigid-body fitting of the atomic model of the free RP into the two ini-

tial reconstructions. The atomic model fits into the GTM-based initial reconstruction with an

excellent agreement (Fig 6A). By contrast, considerable elements in the atomic model were out

of the density of the initial reconstruction obtained by the conventional approach (Fig 6B).

The contrasting results show that the initial reconstruction built upon our GTM clustering

method is of significantly improved quality compared with the conventional one. Taken

together, these results suggest that the increased class number and improved classification

accuracy of our unsupervised GTM clustering gives rise to a marked improvement of ab initio
3D reconstruction with an affordable computational cost.

Optimization of computational performance and efficiency

Our implementation of the GTM-based clustering algorithm in the ROME software has been

optimized for modern HPC hardware, such as Intel1 MIC architecture used in the Intel Xeon

Phi™ Knights Corner and Knight Landing processors. Our modernized code in ROME outper-

forms the existing software in both speed and magnitude. First, we compared the computa-

tional performance between ROME and RELION using several datasets comprising different

same MAP2D-generated class into 30 sub-classes in SPIDER. The green boxes highlight the side views of the 10-fold

inflammasome complex, whose length is smaller than others. The yellow boxes label the side view projections of the 12-fold

inflammasome complex, whose length is larger than that of the others. (D) Unsupervised K-means clustering of the same

MAP2D-generated class into 30 sub-classes in EMAN2. The yellow boxes label the side view projections of the 12-fold

inflammasome complex, whose length is longer than that of the others. The green boxes label the side view projections of

10-fold inflammasome complex, whose length is shorter than that of the others.

https://doi.org/10.1371/journal.pone.0182130.g005
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Fig 6. Initial 3D reconstruction from the reference-free class averages of ROME and EMAN2. (A) The initial reconstruction calculated

by the ROME-generated class averages is superimposed with the atomic model of free RP shown in a ribbon representation, suggesting

that they are highly compatible with each other. (B) The initial reconstruction calculated by the EMAN2-generated class averages is

superimposed over the atomic model of free RP shown in a ribbon representation. A substantial part of the atomic model is outside of the

density of the initial reconstruction, suggesting poor map quality and a large reconstruction error. (C) FSC curves between the RP atomic

model and the initial reconstructions generated by ROME- and EMAN2-based class averages.

https://doi.org/10.1371/journal.pone.0182130.g006
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numbers of particles. It took 143 minutes for ROME to classify 57,001 particles of RP into 300

unsupervised classes on a computing cluster comprising 512 Intel Xeon E5 CPU cores (Fig

7A). By contrast, it took ~40 hours for RELION to classify the same dataset into 300 unsuper-

vised classes on the same cluster. In all cases, the E-M algorithm was run for 30 iterations.

Thus, under the same circumstances, ROME was about 10–20 times faster than RELION in

unsupervised 2D classification. Second, a 96,488-particle dataset of the RP complex was used

to benchmark the performance of ROME in unsupervised clustering with different class num-

bers on the 512-core computing cluster (Fig 7B). With increasing class numbers from 100 to

1,000, the running time of GTM clustering was increased in a polynomial trend from 14 to 214

minutes. Specifically, ROME completed the unsupervised clustering of 1,000 classes in 306

minutes with 30 iterations of expectation-maximization (S1 Table), whereas RELION did not

complete the same number of iterations of optimization in a week on the same hardware

condition. Furthermore, we also used this dataset to test reference-free classification at the

1,000-class level by MSA and K-means clustering in SPIDER [1,20]. Unfortunately, the pro-

gram kernel crashed in the reference-free alignment step.

Discussion

Unsupervised data clustering plays an important role in high-resolution structure determina-

tion by single-particle cryo-EM [1]. In this study, we introduced a GTM-based unsupervised

clustering method incorporating MAP2D-based image alignment, and implemented this

approach in the open-source software ROME. One of the key findings of this study is that

GTM-based clustering is more tolerant against noise than the other approaches we compared,

including maximum-likelihood, PCA and K-means algorithms. This hallmark provides a path

towards improved classification accuracy at lower SNRs. Our GTM algorithm built the CTF

correction into its mathematical kernel so that the clustering would not be affected by the vari-

ation of the defocus value inherent in cryo-EM data. Our software uses the E-M algorithm to

maximize the regularized log-likelihood function in statistical nonlinear mapping between the

latent and data spaces, which only guarantees the solution of a local optimum. However, the

random initialization of the nonlinear mapping ensures the unsupervised nature of data clus-

tering. The class averaging expression under our GTM scheme resembles the Wiener-type fil-

ter and gives rise to CTF-corrected, probability-weighted class averages, which inherits the

advantage and traits of the maximum-likelihood based approaches [1,25,26].

