
RESEARCH ARTICLE

Mean field analysis of algorithms for

scale-free networks in molecular biology

S. Konini☯, E. J. Janse van Rensburg☯*

Mathematics & Statistics, York University, Toronto, Ontario, M3J 1P3, Canada

☯ These authors contributed equally to this work.

* rensburg@yorku.ca

Abstract

The sampling of scale-free networks in Molecular Biology is usually achieved by growing

networks from a seed using recursive algorithms with elementary moves which include the

addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert

algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algo-

rithm and the iSite algorithm, were inspired by biological processes underlying the evolution

of protein networks, and the networks they produce differ essentially from networks grown

by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is

reconsidered, and extended to variant and modified implementations of the algorithms. The

degree sequences of scale-free networks decay according to a powerlaw distribution,

namely P(k) * k−γ, where γ is a scaling exponent. We derive mean field expressions for γ,
and test these by numerical simulations. Generally, good agreement is obtained. We also

found that some algorithms do not produce scale-free networks (for example some variant

Barabási-Albert and Solé networks).

Introduction

Many systems in nature and society are described by means of complex networks [1]. Some of

these systems include the cell [2], chemical reactions [3], the world wide web [4], social inter-

actions [5], etc. It is generally found that many system, though different in nature, produce

networks which are scale-free and exhibit similar properties [6, 7].

The main property of scale-free networks is that their degree distribution decays as a power

law [6, 8]—this shows that there is no characteristic scale for the degrees, which is why the net-

works are called scale-free. The average degree of a scale-free network offers little insight into

the real topology of the network [7] since most nodes have degrees which are far away from

the average degree of the network. Nodes of high degree are called hubs and though small in

number for realistic networks, they are over-represented compared to the number of hubs in

random networks. These hubs play an important role in dynamical processes which occur in

scale-free networks.

Scale-free networks also exhibit an unexpected degree of robustness—this is the property

that such networks maintain their dynamic properties even when many nodes and bonds fail
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to transmit signals (suffer high failure rates) [1]. However, these networks remain vulnerable

to failure of hub nodes, since these nodes play a significant role in maintaining the network’s

connectivity.

In this paper the mean field approach to the analysis of algorithms for sampling scale-free

networks inspired by processes in molecular biology is presented. In addition, numerical test-

ing and, in some cases, verification, of the mean field approach will be examined. The focus

will be on four widely used and discussed algorithms in the literature, nameley, the Barabási-

Albert algorithm [8, 9], the Duplication-Divergence algorithm [10, 11], the Solé algorithm [12]

and the iSite algorithm [13, 14].

The Duplication-Divergence, Solé and iSite algorithms are inspired by modelling networks

in biological models of protein-protein interaction evolution, and all these algorithms are

based in one way or another on two ideas: growth by preferential attachment [15], and growth

and changes (mutations) in networks induced by the duplication, deletion or replacement of

nodes or bonds (these are elementary moves which mutate the network by adding, deleting or

moving some of its bonds or nodes).

Growth by preferential attachment is implemented by adding bonds preferentially to nodes

of high degree. This increases the probability that a node will grow to be a hub in the network,

and the resulting network has an increased probability that it will contain hubs [8]. The Bara-

bási-Albert algorithm uses preferential attachment to grow scale-free networks by attaching

bonds to nodes with a probability which is proportional to the degrees of nodes [6]. A mean

field analysis of the Barabási-Albert algorithm was done in reference [9].

The Duplication-Divergence algorithm [10, 11] generates scale-free networks by imple-

menting elementary moves which mutate and grow the network. These are duplication (the

duplication of existing nodes and bonds) and divergence (local changes made to existing bonds

and nodes) elementary moves. These moves model processes which are thought to underlie

the evolutionary mechanisms by which protein interaction networks evolve [10, 11, 16]: The

duplication of genes is a mechanism which generates genes coding for new proteins during

evolution and the divergence step is a model for the mutation of duplicated genes. After a

duplication of a gene, two genes (one the progenitor gene, the other the progeny gene) coding

for the same protein are obtained, and these mutate over time to drift away from one another

in gene space, giving rise to modified proteins when translated by cellular machinery [16]. Bio-

logically, the duplication step may result in a new protein interaction between two mutating

copies of the same gene (this is called heteromerization), and the divergence step is a model of

subfunctionalization (a process where interactions between proteins are lost).

Closely related to the Duplication-Divergence algorithm is the Solé algorithm [12, 16]. This

algorithm grows networks by duplication of nodes, and mutates the network by rewiring it

(this algorithm does not implement the heteromerization of the duplicated genes) [4]. It then

implements a process of deleting some bonds on the duplicated nodes (modelling evolutionary

changes due to subfunctionalization).

The iSite algorithm [13, 14] is a refinement of the Duplication-Divergence and Solé algo-

rithms. This algorithm introduces more complex nodes which each contains interaction sites
as models of protein and protein complexes with localized interaction sites where the interac-

tions with other proteins take place. These localized interaction sites are iSites. Such iSites may

be involved in many interactions, but each interaction is related to only two iSites, one on each

of the proteins involved. That is, iSites are models of the concept of domains on protein sur-

faces where the actual interactions take place between two proteins. The implementation of

the algorithm on nodes containing iSites proceeds by duplication of nodes, and the mutation

of iSites through subfunctionalization and heteromerization (namely, the subfunctionalization

of iSites leading to loss of protein interactions, and heteromerization where new interactions
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are introduced between existing iSites). In this model the subfunctionalization is of iSites, lead-

ing to the loss of all bonds incident with the iSite (contrary to the situation in other algorithms,

for example the Duplication-Divergence algorithm, where subfunctionalization leads to the

loss of bonds, rather than nodes).

This paper is organised as follows. We first consider the general properties of scale-free net-

works, including their scaling and connectivity properties. These ideas are then applied to the

analysis of particular algorithms. The Barabási-Albert model is considered first together with a

new modified version of the algorithm, and a new variant of the algorithm. Mean field theory

for the modified and variant algorithms is developed, giving mean field values for the scaling

exponent γ. These results are compared to numerical results obtained by generating networks

using implementations of the algorithms.

The Duplication-Divergence algorithm and networks generated by it are considered next.

The algorithm is also newly modified, and mean field theory is developed to find mean field

values for the scaling exponent. The mean field predictions are then compared to numerical

results generated by implementing the algorithm and sampling networks.

A similar approach is followed for the Solé algorithm. However, in this model the degree

distribution is not integrable, and our results indicate that the networks generated by this algo-

rithm are not scale-free. Instead, the degree distribution must be modified. This gives a testable

scaling hypothesis for Solé networks, which is tested numerically by generating networks and

examining their scaling, as well as by computing the connectivity of Solé networks and com-

paring it to the mean field predictions. This shows that the size of Solé networks of order n is O
(n2), while the connectivity is O(n)—this implies that Solé networks are rich in bonds (and are

dense networks).

Finally, the iSite algorithm is presented and examined developing a mean field approach to

determine its scaling properties. The algorithm is also modified in a new way, and the resulting

mean field results are tested numerically.

The paper is completed in the conclusion section, where our main results are briefly consid-

ered and reviewed.

Scale-free networks

Scale-free networks of order n are characterised by degree sequences {dk} which follow a

power law distribution (where dk is the number of nodes of degree k and 1

n dk is the fraction of

nodes of degree k).

If hdki is the average degree distribution, then 1

n hdki is proportional to the probability P(k)

that a node has degree k. In scale-free networks, the probability P(k) decays like a powerlaw

with exponent γ:

PðkÞ ’ C� 1
o k� g: ð1Þ

Here, γ is the scale-free network exponent. The constant Co is a normalisation constant given by

Co ¼
Xn

k¼1

k� g: ð2Þ

As n!1, it is necessary that γ> 1 for P(k) to be summable (and Co<1). In this case Co

converges to a constant as n!1. Thus, if γ> 1 then the network is said to be integrable with

scaling exponent γ (in this event Eq (1) is the scaling of the limiting degree distribution with

Co> 0 finite and P(k)!0 as k!1).
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The case that γ = 1 gives rise to a logarithmic correction. Since
Pn

k¼1
k� 1 � log n, this gives

the distribution

PðkÞ �
1

log n
k� 1

ð3Þ

for networks of (large) order n. This network is said to be not integrable, but for asymptotic

values and fixed values of n the decay of P(k) will appear to be proportional to k−1.

Since P(k) is the probability that a node in a network has degree k, the average degree

sequence {hdkin} over randomly generated networks of order n is given approximately by hdki
* nP(k), for n large. It is not known that the degree sequence is self-averaging (that is, that the

degree sequence {dk} has distribution dk * nP(k) as n!1 for a single randomly generated

scale-free network).

This powerlaw decay of degree sequences shows that nodes of large degree (that is, for large

k) are more common in scale-free networks (compared to randomly generated networks,

where they are exponentially rare). These nodes of large degree are called hubs. A precise defi-

nition of a hub in a network is somewhat arbitrary, but for the purpose of this paper, a “hub”

in a network of order n is defined as a node of degree exceeding b
ffiffiffi
n
p
c.

The exponent γ can be estimated from numerical data by computing the average degree

sequence {hdki} and then plotting log P(k)/log k against 1/log k (for networks of order n� k).

Extrapolating the data to k =1 using a linear or a quadratic regression gives the value of γ as

the y-intercept of the graph. This method works well if P(k) scales with k as in Eq (1). However,

strong corrections to the powerlaw behaviour may make the extrapolation difficult or

inaccurate.

A second method to estimate γ is to note that if γ> 1, then for a fixed value of α> 0,

zðkÞ ¼ log Pða kÞ � log PðkÞ ¼ � g log aþ oð1Þ: ð4Þ

Experimentation with numerical data shows that by plotting z(k) against 1

k log k good results

are obtained, and linear or quadratic regressions of z(k) against 1

k log k can be used to estimate

γ.

If it is assumed that P(k) is well approximated by Eq (1) for all k� 1, then the average con-
nectivity of a network of order n with average degree distribution proportional to P(k) = Co n−γ

is given by

hkin ¼

Pn
k¼1

k PðkÞ
Pn

k¼1
PðkÞ

’

R n
1
k PðkÞ dk

R n
1
PðkÞ dk

’
g � 1

g � 2

� �
ng � n2

ng � n

’

g� 1

2� g

� �
n2� g; if 1 < g < 2;

g� 1

g� 2

� �
; if g > 2:

ð5Þ

8
>><

>>:

Observe that the asymptotic estimate is very poor if γ� 2, and if n is small.

The cases γ = 1 and γ = 2 can also be determined; this gives

hkin ’

( n
log n ; if g ¼ 1;

log n; if g ¼ 2:
ð6Þ

The coefficient g� 1

g� 2
may be modifed if P(k) is not well approximated by the powerlaw decay for

smaller values of k in Eq (1). These results, however, do show that the connectivity is a constant

independent of n (for large n) if γ> 2.
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The expected number of bonds in the network is given by En ¼
1

2
nhkin. Assuming the

powerlaw relation in Eq (1), it follows that

En ¼

n2

2 log n ; if g ¼ 1;

g� 1

2ðg� 2Þ

� �
n3� g; if 1 < g < 2;

1

2
n log n; if g ¼ 2;

g� 1

2ðg� 2Þ

� �
n; if g > 2:

ð7Þ

8
>>>>>>>>>>><

>>>>>>>>>>>:

Of course, if γ< 1, then En = Θ(n2) and since a complete graph has 1

2
nðn � 1Þ bonds, this

implies that these graphs are dense in the sense that lim infn!1 1

n2 En > 0. For all values of γ�
1 the above shows that lim supn!1

1

n2 En ¼ 0, and the graphs are sparse.

These results are useful in examining numerical data for scale-free networks. For example,

γ can be estimated by examining degree sequences averaged over randomly sampled networks

(from Eq (1)), or alternatively by using Eq (4). The connectivity hkin approaches a constant if γ
> 2 (as in Eq (5)) or grows as a powerlaw with n if γ< 2, and with logarithmic corrections if γ
= 1 or γ = 2 (as in Eq (6)). Alternatively, the average size En (the number of bonds in a network

of order n) can be considered, using the results in Eq (7).

Mean field theory and scale-free networks

Barabási-Albert networks and the Barabási-Albert algorithm

The Barabási-Albert algorithm is a recursive algorithm which grows networks (or clusters of

nodes and bonds) from a seed node. This algorithm was introduced in reference [8] and

reviewed in 2002 in a seminal paper [6], and its elementary move was inspired by processes

underlying the (presumed) evolution of scale-free networks seen in the physical world. The

elementary move is a preferential attachment of new nodes (and bonds) to hubs (nodes of

high degree) in the network. The algorithm is initiated by a single node, and then new nodes

and bonds are recursively attached, with new bonds preferentially attached to existing nodes

of large degree.

A Barabási-Albert network of order N nodes is grown as follows:

Barabási-Albert algorithm:

1. Initiate the network with one node x0;

2. Suppose that the network consists of nodes {x0, x1, . . ., xn−1} of degrees {k0, k1, . . ., kn−1};

3. Append a new node xn by executing step (a) or step (b):

a. With probability p: Select xj uniformly and attach xn to it by inserting the bond

hxj * xni;

b. With default probability 1 − p: Attach xn by adding bonds hxj * xni independently with

probability
kjP
j
kj

;

4. Repeat step 3 until a network of order N is grown.

Step 3(a) is a random attachment of a node and bond, and step 3(b) attaches a node with

bonds preferentially to existing nodes of high degree. The algorithm has a single parameter p. If

Mean field analysis of algorithms for scale-free networks in molecular biology
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p = 1 then the algorithm grows acyclic (and connected) networks of order N (these are random

trees).

On the other hand, if p = 0, then step 3(b) is executed on each iteration. New bonds are cre-

ated with probabilities qj ¼
kjP
j
kj

for j = 0, 1, . . ., n − 1 when the n-th node is added. This shows

that the expected number of bonds added in this step is on average ∑j qj = 1. That is, on average

1 bond is added in each iteration, and the average sum of degrees ∑j kj should be equal to 2n by

handshaking after n iterations. This suggests that the algorithm grows a sparse graph with

increasing n. However, since bonds are appended preferentially on growing hubs, the largest

clusters in the network should be dominated by growing hubs.

For values of p 2 (0, 1) the algorithm adds either (wih probability p) a single bond ran-

domly, or it adds a collection of bonds (on average one bond) preferentially. This grows simple

networks of order N and size N − 1, typically not connected unless acyclic.

In Fig 1 an example of a Barbasi-Albert network of order 122 with p = 0 is shown (left) and

the right is a network of size 380. The appearance of hubs in these networks is clearly seen: In

the network on the left there are 5 nodes of degrees exceeding
ffiffiffiffiffiffiffiffi
122
p

, the largest of degree 31,

and in the network on the right there are 3 hubs of degrees exceeding
ffiffiffiffiffiffiffiffi
380
p

, the largest of

degree 63.

Modified Barabási-Albert networks. Barabási-Albert networks are relatively sparse net-

works. A modification of the algorithm can be introduced to grow denser networks. For exam-

ple, one may replace step 3(b) by

3(b). With default probability 1 − p: Attach xn by adding bonds hxj * xni with probability

qj ¼ minfl kjþAP
j
kj
; 1g (where λ and A are non-negative parameters of the algorithm);

Since kj� ∑j kj in Barabási-Albert networks, one may assume that λkj + A� ∑j kj for values

of λ and A which are not too large (and so qj� 1).

In Fig 2 two examples of Modified Barabási-Albert networks are shown, one a sparse net-

work with λ = 0.5, A = 0 and p = 0, and the second a denser network with λ = 2.0, A = 0 and

p = 0. In both cases the algorithm was iterated 200 times; the sparse network has order 203 and

Fig 1. Barabási-Albert networks with p = 0. The network on the left was grown to order n = 122. It has 5

hubs of degrees {12, 17, 18, 19, 31} exceeding
ffiffiffiffiffiffiffiffi
122
p

. The network on the right was grown to order n = 380.

This network has 3 hubs of degrees {29, 47, 63} exceeding
ffiffiffiffiffiffiffiffi
380
p

. The arrangement of nodes and bonds in

these networks was created using the prefuse force directed lay-out in Cytoscape 3.4.0 [17].

https://doi.org/10.1371/journal.pone.0189866.g001
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two hubs of degrees {15, 17}, and the dense network has order 172 with seven hubs of degrees

{15, 15, 16, 17, 19, 27, 33}.

Variant Barbasi-Albert networks. A variant Barbasi-Albert algorithm can be introduced

by changing step 3(b) in the Barbasi-Albert algorithm to

3(b). With default probability 1 − p: Attach xn by adding bonds hxj * xni with probability

qj ¼ minfk
a
j þAP

j
kj
; 1g, (where α and A are non-negative parameters of the algorithm);

The effect of the parameter α is to increase the probability of adding bonds to the hubs of

the network if α> 1, and to decrease this probability if α< 1. In the case that α> 1 networks

dominated by a single very large hub are obtained (see Fig 3 (right network)), while networks

with α< 1 are more sparse and not dominated by a few hubs (see Fig 3 (left network)). The

left network in Fig 3 was grown by putting α = 0.15 and A = 0 and has order 327. None of the

nodes in this network has degree which exceeds
ffiffiffiffiffiffiffiffi
327
p

, and so none qualify as hubs. A denser

network is obtained if α = 1.15 and A = 0, as shown in Fig 3 on the right. This network is domi-

nated by hubs of degrees {22, 24, 26, 42, 43, 116} and has order 351.

Mean field theory for Modified Barabási-Albert networks. Let kj(n) be the degree of

node j after n iterations. A mean field calculation of kj(n) is done by assuming that kj(n) is

equal to its expected value for each n; that is, kj(n) = hkj(n)i for each j and n.

The modified Barabási-Albert algorithm appends bonds to a network of order n as follows:

Step 3(a) is executed with probability p, and a bond (and the (n + 1)-th node) is appended with

uniform probability on one of the n existing nodes. The probability that node j gets a bond in

this way is
p
n and on average one bond is attached with probability p.

If step 3(b) is done instead, then the expected number of bonds added in the mean field is

approximately
P

j
l kjðnÞþAP

j
kjðnÞ
¼ lþ nAP

j
kjðnÞ

. The total number of bonds in the network is

2En ¼
X

j

kjðnÞ ð8Þ

Fig 2. Modified Barabási-Albert networks. The network on the left was grown with λ = 0.1 to order n = 203.

It has two hubs of degrees {15, 17} which exceed
ffiffiffiffiffiffiffiffi
203
p

. The network on the right was grown with λ = 1.5 to

order n = 172. This network contains hubs of degrees {15, 15, 16, 17, 19, 27, 33} exceeding
ffiffiffiffiffiffiffiffi
172
p

. In both

cases the algorithm was implemented with p = 0. The arrangement of nodes and bonds in these networks was

created using the prefuse force directed lay-out in Cytoscape 3.4.0 [17].

https://doi.org/10.1371/journal.pone.0189866.g002
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by handshaking. Thus, the increment in the number of bonds when the next node is

appended is

DEn ¼ pþ ð1 � pÞlþ ð1 � pÞ
nA
2En

: ð9Þ

Approximate this by a differential equation

2En
d
dn

En ¼ 2ðpþ ð1 � pÞlÞEn þ ð1 � pÞnA: ð10Þ

This can be solved to obtain

En ¼
n
2
ððpþ ð1 � pÞlÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ ð1 � pÞlÞ2 þ 2ð1 � pÞA
q

Þ ¼ Cn; ð11Þ

where C is a function of (p, λ, A) defined by this expression. Notice that En grows linearly in n,

so that Barabási-Albert graphs will be necessarily sparse as n!1 (and by Eq (7) the scaling

exponent is γ> 2).