Utility strategies of unsupervised single-particle clustering by GTM can be highly versatile,

problem-oriented, and user-controlled. In a typical scenario, one can pursue a strategy in

which all particles are aligned and partitioned into unsupervised classes in single runs of E-M

optimization. This gives a glimpse of typical reference-free projection structures of the biomol-

ecules imaged and allows the removal of apparent ‘junks’. In other scenarios, particles in spe-

cific classes can be further partitioned into deeper sub-classes in a hierarchical fashion. This

may allow the user to inspect subtle structural variations within a class to analyze the potential

structural heterogeneity within the dataset. This hierarchical clustering strategy can be further

interleaved with 3D classification to help verify the quality of 3D classification and clean up

‘junk’ or poor quality images from 3D classes [2,7,8].

In summary, we developed a statistical manifold learning-based approach for unsupervised

single-particle clustering in a massively parallel manner. When optimized for Intel1 Xeon1

processors and Intel1 Xeon Phi™ coprocessors, it exhibited an unprecedented power in

obtaining thousands of reference-free class averages with significantly improved clustering

accuracy in a massively parallel fashion. Importantly, a greater number of high-quality unsu-

pervised 2D class averages can lead to a more reliable ab initio 3D reconstruction. Practical
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Fig 7. Performance evaluation of unsupervised clustering with ROME. (A) Performance of unsupervised

single-particle clustering in ROME versus RELION using different datasets. Unsupervised 2D classification

into 300 classes using both software programs were performed on four experimental datasets: Dataset1

refers to the 16,306-particle dataset of the inflammasome with 250×250 box size; dataset2 refers to the

35,407-particle dataset of the free RP complex with 160×160 box size; dataset3 refers to the 96,488-particle

dataset of the RP-CP complex with 160×160 box size; dataset4 refers to the 57,001-particle dataset of the

free RP complex with 180×180 box size. MAP2D alignment in ROME and GTM clustering for 300 classes wes

also performed. The blue, green, and red histograms represent the running time of RELION, MAP2D in

ROME, and GTM in ROME, respectively. For more comparison, see S9 Fig and S1 Table. (B) The

96,488-particle dataset of the RP-CP subcomplex was used to test the performance of GTM in ROME (blue

dots). The green dots represent the total running time including both the MAP2D alignment and GTM

clustering in ROME. The running time was polynomially related to the number of classes.

https://doi.org/10.1371/journal.pone.0182130.g007
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applications of the algorithm to several experimental datasets demonstrated that unsupervised

GTM clustering in ROME is highly effective in distinguishing structural heterogeneity among

single-particle datasets. This can in turn, when used iteratively with 3D classification, assist in

improving the structural homogeneity of cryo-EM datasets. Our approach has already been

used in several studies of high-resolution structural determination from heterogeneous sam-

ples [7,8,49].

Supporting information

S1 Fig. Typical results of unsupervised clustering by GTM on three experimental cryo-EM

datasets. (A) A typical cryo-EM micrograph of the inflammasome. The white boxes mark the

particles picked from the micrograph that contributed to the dataset used in testing of our

GTM algorithm implemented in ROME. (B) Typical reference-free 2D class averages of the

10-fold, 11-fold, and 12-fold inflammasome complex obtained by GTM-based clustering fol-

lowing MAP2D-based image alignment. (C) A typical cryo-EM micrograph of the proteasome.

We boxed half of the holoenzyme, including half of the CP, in complex with a complete RP,

named the RP-CP subcomplex (white boxes). (D) Typical reference-free 2D class averages of

the RP-CP subcomplex obtained by GTM-based clustering following MAP2D-based image

alignment. (E) A typical cryo-EM micrograph of the human RP proteasome. We boxed all par-

ticles, including the free RP complex and RP-CP subcomplex, whose box center is focused on

that of RP (white box). (F) Typical reference-free 2D class averages of the RP complex obtained

by GTM-based clustering following MAP2D-based image alignment.

(PDF)

S2 Fig. Unsupervised clustering of the RP dataset by ROME. 117,471 particles of the RP

complex were classified into 1,000 classes by the unsupervised GTM implemented in ROME.

858 class averages were not blank. These classes comprised different views of the RP complex.

(PDF)

S3 Fig. Comparison of classification results of simulated data at different noise levels. (A,

B) Examples of the corresponding simulated images of the 70S ribosome with SNRs of 1/50

(A) and 1/150 (B), respectively. The right panel in (A) and (B) shows the low-pass filtered ver-

sion of each simulated image. (C, E) Normalized histograms show the distributions of angular

distances resulting from the five classification methods that were applied to the simulated

images with SNRs of 1/50 (panel C) and 1/150 (panel E). (D, F) The sizes of the classes were

ranked with respect to the five classification methods for SNRs of 1/50 (panel C) and 1/150

(panel E).