With each iteration the mean field value of kj(n) (the degree of the j-th node after n itera-

tions) increments by

kjðnþ 1Þ ¼ kjðnÞ þ
p
n
þ
ð1 � pÞðlkjðnÞ þ AÞ

2En

ð12Þ

since 2En = ∑j kj(n) = 2Cn, and since the probabilty of adding a bond to node j is
lkjðnÞþAP

j
kjðnÞ

. This

can again be approximated by a differential equation: Take n! t, a continuous time variable,

and let kj(n)! kkj(t), the continuous mean field degree of node j. Then

d
dt

kjðtÞ ¼
p
t
þ
ð1 � pÞðlkjðtÞ þ AÞ

2Ct
: ð13Þ

The initial condition is to assume that node j is added at time tj. Putting A = 0 and λ = 1 gives

Fig 3. Variant Barabási-Albert networks. The network on the left was grown using α = 0.15 and A = 0 to a

total to n = 327 nodes. This graph is very sparse, and none of its nodes qualify as hubs. The network on the

right was grown to order n = 351 with α = 1.15 and A = 0. This is a dense network with several nodes qualifying

as hubs of degrees {22, 24, 26, 42, 43, 116}. The arrangement of nodes and bonds in these networks was

created using the prefuse force directed lay-out in Cytoscape 3.4.0 [17].

https://doi.org/10.1371/journal.pone.0189866.g003
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C = 1 and the equation

d
dt

kjðtÞ ¼
p
t
þ
ð1 � pÞkjðtÞ

2t
ð14Þ

which was also derived in reference [9]. In this event the solution is kjðtÞ ¼
1þp
1� p ðt=tjÞ

ð1� pÞ=2
�

2p
1� p (assuming the initial condition kj(tj) = 1).

More generally, Eq (13) can be cast in the general form

d
dt

kjðtÞ ¼
Q
t
þ

P
t
kjðtÞ ð15Þ

where Q ¼ pþ ð1� pÞA
2C and P ¼ ð1� pÞl

2C , with solution

kjðtÞ ¼ 1þ
Q
P

� �

ðt=tjÞ
P
�

Q
P

ð16Þ

using again the intial condition kj(tj) = 1.

The mean field degree distribution can be determined from this solution. The probability

that node j has degree kj(t) smaller than κ at time t is denoted by P[kj(t)< κ]. Since kj(t)< κ if

1þ
Q
P

� �

ðt=tjÞ
P
< k or; equivalently; tj > t

Q=P þ k

1þ Q=P

� �� 1=P

;

this is also the probability P ðtj=tÞ >
Q=Pþk

1þQ=P

� �� 1=P
� �

. If the node tj is chosen uniformly from the

n available, then

P½kjðtÞ < k� ¼ P ðtj=tÞ >
Q=P þ k

1þ Q=P

� �� 1=P
" #

¼ 1 �
Q=P þ k

1þ Q=P

� �� 1=P

: ð17Þ

The mean field degree distribution is the derivative of this to κ:

PðkÞ ¼ P½kjðtÞ ¼ k� ¼
@

@k
P½knðtÞ < k� ¼

ðP þ QÞ1=P

ðPkþ QÞ1þ1=P : ð18Þ

For large κ this shows that the modified Barbasi-Albert network is scale-free with exponent

g ¼ 1þ
1

P
¼ 1þ

2C
ð1 � pÞl

¼ 1þ
ððpþ ð1 � pÞlÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ ð1 � pÞlÞ2 þ 2ð1 � pÞA
q

Þ

ð1 � pÞl
:

ð19Þ

Putting A = 0 gives the exponent

g ¼ 3þ
2p

ð1 � pÞl
: ð20Þ

This is the mean field exponent of a modified Barabási-Albert network. For small λ< 1 the

exponent is large, indicating a network with few nodes (if any) of high degree. For large λ> 1,

g& 3þ. This is a lower bound on γ for modified Barabási-Albert networks.
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If λ = 1, then the exponent γ is given by

g ¼ 1þ
1

1 � p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð1 � pÞA

p

1 � p
: ð21Þ

In this model one similarly finds that γ� 3, and in fact, if p = 0, then g ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A
p

. The

parameter A may be used to tune the exponent γ for any given p.

If both λ = 1 and A = 0, then the known expression for γ for Barabási-Albert networks is

recovered, namely

g ¼
3 � p
1 � p

: ð22Þ

Notice that γ� 3 and that γ = 3 if p = 0 [9].

The connectivity of modified Barabási-Albert networks is given by

hkin ’
R n

1
k PðkÞ dk

R n
1
PðkÞ dk

’
2C

2C � ð1 � pÞl
; ð23Þ

where 2C ¼ ððpþ ð1 � pÞlÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ ð1 � pÞlÞ2 þ 2ð1 � pÞA
q

Þ. Since 2 � g ¼ 1 � 1

P, Eq (5)

gives hkin ’ 1

1� P. Inserting the value of P gives the result above as well.

In the Fig 4 the probability P(k), that the degree of a Barabási-Albert network is equal to k,

is examined by plotting log P(k)/log(k + 1) against 1/log(k + 1) where P(k) was estimated for

values n 2 {6250, 12500, 25000, 50000, 100000, 200000} and for p = 0. The curves should inter-

sect the vertical axis at −γ. Least squares fit of the data to quadratic curves gives 6 estimates for

γ, which average to γ = 3.026±0.076, very close to the theoretical value γ = 3 from Eq (20) (for

p = 0 and λ = 1).

Data collected for the same values of n and for p = 0.5 cannot be successfully analysed by

regressions with quadratic curves, but cubic curves give the average value γ = 5.161±0.068,

which are not equal to but still fairly well approximated by γ = 5 predicted by Eq (20) for

p = 0.5 and γ = 1.

When p = 0.8 the plots are strongly curved and extrapolation to estimate γ is more difficult.

In this case a different approach is needed. Putting a ¼ 1

2
in Eq (4) gives

log PðkÞ � log P
1

2
k

� �

¼ � g log 2þ oð1Þ ð24Þ

so that a plot of zðkÞ ¼ log PðkÞ � log P 1

2
k

� �� �
= log 2! � g as k!1. That is, plotting

z(k) against 1

k gives a curve with y-intercept equal to −γ. Better results are obtained when plot-

ting against 1

k log k. In this case a linear extrapolation gives γ = 11.67 ± 0.41 and a quadratic

extrapolation gives γ = 11.6 ± 2.6. These results are close to the mean field prediction γ = 11

for p = 0.8. Incidently, if p = 0.5 then this kind of analysis show that γ = 5.47 ± 0.14 (linear

extrapolation) or γ = 4.4 ± 1.0 (quadratic extrapolation), and if p = 0, then the results are

γ = 3.088 ± 0.022 (linear extrapolation) and γ = 2.86 ± 0.18 (quadratic extrapolation).

If λ = 2 and p = A = 0 then the algorithm grows modified Barabási-Albert networks with

γ = 3 (the mean field estimate given by Eq (19)). Estimating γ by plotting z(k) against 1

k log k
gives the estimate γ = 3.019 ± 0.098 (linear extrapolation) and γ = 2.62 ± 0.33 (quadratic

extrapolation).

The connectivity of Modified Barabási-Albert networks should converge quickly to a con-

stant with increasing n (by Eq (5)) since γ> 2. Computing it for Barabási-Albert networks
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(with λ = 1 and A = 0) gives hkin� 3.16 for p = 0, hkin� 2.28 for p = 0.5 and hkin� 2.08 for

p = 0.8, and for n = 12500. Increasing n does not change these results.

Mean field theory for Variant Barabási-Albert networks. In this model the increment

in the number of bonds when the (n + 1)-th node is appended is given by

DEn ¼ pþ
ð1 � pÞð

P
jðkjðnÞÞ

a
þ AÞ

2En
: ð25Þ

Approximating this with a differential equation gives

2En
d
dn

En ¼ 2pEn þ ð1 � pÞnAþ ð1 � pÞ
X

j

ðkjðnÞÞ
a
: ð26Þ

The right hand side can be approximated as follows: For α> 1 the algorithm should grow

dense networks with nodes of high degree. Assuming that kj(n)� kℓ(n) for all ℓ shows that
P

jðkjðnÞÞ
a
� nðkjðnÞÞ

a
� n 1

n

P
jkjðnÞ

� �a

¼ n1� að2EnÞ
a
. Using this approximation gives

2En
d
dn

En � 2pEn þ ð1 � pÞnAþ ð1 � pÞn1� að2EnÞ
a
: ð27Þ

Fig 4. Scaling of Barabási-Albert networks with p = 0. Data on networks generated by the Barabási-Albert

algorithm with p = 0. In each case 100 networks were grown and the average degree sequence Pn(k)

computed. The curves above are plots of log Pn(k)/log(k + 1) against 1/log(k + 1) for n 2 {6250, 12500, 25000,

� � �, 200000}. Least squares fit to the data using a quadratic model gives the y-intercepts which averages to

3.026. This is very close to the value γ = 3 predicted for the scaling exponent in this model by the mean field

approach.

https://doi.org/10.1371/journal.pone.0189866.g004

Mean field analysis of algorithms for scale-free networks in molecular biology

PLOS ONE | https://doi.org/10.1371/journal.pone.0189866 December 22, 2017 11 / 34

https://doi.org/10.1371/journal.pone.0189866.g004
https://doi.org/10.1371/journal.pone.0189866


If A = p = 0, then the differential equation can be solved directly to obtain En’ 2(α−1)/(2−α) n,

provided that α> 1. This shows that En is linear in n, which may be expected if α is not too

much larger than 1.

Numerical experimentation shows that En grows linearly in n for values of α not too much

larger than 1. For example, if p = 0.5, A = 1 and α = 1 then 1

n En ! 1:207 . . ., if α = 1.5 then
1

n En ! 1:539 . . ., but if α = 2 then 1

n En increases slowly with n. Similarly, if p = 0, and A = 1,

then, if α = 1, 1

n En ! 1:366 . . ., and if α = 1.5, 1

n En ! 2:399 . . ., but if α = 2 then 1

n En increases

slowly with n and for even larger values of n this growth accelerates.

The recurrence for the degree of the j-th node may be approximated by a differential equa-

tion similar to Eq (13): Assuming that En = Dnβ, replacing n! t (a continuous time variable),

gives the recurrence

kjðt þ 1Þ ¼ kjðtÞ þ
p
t
þ
ð1 � pÞððkjðtÞÞ

a
þ AÞ

2Dtb
: ð28Þ

This can be approximated by the differential equation

d
dt

kjðtÞ ¼
p
t
þ
ð1 � pÞððkjðtÞÞ

a
þ AÞ

2Dtb
: ð29Þ

If α = 1 and β = 1 then the solution of this equation gives the Barabási-Albert case with γ = 3.

Proceed by considering the case A = p = 0 and the initial condition kj(tj) = 1. Assume that α =

1 + �. Then the equation becomes

2Dtb

kjðtÞ
d
dt

kjðtÞ ¼ ðkjðtÞÞ
�
: ð30Þ

A perturbative approach for small � can be done by expanding

ðkjðtÞÞ
�
¼ expð� log kjðtÞÞ ¼ 1þ � log kjðtÞ þ 1

2
�2 log 2kjðtÞ þ � � �. Truncating this at O(�2)

and putting g(t) = log kj(t) gives the differential equation

2Dtb
d
dt

gðtÞ ¼ 1þ �gðtÞ þ
1

2
�2g2ðtÞ: ð31Þ

Using the initial condition g(tj) = log kj(tj) = 0 the solution of this equation is

� gðtÞ ¼
� 1þ tan p

4
þ �

4D log t
tj

� �� �
; if b ¼ 1;

� 1þ tan p

4
þ �

4Dðb� 1Þ
ðt1� b

j � t1� bÞ
� �

; if b > 1:

ð32Þ

8
>><

>>:

In the case β> 1 suppose that δ = β − 1 and that δ is small. Then approximate

t1� b
j � t1� b ¼ e� d log tj � e� d log t � d log

t
tj

 !

�
1

2
d

2 log
t
tj

 !

log ðttjÞ þ Oðd3
Þ:

With this approximation the solution for g(t) above can be expanded in � and δ to give the first
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order approximations

gðtÞ ’

1

2D
log

t
tj

 !

þ
�

8D2
log 2 t

tj
; if b ¼ 1;

1

2D
log

t
tj

 !

þ
�

8D2
log 2 t

tj
�

d

4D2
D log 2 t

tj

 !

þ log tj log
t
tj

 ! !

; if b > 1:

8
>>>>>><

>>>>>>:

Proceed by solving the above quadratics for log t
tj

� �
in terms of g(t). Expand the solution

in � and δ and keep only the first few terms. In the case that β = 1 this gives

log
t
tj

 !

� 2DgðtÞ � �Dg2ðtÞ: ð33Þ

Since g(t) = log kj(t), the probability that kj(t)< κ is given by

P½kjðtÞ < k� ¼ P
tj
t
> k�D log k� 2D

� �

� 1 � k�D log k� 2D: ð34Þ

Taking the derivative to κ gives the distribution function in the case that β = 1:

PðkÞ � Dð2 � D� log kÞ k� 1� 2DþD� log k: ð35Þ

These networks are thus not scale-free. For small values of k the log k terms are slowly varying,

and the networks will appear to be scale-free with γ = 1 + 2D. However, with increasing k the

exponent reduces in value and the connectivity of the network will become dependent on k in

the way seen in Eq (5) for small values of γ.

Notice that if D = 1 and � = 0 (or α = 1), then the above reduces to P(k) * k−3, as expected

for Barabási-Albert networks.

If β> 1, then a similar approach to the above may be considered. Solving the expression for

g(t) above for log t
tj

� �
and keeping only terms to O(�) and O(δ) gives

log
t
tj

 !

� 2DgðtÞ � �Dg2ðtÞ þ dð2D2g2ðtÞ þ gðtÞ log tjÞ: ð36Þ

This shows that

PðkjðtÞ < kÞ ¼ P
tj
t
> k�D log k� 2D� 2D2d log k� d log tj

� �

� 1 � k�D log k� 2D� 2D2d log k� d log tj :

This shows that

PðkÞ � ð2Dð1þ 2Dd log k � � log kÞÞ k� 1� 2D� d log tj � Dð2Dd� �Þ log k: ð37Þ

This gives an effective exponent γk = 1 + 2D + δ log tj + D(2Dδ − �)log k which decreases in

size if 2Dδ − � < 0 and increases in size if 2Dδ − � > 0. Since δ = β − 1 and � = α − 1, and for

small α numerical simulations show that β� 1, it is normally the case that 2Dδ − � < 0. This

means that the networks will first appear scale-free with constant connectivity until k becomes

large enough in which case the connectivity will increase with k, as seen above.

Numerical results on Variant Barabási-Albert networks. In Fig 5 data for networks with

p = 0 and α = 1.1 and α = 0.5 is shown. Since α = 1.1 is still very close to 1, the results above
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show that these networks should still appear scale-free, and with connectivity a constant. This

is indeed the case. For n = 6250 the data gives hkin = 3.149, and increasing n to n = 200000

gives hkin = 3.176. That is, the connectivity of the networks are insensitive to n over this range.

Least squares fits to the curves with quadratic polynomials in order to determinate the value of

γ give the average γ = 2.857 ± 0.068. This result is consistent with a constant value of the con-

nectivity of networks of these size ranges. With increasing n, it is expected that γ will decrease

in value (that is, the value given here is an effective value), and eventually, the connectivity will

start to increase.

Networks generated with p = 0 and α = 0.5 turned out to be sparse with low connectivity.

For example, for n = 100000, the connectivity is hkin = 1.036 and this decreases even further

for n = 200000, where hkin = 1.020. Attemps to extract an exponent γ from the data for these

networks were not succesful, the regressions did not settle on a value, but are strongly depen-

dent on n. Notice that the mean field analysis above does not apply to networks with α< 1.

Putting α = 2 gives networks with average connectivity which increases with n. For exam-

ple, if n = 100, then hkin = 43, for n = 500, hkin = 260 and for n = 1000, hkin = 527. On the

other hand, if a ¼ 3

2
, then hkin = 3.08 if n = 100, hkin = 3.27 if n = 500, and hkin = 3.31 if

n = 1000, and it appears that for small values of n the connectivity does not change quickly

with increasing n.

Duplication-Divergence networks

Biological models of protein evolution are usually presented in terms of two processes, namely

(1) a duplication event involving a gene sequence in DNA, and (2) a (random) mutation of

duplicated genes which then drift from one another in genetic space [18–20]. The mutations

of duplicated and mutated genes change the proteome and the network of protein interactions:

If the protein is self-interacting, then the duplicated proteins interact, and the mutated genes

code for proteins with altered interactions (some gained, others weakened or lost) with other

proteins.

The Duplication-Divergence algorithm models these processes in order to grow a network,

and was used in order to estimate the rates of duplication and mutation in the protein

Fig 5. Variant Barabási-Albert networks with p = 0. Data on networks generated by the Variant Barabási-

Albert algorithm with p = 0 and α = 1.1 (red curves) and α = 0.5 (blue curves). In each case 100 networks were

grown and the average degree sequence Pn(k) computed. The curves above are plots of log Pn(k)/log(k + 1)

against 1/log(k + 1) for n 2 {6250, 12500, 25000, � � �, 200000}.

https://doi.org/10.1371/journal.pone.0189866.g005
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interaction networks [11]. There is a rich and large literature reporting on modeling protein

interaction networks using models which include processes of duplication and divergence

[21–24].

Since proteomic networks appear to be scale-free [25, 26], it seems likely that duplication

and divergence processes should grow scale-free networks and that this should also be seen in

computer algorithms which grow networks using duplication and divergence elementary

moves. Duplication can be implemented by selecting nodes and duplicating them, and their

incident bonds, in a network. Divergence is implemented by altering the bonds incident on

particular nodes, namely either by deleting, adding or moving bonds. In the Duplication-

Divergence algorithm these moves are implemented by selecting nodes uniformly for duplica-

tion to progenitor-progeny pairs, and by deleting bonds incident to either the progenitor node

or its progeny. Notice that since nodes of high degree have a larger probability of being adja-

cent to a node selected for duplication, these nodes have a larger probability of receiving new

bonds in the duplication process—in this way there are events of preferential attachment in

this algorithm [15, 16].

The basic elementary move of the Duplication-Divergence algorithm is illustrated in Fig 6.

The algorithm is implemented as follows.

Duplication-Divergence algorithm:

1. Initiate the network with one node x0 and apply the following steps iteratively;

2. Duplication: Choose a node υ uniformly and duplicate by creating node υ0;

3. For all bonds hw * υi incident with υ, add the bonds hw * υ0i;

4. With probability p add the bond hυ * υ0i;

5. Divergence: delete one bond of the pair {hw * υi, hw * υ0i} incident with υ or with its

duplicated node υ0 with probability q (for each w adjacent to both υ and υ0 independently);

6. Stop the algorithm when a network of order N is grown.

The algorithm has two parameters (p, q).

Fig 6. The Duplication-Divergence algorithm. Duplication-Divergence iterations: A node i and its incident

bonds are duplicated to create a node j with its incident bonds. The bond hi * ji is added with probability p. In

the divergence step one of the pair of bonds (hi * mi, hj * mi) is deleted with probability q, for each value of

m 2 {1, 2, 3}.

https://doi.org/10.1371/journal.pone.0189866.g006
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The parameter p is the probability that the protein corresponding to the progenitor node υ
is self-interacting. If it is (with probability p) then the bond hυ * υ0i is added to the network

and it represents the interaction between υ and υ0.
The parameter q controls the model of divergence in this algorithm. As υ and υ0 diverge

from one another, one bond in each pair of bonds incident with υ and υ0 is lost independently,

with probability q. The result is that the network mutates as bonds (interactions) are lost

(while they are created by the duplication process).

A slightly modified algorithm is found by changing step 5 in the algorithm to find a modifi-

cation of the Duplication-Divergence algorithm which assumes that one of the duplicated pair

mutates, while the other remains stable.

5. Divergence: Consider all bonds hw * υ0i incident with the duplicated node υ0 and delete

these independently with probability q.

The Duplication-Divergence algorithm tends to grow disconnected networks, while the

Modifed Duplication-Divergence algorithm is more likely to grow networks with a single com-

ponent (that it, connected networks).