(PDF)

S4 Fig. Impact of different values of the hyper-parameters MNL in GTM on the unsuper-

vised classification of the simulated data with an SNR of 1/100. MNL was set as 0.8×K, 0.5×K
and 0.2×K, where K is the class number. (A, C, E) Normalized histograms showing the distri-

butions of angular distances corresponding to different MNL values. The images were classified

into 100 (panel A), 300 (panel C), and 500 (panel E) classes. (B, D, F) The sizes of the classes

were ranked for different MNL values with K = 100 (panel B), 300 (panel D), and 500 (panel F).

(PDF)

S5 Fig. Impact of different values of the hyper-parameter α in GTM on the unsupervised

classification of the simulated data with an SNR of 1/100. α is set as 0.0001, 0.01, 1.0 and

100. (A, C, E) Normalized histograms showing the distributions of angular distances corre-

sponding to different α values. The images were classified into 100 (panel A), 300 (panel C),
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and 500 (panel E) classes. (B, D, F) The sizes of the classes were ranked for different α values

with K = 100 (panel B), 300 (panel D), and 500 (panel F).

(PDF)

S6 Fig. Impact of different class numbers K on the unsupervised classification of the simu-

lated data with an SNR of 1/100. (A, C, E) Normalized histograms showing the distributions

of angular distances resulting from the five classification methods. The images were classified

into 100 (panel A), 300 (panel C), and 500 (panel E) classes. (B, D, F) The sizes of the classes

were ranked for the five classification methods for K = 100 (panel B), 300 (panel D), and 500

(panel F).

(PDF)

S7 Fig. Impact of different initialization strategies in GTM on the unsupervised classifica-

tion of the simulated data with an SNR of 1/100 into 500 classes. (A, B, C) Examples of the

Gaussian distribution circles corresponding to characteristic radii with 0.1×width (panel A),

0.25×width (panel B) and 0.4×width (panel C). (D) A normalized histogram showing the dis-

tributions of angular distances resulting from different initialization of the weight matrix W.

GCI refers to the use of the Gaussian distribution circles to initialize the weight matrix W.

PCAI refers to the use of the PCA to initialize the weight matrix W. (E) The sizes of the classes

were ranked for the cases from different initializing the weight matrices W. (F) A normalized

histogram showing the distributions of angular distances resulting from different initialization

of β. β was set to 1, 0.01 and 100. PCAI refers to the use the PCA to initialize β. (G) The sizes of

the classes were ranked for different initializing β values.

(PDF)

S8 Fig. Comparison of unsupervised classification of the inflammasome dataset by GTM

and MAP2D. 17,103 particles of inflammasome were classified into 300 reference-free classes.

Only classes whose particle numbers were greater than 9 were shown. (A) Unsupervised clus-

tering using GTM in ROME. Among 300 classes, 49 classes showed the various views of

inflammasome complexes with different symmetry. (B) Unsupervised classification using the

MAP2D procedure in RELION. Only 20 classes exhibited views of inflammasome complexes

with different symmetry. The MAP2D in RELION generated significantly fewer effective clas-

ses than did the GTM in ROME, indicating that GTM is more efficient for distinguishing

structural differences.

(PDF)

S9 Fig. Performance evaluation of MAP2D-based classification algorithms implemented

in ROME and RELION. A 96,488-particle dataset of the RP-CP subcomplex particles with a

box size of 180×180 pixels was used to test the performance of MAP2D in RELION 1.3 and

MAP2D in ROME 1.0. When increasing the class number from 30 to 300, the running time of

MAP2D classification in ROME followed a polynomial behavior from 92 to 537 minutes (blue

histogram).

(PDF)

S10 Fig. Typical weighted loss function of the unsupervised clustering on six datasets

using GTM. (A-D) The weighted loss function at each iteration for datasets 1 (panel A), 2

(panel B), 3 (panel C) and 4 (panel D). The four datasets were classified into 300 classes by

GTM. (E) The dataset 5 was classified into 1,000 classes. The results of the weighted loss func-

tion at each iteration are shown. (F) The simulated data were classified into 100, 300 and 500

classes. The results of the weighted loss function at each iteration are shown.

(PDF)
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S1 Table. Summary of computational run time of 2D classification based on ROME and

RELION for different classification experiments. All tests were executed on the same com-

puting cluster (32 nodes) consisting of 512 Intel Xeon E5 CPU cores. Based on the conver-

gence criteria using the weighted loss function, all datasets converged within 25 iterations (see

S10 Fig). RELION in the table refers to the unsupervised MAP2D-based classification in

RELION 1.3. ROME_MAP in the table refers to the unsupervised 2D classification based on

MAP2D methods implemented in ROME. ROME_SML in the table refers to the unsupervised

2D classification based on the GTM method implemented in ROME. In all cases, the E-M

algorithm was run for 30 iterations.

(PDF)
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