Mean field theory for Duplication-Divergence networks. Let kj(n) be the degree of node

j after n iterations. The algorithm appends nodes by duplicating them (the probability that a

node υ is duplicated in a network of order n is 1

n), adds bonds by inserting a bond between a

node and its duplicate with probability p, and remove bonds by selecting one bond between

node-duplicate pairs and other nodes independently and deleting it with probability q. Let

2En = ∑j k(n) be twice the total number of bonds after n iterations. Then, if kj(n) is the degree

of node j at time n, and node j is duplicated, the number of bonds in the network En increases

in the mean field by

Enþ1 ¼ En þ pþ kjðnÞ � q kjðnÞ: ð38Þ

This follows since kj(n) bonds are created in the duplication move in the mean field, and

another bond is created between the j-th node and its duplicate with probability p. The number

of deleted bonds in the mean field is qkj(n).

Notice that 2En = ∑j kj(n) = nan where an = hkj(n)i is the average degree. In the mean field

approximation one substitutes kj(n) in the recurrence (38) by its network average an. Then

Eq (38) can be casted as a recurrance for an:

ðnþ 1Þ anþ1 ¼ n an þ 2pþ 2ð1 � qÞ an: ð39Þ

Let n! t, where t is a continuous time variable, and approximate this recurrence by the differ-

ential equation

t
d
dt

at ¼ 2pþ ð1 � 2qÞ at: ð40Þ

The initial condition is a1 = 1, and this has solution

at ¼
1 � 2ðq � pÞ

1 � 2q
t1� 2q �

2p
1 � 2q

: ð41Þ

Since En ’
1

2
n an, it follows that

En ¼
1 � 2ðq � pÞ

2ð1 � 2qÞ
n2ð1� qÞ �

pn
1 � 2q

: ð42Þ
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Comparison to Eq (7) shows that, if q < 1

2
,

g ¼ 1þ 2q: ð43Þ

In this case En = O(n2(1−q)) + O(n) and that while 2(1 − q)> 1, the term O(n) is a strong correc-

tion to the growth in En for even large values of n. In other words, the degree distribution P(k)

of the network will be strongly corrected from the powerlaw distribution in Eq (1).

If q ¼ 1

2
, then by solving Eq (40), at = 1 + 2p log t (so that a1 = 1). Since En ¼

1

2
n an, this

shows that

En ¼
1

2
nþ pn log n; if q ¼

1

2
: ð44Þ

In this case γ = 2 by Eq (7), but notice the subtle domination of the n log n term. In numerical

work this will be very hard to see.

The case q > 1

2
is considered by noting that at ’

2p
2q� 1

as t!1. This shows that

En ’
p n

2q � 1
; if q >

1

2
: ð45Þ

This shows that γ� 2 by Eq (7).

Putting the above together gives

g

¼ 1þ 2q; if q � 1

2
;

� 2; if q > 1

2
:

ð46Þ

8
<

:

with a logarithmic correction if q ¼ 1

2
.

Comparing the coefficient in Eq (7) with Eq (45) gives a refined estimate

g ¼ 1þ
2p

1þ2p� 2q � 2, provided that 2q< 1 + 2p. For example, if q = 0.75 then p> 0.25. How-

ever, numerical work shows this estimate to be too small, and estimating γ in this regime for

this model remains an open question.

The power law decrease in P(k) in Eq (1) is only asymptotic for this algorithm; and there

should be corrections in particular for q < 1

2
. From the results above the average connectivity

can be computed: Since En ¼
1

2
n hkjðnÞi,

hkin ’

1� 2ðq� pÞ
1� 2q n1� 2q �

2p
1� 2q ; if q < 1

2
;

2p log nþ 1; if q ¼ 1

2
;

Constant; if q > 1

2
:

ð47Þ

8
>>>><

>>>>:

From these results P(k) can be calculated. Since hkin ’
R n

1
k PðkÞ dk, it follows that

d
dn hkin ¼ n PðnÞ. Thus, using this approach gives

PðkÞ �

ð1 � 2ðq � pÞÞ k� 1� 2q; if q < 1

2
;

2p k� 2; if q ¼ 1

2
;

C0 k� g; if q > 1

2
;

ð48Þ

8
>>><

>>>:

where the case q > 1

2
is unknown since the dependence of the exponent γ on the parameters (p,

q) is not known. Notice the change in behaviour at the critical value q ¼ 1

2
; this was already

observed numerically in reference [11].
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The modified Duplication-Divergence algorithm has the same recurrence (41), and so the

values for γ and relations for hkin and P(k) remain unchanged for this algorithm. Notice that

this implementation preserves the degree of the selected node, and tends to give a duplicated

node with lower degree (while the (unmodified) implementation tends to lower the degrees of

both the selected and duplicated nodes). As a result, networks generated with the modified

algorithm have, on average, more nodes of degree equal to one (and so appear more tree-like).

Numerical results on Duplication-Divergence networks. In Fig 7 two networks grown

with the Duplication-Divergence algorithm are shown. Both networks were grown with p = 1

and have order 300. The network on the left was grown with divergence parameter q = 0.4,

and that on the right, with the higher mutation rate q = 0.6.

In Fig 8 data for networks grown with p = 0.75 and q = 0.4 are shown. The curves on the

right were obtained by plotting (log P(k))/log(k + 1) averaged over 100 networks of sizes {3125,

6250, 12500, 25000, 50000, 100000, 200000} against 1/log(k + 1). The mean field value of γ is

denoted by the bullet on the left-hand axis. These data show that convergence to this value is

very slow—this indicates strong corrections to scaling arising in Eq (42).

An alternative approach is to estimate γ by plotting z(k) = (log P(2k) − log P(k))/log2 as a

function of log(k + 1)/k (see Eq (4) with α = 2). The results are also strongly curved data (left in

Fig 8), and while the results are not inconsistent with the mean field value γ� 1.9 in this

model, however, it seems difficult to extrapolate these curves to a limiting value of γ.

If q ¼ 0:60 > 1

2
then the results in Fig 9 are seen. The curves of z(k) = (log P(2k) − log P(k))/

log2 as a function of log(k + 1)/k have straightened considerably, and each can be extrapolated

by a quadratic least squares to obtain an estimate γn for each value of n = 3125 × 2ℓ (for ℓ = 0,

1, 2, . . ., 6). This gives estimates {9.68, 8.52, 7.99, 7.95, 7.82, 7.58, 7.05} which can be extrapo-

lated by a least squares fit of γn = γ + A/log n, giving the estimate γ� 2.87, which is slightly

larger than the value predicted by the mean field formula g ¼ 1þ
2p

1þ2p� 2q (see the paragraph

Fig 7. Duplication-Divergence network. The network on the left is a network generated with p = 1 and

q = 0.40. It has order 300 and it has 114 nodes with degrees exceeding
ffiffiffiffiffiffiffiffi
300
p

and so qualify as hubs. The

largest few of these hubs have degrees {43, 45, 47, 47, 50}. The network on the right is similarly a network

generated with p = 1 and q = 0.60. It is more extended but has only one node of degree equal to one. Its order

is 300, and it has 5 nodes of degrees {18, 18, 19, 20, 23} which qualify as hubs. Networks generated with the

Modified Duplication-Divergence algorithm have a similar appearance, with the exception that more nodes of

degree 1 are seen. The arrangement of nodes and bonds in these networks was created using the prefuse

force directed lay-out in Cytoscape 3.4.0 [17].

https://doi.org/10.1371/journal.pone.0189866.g007

Mean field analysis of algorithms for scale-free networks in molecular biology

PLOS ONE | https://doi.org/10.1371/journal.pone.0189866 December 22, 2017 18 / 34

https://doi.org/10.1371/journal.pone.0189866.g007
https://doi.org/10.1371/journal.pone.0189866


following Eq (46)). This suggests that the approach to limiting behaviour in this model is quite

slow, consistent with the remarks after Eq (46) in the previous section.

The average connectivity hkin is expected to behave according to Eq (47). In Table 1 hkin is

listed for p = 0.75 and q = 0.40, q = 0.50 and q = 0.60. If q = 0.4, then Eq (47) suggests that

hkin’ 8.5n0.2. Computing hkin × n−0.2 from the data in Table 1 gives {5.18, 5.45, 5.65, 5.91,

5.96, 6.01, 6.12}. Plotting these results against 1/log n and then linearly extrapolating as n!1
gives 7.98, close to the value of 8.5 predicted in Eq (47).

If q = 0.5, then Eq (47) suggests that hkin’ 1.5log n since p = 0.75. Dividing the results in

Table 1 by log n for each value of n gives the results {1.42, 1.44, 1.44, 1.42, 1.43, 1.46, 1, 45}.

The average of this is close to the predicted value of 1.5.

Finally, if q = 0.6 then the data appear to approach a constant. Extrapolating these results

using the model A + B/log(n) gives the estimated limiting value 8.72. By Eq (5) this indicates

that γ = 2.13, a value which is quite close to 2.15, the value predicted by the formula

g ¼ 1þ
2p

1þ2p� 2q in the paragraph following Eq (46).

Solé evolutionary networks

The Solé model [12, 16] modifies Duplication-Divergence model by using duplication and net-

work rewiring as the basic elementary moves. As before, the duplication of nodes is an imple-

mentation of gene duplication, and the network rewiring is based on the loss and gain of

protein interactions in the bulk of the network [4]. Thus, the algorithm grows networks based

on a model of gene duplication and the rewiring of protein interactions; both these processes

drive the evolution of the interactome.

Fig 8. The distribution of degrees in Duplication-Divergence networks with p = 0.75 and q = 0.40. Data

on networks generated by the Duplication-Divergence algorithm. In each case 100 networks were grown and

the average degree sequence Pn(k) computed. The curves on the right are plots of log Pn(k)/log(k + 1) against

1/log(k + 1) for n 2 {3125, 6250, 12500, � � �, 200000}, while those on the left are plots of (log P(2k) − log P(k))/

log2 as a function of log(k + 1)/k. The mean field estimate for the exponent γ is marked at −γ = −1.8 on the left

hand axis. The strong correction to scaling evident in these curves makes it difficult to extrapolate to the mean

field value for γ.

https://doi.org/10.1371/journal.pone.0189866.g008
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The elementary move of the algorithm is as follows: A node in the network is chosen uni-

formly and randomly, and duplicated to form a progenitor-progeny pair. The progeny will

have the same interactions as the progenitor. This network is updated in the rewiring step

which has two parts: Bonds incident with the progeny protein are deleted with probability δ,

and new bonds are added in the network between nodes (excluding the progenitor protein)

are created with probability α. This implementation differs in two ways from the Duplication-

Divergence algorithm. In the Solé model there are no self-interacting nodes, and the formation

of new bonds in the rewiring steps only occurs in the Solé model.

The basic iterative step of the Solé algorithm is shown in Fig 10.

Fig 9. The distribution of degrees in Duplication-Divergence networks with p = 0.75 and q = 0.60. Data

on networks generated by the Duplication-Divergence algorithm. In each case 100 networks were grown and

the average degree sequence Pn(k) computed. The curves on the right are plots of log Pn(k)/log(k + 1) against

1/log(k + 1) for n 2 {3125, 6250, 12500, � � �, 200000}, while those on the left are plots of (log P(2k) − log P(k))/

log2 as a function of log(k + 1)/k. Each of these curves can be extrapolated by a quadratic least squares fit to

obtained estimates of γ. This gives the estimates γn for n = 3125 × 2ℓ for ℓ = 0, 1, 2, . . ., 6. Extrapolating the γn

to n =1 by a least squares fit γn = γ + A/n gives γ� 7.4.

https://doi.org/10.1371/journal.pone.0189866.g009

Table 1. Connectivity data for Duplication-Divergence networks.

n q = 0.4 q = 0.5 q = 0.6

3125 25.9 11.4 5.93

6250 31.3 12.6 6.14

12500 37.3 13.6 6.33

25000 44.8 14.4 6.55

50000 51.9 15.5 6.64

100000 60.1 16.8 6.75

200000 70.3 17.7 6.88

https://doi.org/10.1371/journal.pone.0189866.t001
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A Solé evolutionary network of order N nodes is grown as follows:

Solé evolutionary algorithm:

1. Initiate the network with one node x0 and apply the following steps iteratively;

2. Choose a node υ uniformly and duplicate it to a new node υ0;

3. For each bond hw * υi incident with the chosen node υ, add the bond hw * υ0i incident

with the duplicated node υ0;

4. Delete each bond hw * υ0i added in step 3 with probability δ independently;

5. For all nodes u not adjacent to the chosen node υ, create the bond hu * υ0i with probability

α;

6. Stop the algorithm when a network of order N is grown.

The algorithm has two parameters (δ, α). If δ = 0 and α = 1 then the algorithm grows com-

plete simple networks. More generally, if α> 0 then on average roughly αN bonds are added

to a network of order N. This shows that the algorithm grows networks of size O(N2)—that is,

Solé networks are rich in bonds.

Mean field theory for Solé networks. Let En be the total number of bonds in a Solé net-

work after n iterations of the algorithm, and let hkin be the connectivity of the network (that is,

the average degree of nodes) after n iterations (so that 2En = nhkin). In the mean field approxi-

mation the node in step 2 of the algorithm has degree hkin and this number of bonds is added

in step 3, while, in a similar way, δhkin bonds are removed in step 4. In step 5 there are n − hkin
choices in the mean field for the node u not adjacent to υ0 and each bond hu * υ0i is added

with probability α. This shows that the number of bonds after n + 1 iterations is given by the

recurrance relation

Enþ1 ¼ En þ ð1 � dÞhkin þ aðn � hkinÞ: ð49Þ

Since 2En = nhkin this becomes

Enþ1 � En ¼ anþ
2

n
ð1 � d � aÞ En; ð50Þ

which is a mean field recurrence relation for En.

Fig 10. The Solé evolutionary algorithm. The duplication-deletion-creation iterations of the Solé algorithm.

A site is duplicated, some bonds incident on it are deleted with probability δ and new bonds incident on it are

created with probability α.

https://doi.org/10.1371/journal.pone.0189866.g010
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Taking n! t, a continuous time variable, and approximating En by Et, and approximating

the finite difference as a derivative, gives the following differential equation for En:

d
dt

Et ¼ at þ
2

t
ð1 � a � dÞ Et: ð51Þ

Solving this equation and letting t! n again gives the approximate mean field solution for En:

En �
an2

2ðaþ dÞ
þ
ðaþ 2dÞn2ð1� a� dÞ

2ðaþ dÞ
: ð52Þ

Eq (52) shows that the number of bonds is proportional to n2, so that networks created by this

algorithm are dense, except when α = 0. Comparison to Eq (7) suggests that γ� 1 in this

model. Notice that there is no logarithmic factor in the denominator, and that En = Θ(n2). This

is consistent with a mean field value γ< 1 (and this requires that Pn(k) be modified so that it is

a normalisable probability distribution). With these results, it is reasonable to expect that, in

the mean field,

g � 1: ð53Þ

If α = 0 then Eq (52) gives En * n2−2δ and comparison to Eq (7) gives

g ¼ 1þ 2d; if a ¼ 0: ð54Þ

Numerical results for Solé networks. Similar to Barabási-Albert and Duplication-Diver-

gence networks, Solé networks can be grown numerically by implementing the algorithm as

given above, using sparse matrix routines to efficiently store the adjacency matrix of the net-

work. The larger size of networks makes these more difficult to grow, and our algorithms sam-

pled efficiently to networks of size 51200 bonds.

Solé networks are rich in bonds. This is seen, for example, in Eq (52), which shows that

En/ n2 if α> 0. In Fig 11 two examples of networks generated by the Solé algorithm are

shown. If δ< 0.5, then the networks have a dense appearance dominated by a few hubs. If

δ> 0.5, then the networks appear more extended, often with no nodes qualifying as hubs

under the definition that the degree of a hub in a network of order n is at least b
ffiffiffi
n
p
c. The

networks in Fig 11 were generated with α = 0.005, and increasing the value of α quickly

increases the number of bonds.

The mean field result that γ� 1 has implications for the scaling of Solé networks. In partic-

ular, PN(k) in Eq (1) is not normalisable for infinite networks if γ� 1 and so is not a valid can-

didate degree distribution in this model. The degree distribution can be modified to

PðkÞ ’ Co k� gDðn� �kÞ ð55Þ

where D(x) is a function of the combined (or scaled) variable x = n−ϕ k. That is, as n!1, k is

rescaled by n−ϕ and kγ P(k) approaches a limiting distribution proportional to D(x).

This can be tested numerically by plotting nγ P(k) as a function of x = n−ϕ k. For the proper

choices of γ and ϕ it is expected that nγ P(k)’ Co D(x) for a wide range of values of n (that is,

the data should approach a limiting curve as n!1). The result is shown in Fig 12 for (δ =

0.25, α = 0.005) and (δ = 0.75, α = 0.005). These are plots on the same graph for n = 100 × 2n

for n 2 {6, 7, 8, 9} (other curves at smaller values of N are left away to give a clearer picture).

The data for δ = 0.75 are the cluster of peaks to the left, rescaled by choosing ϕ = 1 and

g ¼ 1

2
, while the cluster of peaks to the right is for δ = 0.25 with ϕ = 1 and g ¼ 2

3
. With increas-

ing n the data appear to approach a single underlying curve if g ¼ 1

2
in the one instance, and
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Fig 11. Solé evolutionary networks. The network on the left was generated with δ = 0.25 and α = 0.005. Its

has order 279 and has 47 nodes with degrees exceeding
ffiffiffiffiffiffiffiffi
279
p

and so qualify as hubs. The largest few of

these hubs have degrees {40, 41, 62, 80}. This algorithm creates dense networks as seen here, even for

small values of α. Increasing the value of δ gives more extended networks. The network on the right was

generated with δ = 0.75 and α = 0.005 and grown to order 230. None of its nodes qualify as hubs. The

arrangement of nodes and bonds in these networks was created using the prefuse force directed lay-out in

Cytoscape 3.4.0 [17].

https://doi.org/10.1371/journal.pone.0189866.g011

Fig 12. Scaling of Solé evolutionary networks. Plotting kγ PN(k) against N−ϕ k for networks generated by

the Solé Evolutionary algorithm gives the distributions above. On the left the results are shown for networks

grown with δ = 0.75 and α = 0.005. The choices γ = 1/2 and ϕ = 1 uncovers a distribution as shown where the

order of the networks are N = 100 × 2n for n = 6, 7, 8, 9. A similar distribution, but with γ = 2/3 and ϕ = 1, is seen

when networks are grown with δ = 0.25 and α = 0.005. It is not known that the value of γ changes

discontinuously as δ increases from 0.25 to 0.75.

https://doi.org/10.1371/journal.pone.0189866.g012
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g ¼ 2

3
in the other instance. Both these values are consistent with the mean field expectation

that γ� 1 in this model. Further refinements in this scaling assumption may be necessary,

since the curves are still becoming narrower with increasing n. It is not clear that these

approach a limiting curve as n!1, although the data for δ = 0.75 suggest this to be the case.

In these cases the curves are sharply peaked with a mean of about 0.02 if δ = 0.25 and about

0.007 if δ = 0.75.

Since the curve D(x) is sharply peaked at a constant value co of the rescaled variable x, the

connectivity of Solé networks is estimated by treating D(x) as concentrated at co and then

(assuming that ϕ = 1 and approximating the connectivity)

hkin �
R1

0
k1� gDðk=n�Þ dk

R1
0
k� gDðk=n�Þ dk

�
ðn�Þ2� g

ðn�Þ1� g
� n�: ð56Þ

In other words, the connectivity of Solé networks should increase linearly with nϕ (and since ϕ
= 1, linearly with n). In Table 2 the connectivities of Solé networks for δ = 0.25 and δ = 0.75

(with α = 0.005) are listed. Non-linear least squares fits to the data show that ϕ = 1.01 when δ =

0.25 and ϕ = 0.99 when δ = 0.75. That is, these results are consistent with the value ϕ = 1 seen

above.

The iSite model of network evolution

Protein interaction networks evolve by mutations in proteins which change the interactions of

the proteins in the network. In the Duplication-Divergence algorithm, a mutated protein loses

its interactions randomly. This random deletion of interactions is a good first order approxi-

mation to the evolution of networks. The iSite model refines this by giving structure to nodes

in the network by introducing iSites on nodes as localities of the interaction sites on a protein

[13, 14]. Subfunctionalization of interaction sites in the iSite model is implemented by silenc-

ing iSites, and adding interactions with reduced probability if the iSite is not silenced.

The implementation of the iSite algorithm relies in the first place on duplication of nodes,

and then subfunctionalization of iSites on the nodes. The subfunctionalization of iSites is

implemented by randomly deleting of bonds incident to duplicated iSites, and by the silencing

of iSites by turning them off. These processes are models of random mutations which cause

the loss of information in the genome (and leave behind non-coding remnants of genes). A

process of spontaneously creating new iSites is not in the iSites algorithm, although this is a

possible refinement which may be introduced in the algorithm.

Table 2. Connectivity data for Solé networks.

n δ = 0.25 δ = 0.75

100 2.95 1.50

200 4.46 1.94

400 7.59 2.94

800 14.75 5.36

1600 30.46 10.64

3200 59.94 21.26

6400 122.78 45.57

12800 245.35 85.18

25600 496.87 170.35

51200 994.54 340.76

https://doi.org/10.1371/journal.pone.0189866.t002
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The elementary move of the iSite algorithm is illustrated schematically in Fig 13. A uni-

formly chosen node is duplicated into a progenitor-progeny pair (and so also duplicating the

iSites of the progenitor onto the progeny). If the duplicated iSite is self-interacting, then bonds

are added between the iSite on the progenitor and the duplicated iSite on the progeny with

probability p—this allows for subfunctionalization of the duplicate iSites. Bonds incident with

the iSites on the progenitor are duplicated with reduced probability r, and iSites on the progen-

itor or progeny nodes are silenced with probability q. If an iSite is silenced, then all bonds inci-

dent with it are deleted. Notice that subfunctionalization enters in several ways, both in the

duplication of self-interacting iSites, in the duplication of bonds, and in the silencing of iSites.

The algorithm is implemented as follows:

iSite evolutionary algorithm:

1. Initiate the network with one node x0 with I active iSites (each of which is self-interacting

with probability p) and iterate the following steps;

2. Choose a progenitor protein υ uniformly in the network and duplicate it, and its associated

iSites A, to a successor protein υ0 with duplicated iSites A0;

a. A duplicated iSite A0 2 υ0 is active with probability q if it is duplicated from an active

iSite on A 2 υ, and silenced otherwise;

b. An active duplicated iSite A0 2 υ0 is self-interacting with probability p if it is duplicated

from a self-interacting iSite on A 2 υ, and not self-interacting otherwise;

c. If a silenced iSite A is duplicated to iSite A0, then A0 is also silenced;

3. Add bonds as follows:

a. If iSite A 2 υ is self-interacting and A is duplicated to iSite A0 2 υ0, then add the bond

hA * A0i if A0 is not silenced;

Fig 13. The iSite evolutionary algorithm. The duplication-deletion iterations of the iSite algorithm. A node

together with its iSites is duplicated, and some bonds incident with the duplicated iSites are deleted with

probability r. New bonds between a self-interacting iSite and its duplicate are inserted with probability p, and

iSites are silenced with probability q.

https://doi.org/10.1371/journal.pone.0189866.g013
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b. If hA * Bi is a bond incident with iSite A on the progenitor υ, and A is duplicated to

iSite A0 on the duplicate υ0, then hA * Bi is duplicated to hA0 * Bi with probability 1 − r
provided that A0 is not silenced;

4. Iterate the algorithm from step (2) and stop the iterations when a network of order N is

grown.

Mean field theory for the iSite model. Let nodes in the network correspond to proteins,

and let ij(n) be the number of active iSites on node j after n iterations of the algorithm. Denote

the degree of node j by kj(n) (that is the total number of bonds with one end-point in node j),
and let En be the number of bonds of the network (this is the size of the network). Then

2En = ∑j kj(n).

The average number of active iSites per node is iðnÞ ¼ 1

n

P
jijðnÞ. With each iteration i(n)

iSites are created, of which qi(n) are silenced, in the mean field. This gives the following recur-

rance relation for i(n):

ðnþ 1Þ iðnþ 1Þ ¼ n iðnÞ þ ð1 � qÞ iðnÞ: ð57Þ

The exact solution of this recurrance is

iðnÞ ¼
ið0ÞGð1 � qþ nÞ

n! Gð1 � qÞ
ð58Þ

where Γ is the gamma function with the property that Γ(x + 1) = xΓ(x) and Γ(1) = 1. Notice

that i(0) = I, where I is the number of iSites on the source node x0.

For large n the Γ-function and the factorial have well known asymptotics (namely the Stir-

ling approximation [27]), so that

iðnÞ ’
I n� q

Gð1 � qÞ
: ð59Þ

This shows that with increasing n the total number of iSites grows proportionally to n1−q. If

q = 0, then this is linear in n since no iSites become silenced, and if q = 1, then the number

approaches a constant.

The total number of bonds in the network increases after n iterations by the recurrance

Enþ1 ¼ En þ
2ð1 � rÞ

n
En þ p iðnÞ; ð60Þ

since there are on average 2

n En bonds incident to each node, and the probability that each one

of them is duplicated is 1 − r, and there are on average i(n) iSites per node, and the probability

that each of these is self-interacting is p.

Using the asymptotic solution for i(n) and approximating this recurrence by a differential

equation gives

d
dt

Et ¼
2ð1 � rÞ

t
Et þ

pI
Gð1 � qÞ

t� q: ð61Þ

This equation can be solved, and using the initial condition E1 = 0, the result is

Et ¼
pI

ð1þ q � 2rÞGð1 � qÞ
ðt2� 2r � t1� qÞ: ð62Þ
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Thus, the average degree of a node is equal to 2

n En, so that the connectivity of iSite evolutionary

networks is given by

hkin ’
2pI

ð1þ q � 2rÞGð1 � qÞ
ðt1� 2r � t� qÞ ð63Þ

in the mean field. This shows that the large n value of hkin is dominated by the larger of −q and

1 − 2r. In particular, if r < 1

2
ð1þ qÞ, then hkin * n1−2r.

By Eq (7) one may determine γ for this model:

g ¼

(
1þ 2r; if r < 1

2
ð1þ qÞ;

2þ q; if r > 1

2
ð1þ qÞ:

ð64Þ

If 2r = 1 + q, then a different solution is obtained, namely

Et ¼
pI

Gð1 � qÞ
t1� q log t: ð65Þ

This shows that γ = 2 + q in this case as well, but there is also a logarithmic correction to the

growth of E(t), and so there is a logarithmic factor in the expression for hkin.

Modified iSite evolutionary algorithm. The subfunctionalization of proteins can be

refined by introducing in the iSite algorithm the probability of creating new iSites on the prog-

eny node with a probability s. This changes the algorithm as follows.

Modified iSite evolutionary algorithm:

Implement the algorithm as above but introduce the parameter s and create new active

iSites by replacing step 2 in the iSite evolutionary algorithm by

2. Choose a progenitor node υ uniformly in the network and duplicate it, and its associated

iSites A, to a progeny node υ0 with duplicated iSites A0;

(a) A duplicated iSite A0 2 υ0 is active with probability q if it is duplicated from an

active iSite on A 2 υ, and silenced otherwise;

(b) An active duplicated iSite A0 2 υ0 is self-interacting with probability p if it is dupli-

cated from a self-interacting iSite on A 2 υ, and not self-interacting otherwise;

(c) If a silenced iSite A is duplicated to iSite A0, then A0 is also silenced;

(d) With probability s create an active iSite C on the progeny node υ0, where C is self-

interacting with probability p.

The recurrence for the average number of active iSites per node i(n) (see Eq (58)) is modi-

fied to

ðnþ 1Þ iðnþ 1Þ ¼ n iðnÞ þ ð1þ s � qÞ iðnÞ ð66Þ

in the Modified iSite evolutionary algorithm. The exact solution is obtained by replacing q by

q − s in Eq (58), and the asymptotic approximation of the solution is given by

iðnÞ ’
I ns� q

Gð1þ s � qÞ
; ð67Þ

as seen in Eq (59).
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The total number of bonds in the network, En, still satisfies Eq (60), and so it follows from

Eqs (62)–(64), that for the modified iSite evolutionary algorithm (notice the condition that

q< r + s):

En ¼
pI

ð1þ q � s � 2rÞGð1þ s � qÞ
ðn2� 2r � n1þs� qÞ: ð68Þ

This shows that the connectivity of Modified iSite networks is given by

hkin ’
2pI

ð1þ q � s � 2rÞGð1þ s � qÞ
ðn1� 2r � ns� qÞ: ð69Þ

The value of the scaling exponent is seen from above to be given by

g ¼

1þ 2r; if r < 1

2
ð1þ q � sÞ;

2þ q � s; if r > 1

2
ð1þ q � sÞ:

ð70Þ

8
<

:

with a correction factor in the expression for hkin if 2r = (1 + q − s).
Numerical results for iSite networks. The iSite algorithm was coded and networks were

grown to compute averaged statistics. Examples of iSite networks generated by the algorithm

are shown in Fig 14. The algorithm was then used to sample networks of size up to 200,000.

The connectivity hkin of iSite networks for I = 3 iSites per node, and with p = 0.5, q = 0.4

and r = 0.3, is shown in Table 3. By Eq (5), log hki ’ log g� 1

2� g
þ ð2 � gÞ log n. Least squares

fit to the data in Column 2 gives log g� 1

2� g
� 1:0211, and (2 − γ) = 0.258. Solving for γ gives in

the first instance γ = 1.735 and in the second γ = 1.742. Since 2r< 1 + q in this case, the mean

field value of γ is γ = 1 + 2r = 1.6, close to these estimated values.

Data for I = 5 and with the same values of (p, q, r) = (0.5, 0.4, 0.3) are shown in Table 3 as

well (see Fig 15). Changing the value of I (the number of iSites per node) should not change

Fig 14. iSite evolutionary networks. The network on the left was generated with 4 iSites per node, p = 0.5,

q = 0.1 and r = 0.8, and the network on the right was generated with 2 iSites per node, and with p = 0.5, q = 0.1

and r = 0.8. The order of the network on the left is 501 and on the right, 491. The network on the left has two

nodes qualifying as hubs, of degrees {23, 25}, while the network on the right has none. The arrangement of

nodes and bonds in these networks was created using the prefuse force directed lay-out in Cytoscape 3.4.0

[17].

https://doi.org/10.1371/journal.pone.0189866.g014
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the value of γ, and this appears to be the case here. A least squares fit to the data in Column 3

and determining γ as above gives γ = 1.737 and γ = 0.7498, very close to the values above.

If p = 0.5, q = 0.05 and r = 0.8, then 2r> 1 + q, and in this case γ = 2 + q. If the number of

iSites per node is I = 3, then the data in Table 3 gives a constant value for hki, and for I = 5 a

slightly decreasing numerical estimate. The mean field value of γ in these cases is 2.05, and a

least squares fit gives γ� 2.009 if I = 3 and γ� 2.022 if I = 5 (where the coefficient of log n in

the least squares fit is 2 − γ). These results are consistent with the mean field results obtained

above, since it shows that the value of γ is close to 2 + q.

Table 3. Connectivity data for iSite networks.

n Column 1 Column 2 Column 3 Column 4

3125 22.385 20.701 4.756 6.648

6250 26.524 25.752 4.770 6.556

12500 31.395 29.137 4.677 6.579

25000 37.808 35.308 4.733 6.358

50000 45.931 42.244 4.579 6.299

100000 54.830 50.035 4.584 6.204

200000 64.668 59.284 4.649 6.071

Columns I p q r

Column 1: I = 3 p = 0.5 q = 0.4 r = 0.3

Column 2: I = 5 p = 0.5 q = 0.4 r = 0.3

Column 3: I = 3 p = 0.5 q = 0.05 r = 0.8

Column 4: I = 5 p = 0.5 q = 0.05 r = 0.8

https://doi.org/10.1371/journal.pone.0189866.t003

Fig 15. iSite evolutionary networks with I = 3, p = 0.5, q = 0.4 and r = 0.3. Data on networks generated by

the iSite evolutionary algorithm. In each case 500 networks were grown and the average degree sequence

Pn(k) computed. The curves are plots of log Pn(k)/log(k + 1) against 1/log(k + 1) for n 2 {3125, 6250, 12500,

� � �, 200000}. As k!1, then the curves are expected to pass through −γ on the y-axis, and its mean field

value is γ = 1 + 2r = 1.6—this value is marked on the y-axis.

https://doi.org/10.1371/journal.pone.0189866.g015
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Conclusions

In this paper a number of algorithms used for generating networks in molecular biology were

examined. Mean field theory for the algorithms was in some cases reviewed, and in other cases

newly presented, and also refined. The algorithms include the Barabási-Albert [6], Duplica-

tion-Divergence [10], Solé [12] and iSite algorithms [13, 14], and these were in some cases

modified by the introduction of more general elementary moves. The modified and variant

algorithms in this paper are new, and the mean field analyses of the Barabási-Albert and Dupli-

cation-Divergence algorithms are reviews of analyses done in references [9, 11]. The analyses

of the variants and modified versions of the algorithms, and the analyses of the Solé and iSite

algorithms are new.

The mean field result for the γ-exponent for the modified Barabási-Albert algorithm in

Eq (19) is new, and it reduces to the known mean field value of γ for the Barabási-Albert algo-

rithm when λ = 1 and A = 0 (see reference [9]). Similarly, the mean field estimate for the

Duplication-Divergence algorithm in Eq (46) generalises a result in references [10, 11] and

gives generally good estimates of γ. However, as noted below Eq (46), a refined estimate for γ
gives values which are too small and the value of γ in the regime that 2q< 1 + 2p remains an

open question.

The mean field estimates and bounds in Eqs (53) and (54) for the Solé algorithm, and in

Eqs (64) and (70) for the iSite algorithm, and its modified version, are new. The mean field val-

ues for γ for the Solé algorithm give results which are well-supported by the data collected in

Fig 12. This is similarly the case for the iSite algorithm, and for its modified version, where val-

ues of γ consistent with mean field predictions are obtained from our numerical simulations.

The efficient implementation of these algorithms was also examined, and sparse matrix

routines (or, more general, hash-coding; see for example reference [28]) were used to optimize

the implementation. This gives computer algorithms which can generate very large networks

efficiently, and networks of order 200,000 nodes were routinely sampled. We also explored

even larger networks, up to order 3 million, but did not use those in our data analysis.

The adjacency matrix of a network of size E bonds can be stored (using sparse matrix rou-

tines) in an array of size O(E). This means that the implementation of these network growth

algorithms has average case space complexity O(E).

Hash coding allows for the efficient implementation of routines which search, insert or

delete entries in arrays storing the networks. These routines have average time complexity O
(1) [29], (and worst case time complexity O(E) for searches, inserting and deleting bonds, due

to collisions if a hash table is densely populated).

Generally, the time complexity of algorithms should grow as O(Eτ) if networks of size E are

grown (where τ is an exponent dependent on the particular algorithm). For example, networks

of size E bonds can be generated using O(E) computer memory, and the Duplication-Diver-

gence and iSite algorithms can be implemented with O(nτ) time complexity to grow networks

of order n nodes (and where n� E). An examination of these algorithms (the Duplication-

Divergence and iSite algorithms) suggests that an optimal implementation will have τ� 1 (if

the size of the hash tables is much larger than n).

The Barabási-Albert and Solé algorithms (with their modified and variant implementa-

tions) should have average time complexity of O(n2) for growing networks of order n nodes.

This follows because each iteration of the algorithms has to explore all nodes in the current

network for the possible insertion of new bonds.

Data on the time complexity of the algorithms are shown in Table 4. The data displayed are

the average time T to grow one network of order n. Assuming that T = C0 nτ and fitting log T
to log n, least squares estimates of τ can be obtained. For example, it is expected that τ = 2 for

Mean field analysis of algorithms for scale-free networks in molecular biology

PLOS ONE | https://doi.org/10.1371/journal.pone.0189866 December 22, 2017 30 / 34

https://doi.org/10.1371/journal.pone.0189866


the Barabási-Albert algorithm, while the estimate obtained in the table is τ� 1.97. This is con-

sistent with the expectation that the time complexity of the algorithm is O(n2) in an optimal

implementation. This is similarly seen for the modified and variant implementation of the Bar-

abási-Albert algorithm, and for the Solé algorithm.

The time complexity of the remaining algorithms is O(n), and this is found consistently,

except for the Duplication-Divergence algorithm for q = 1 and q = 0.4 (and also for the modi-

fied implementation of this algorithm). In these cases the algorithm samples denser networks

(see Fig 7) which takes up larger amounts of memory, making the implementation less

efficient.

The results in this paper raise some questions about the sampling of scale-free networks by

random iterative growth algorithms:

• In some cases, see for example reference [11], the parameters of the algorithms were set to

grow networks with properties similar to that of real protein interaction networks. The val-

ues of the parameters are then used to estimate the rate of subfunctionalization (or mutation)

in the genome. The results are dependent on the algorithm, and so further refinement of

algorithms may be needed before useful estimates can be made.

• The mean field approaches are useful in some models (for example the Barabási-Albert algo-

rithm, and the iSite algorithm), but are poorer approximations in other models (the variant

Barabási-Albert algorithm, the Duplication-Divergence algorithm and its modification, and

the Solé algorithm). Can the mean field approach be improved to give a better approxima-

tion to these algorithms?

• Investigation of some numerical properties of the networks (for example the connectivity)

suggests that the algorithms may be self-averaging. That is, networks are generated with

properties which converge to the statistical averages of these properties over a sample of net-

works generated by the algorithm. This is, for example, illustrated in Fig 16 for the connec-

tivity of Barabási-Albert networks. As the network is grown, its connectivity appears to

approach the average connectivity over a large sample of networks.

Table 4. Computational Time Complexity of Implemented Algorithms.

Algorithm n = 6250 n = 12500 n = 25000 n = 50000 τ

Bar-Alb (p = 0) 0.602 2.51 9.03 38.0 1.97

Mod Bar-Alb (λ = 2, p = A = 0) 0.618 2.55 10.1 36.3 1.96

Var Bar-Alb (α = 2, a = 0) 1.35 4.46 16.4 −− −−
Dupl-Div (p = 1, q = 0.4) 0.349 0.862 2.04 5.01 1.28

Dupl-Div (p = 1, q = 0.6) 0.155 0.319 0.635 1.31 1.02

Mod Dupl-Div (p = 1, q = 0.4) 0.340 0.891 2.45 7.09 1.46

Mod Dupl-Div (p = 1, q = 0.6) 0.165 0.338 0.699 1.44 1.04

Solé (δ = 0.25, α = 0.005) 4.84 20.5 91.0 436.0 2.16

Solé (δ = 0.75, α = 0.005) 6.10 20.0 79.5 323.2 1.92

iSite (p = 0.5, q = 0.01, r = 0.8, I = 1) 0.114 0.234 0.454 0.925 1.00

iSite (p = 0.5, q = 0.01, r = 0.8, I = 2) 0.110 0.216 0.458 0.878 1.01

iSite (p = 0.5, q = 0.01, r = 0.8, I = 3) 0.106 0.217 0.432 0.857 1.00

iSite (p = 0.5, q = 0.01, r = 0.8, I = 4) 0.107 0.231 0.422 0.848 0.98

iSite (p = 0.25, q = 0.01, r = 0.8, I = 4) 0.104 0.249 0.415 0.844 0.98

iSite (p = 0.75, q = 0.01, r = 0.8, I = 4) 0.108 0.216 0.437 0.867 1.00

Mod iSite (p = 0.5, q = 0.1, r = 0.8, s = 0.1, I = 4) 0.288 0.560 1.102 2.53 1.04

https://doi.org/10.1371/journal.pone.0189866.t004
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• In this paper some algorithms were modified in ways not done before in the literature (this

includes the modified Barabási-Albert, the Duplication-Divergence, the Solé and iSite mod-

els). Exploring the properties of these modified algorithms, including their usefulness as

models of networks in molecular biology, will be the subject of future investigation.

Lastly, these algorithms grow networks using a probabilistic set of rules to implement an

elementary move. Each realised network Nn of order n is obtained with some probability p
(Nn), so that the function p(Nn) is a probability distribution over networks of order n. Deter-

mining p(Nn) for any of the algorithms presented here seems difficult, and general properties

of p(Nn) remain unknown (other than averages of network properties over p(Nn) are scale-free

if the algorithm grows scale-free networks).
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