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Skeletal muscle density, as determined by computed tomography (CT), has been shown
to decline with age, resulting in increased frailty and morbidity. However, the mechanism
underlying this decrease in muscle density remains elusive. We sought to investigate the
role of intramyocellular lipid (IMCL) accumulation in the age-related decline in muscle
density. Muscle density was measured using computerized tomography (CT), and
IMCL content was quantified using in vivo proton magnetic resonance spectroscopy
(1H-MRS). The study population consisted of 314 healthy participants (142 men,
32–98 years) of the Baltimore Longitudinal Study of Aging (BLSA). In addition to
IMCL quantification, obesity-related covariates were measured, including body mass
index (BMI), waist circumference, and circulating triglyceride concentration. Higher
IMCL concentrations were significantly correlated with lower muscle density in older
individuals, independent of age, sex, race, and the obesity-associated covariates
(p < 0.01). Lower muscle density was also significantly associated with greater age-
adjusted IMCL, a variable we constructed using LOESS regression (p < 0.05). Our
results suggest that the accumulation of IMCL may be associated with a decrease in
muscle density. This may serve to define a potential therapeutic target for treatment of
age-associated decreased muscle function.

Keywords: muscle, aging, proton magnetic resonance spectroscopy, intramyocellular lipids,
computerized tomography

INTRODUCTION

Skeletal muscle radiological density, as assessed with computerized tomography (CT), has been
shown to decrease with age (Lauretani et al., 2006). Independent of age and other potential
confounders, lower muscle density has been associated with frailty (Cesari et al., 2006), mobility
limitations (Visser et al., 2005; McDermott et al., 2009), increased risk of hip fracture (Lang
et al., 2010), poor lower extremity performance (Visser et al., 2002; Hicks et al., 2005; Cawthon
et al., 2009), and lower muscle quality, defined as the specific force generated per unit of muscle
volume (Goodpaster et al., 2001a; Conroy et al., 2012). In addition, lower muscle density has
been associated with metabolic outcomes such as loss of oxidative enzyme capacity (Schrauwen-
Hinderling et al., 2007), insulin resistance, the metabolic syndrome and higher intermuscular fat
deposition (Goodpaster et al., 2000a, 2001a; Visser et al., 2005; Addison et al., 2014). Based on these
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data, it has been suggested that low muscle density is a biomarker
of impaired metabolism and poor health status.

In spite of the consistent observation that muscle density
declines with age, and the strong relationship between poor
muscle density and adverse health outcomes (Pahor and
Kritchevsky, 1998), the underlying mechanisms that cause
reduction in muscle density remain poorly understood. Central
hypotheses point to accumulation of small adipose cell aggregates
that cannot be resolved by CT, but which affect overall tissue
density. At the microscopic level, accumulation of lipids occurs
mainly in two distinct compartments. First, intramyocellular
lipid (IMCL) represents fat stored in the form of cytoplasmic
droplets within myocytes; this can occur in response to metabolic
derangements, including mitochondrial dysfunction. IMCL tends
to be uniformly distributed throughout the muscle, and is
particularly high in diabetic and obese individuals (Schrauwen-
Hinderling et al., 2006; Weis et al., 2007; Aguer et al., 2010;
Brumbaugh et al., 2012; Bredella et al., 2013; Noble et al.,
2014). In contrast, extramyocellular lipids (EMCL) are layers of
fat deposited outside myocytes. Unlike IMCL, EMCL is largely
metabolically inert, and its quantification is highly dependent on
voxel orientation and placement (Boesch et al., 1997). Therefore,
our study focuses on IMCL deposition in aging muscle. While
neither IMCL nor EMCL can be directly visualized with CT,
macroscopic fat can be readily delineated. Additionally, large
amounts of macroscopic fat can lead to a high EMCL signal,
obscuring the ability to accurately discriminate between these two
depots of fat using magnetic resonance spectroscopy.

Infiltration of muscle with fat is well-known to indicate
decreased muscle quality. This can be observed with CT, with
fat-infiltrated muscle demonstrating decreased attenuation as
compared to non-fatty muscle (Prasetyo et al., 2020). However,
this attenuation is not specific to the most metabolically
significant fat component, IMCL. In contrast, MR spectroscopy
provides a means to directly assess IMCL. Unfortunately, MRS
is a highly specialized technique which is not widely available
outside of medical research centers. Thus, we evaluate the degree
to which IMCL contributes to the decreased CT attenuation
exhibited by fat-infiltrated muscle. This provides insight into the
degree to which CT evaluation of muscle can indicate decreased
muscle quality as defined by IMCL infiltration.

The metabolic role of IMCL is recognized as providing a
readily accessible energy reserve during high-demand exercise
and, consistently, IMCL has been shown to increase with
high-intensity training (Goodpaster et al., 2001b). Conversely,
accumulation of intramyocellular fat droplets in other settings is
attributed to the relative inability of dysfunctional mitochondria
to fully process lipid substrates through beta oxidation. In
accordance with this view, increased deposition of IMCL has
been associated with oxidative stress and glucose intolerance.
In addition, increased IMCL has been shown to correlate with
insulin resistance in the obese (Pan et al., 1997; Goodpaster
et al., 2000b) and older populations (Petersen et al., 2003;
Cree et al., 2004; St-Onge, 2005; Nakagawa et al., 2007).
Individuals with metabolic syndrome, characterized in part by
insulin resistance, tend to have high IMCL (Perseghin, 2005;
Ingram et al., 2011; Yokota et al., 2013). Finally, compared to

normal weight individuals, obese patients with high IMCL exhibit
decreased muscle force, diminished myofibril contraction rate,
and decreased power production (Choi et al., 2016).

Studies of IMCL and EMCL have been greatly enhanced
by application of magnetic resonance spectroscopy (MRS) and
imaging (MRI) (van der Meer et al., 2012; Machann et al., 2013).
Proton MRS (1H-MRS) is currently the leading technique for
quantifying IMCL in skeletal muscle. These fat compartments can
be distinguished from each other based on the small difference
in resonance frequency they exhibit within the magnetic field
of an MR system (Schick et al., 1993; Boesch, 2007), leading to
their visualization as resolved, or partly-resolved, resonances in
high-quality 1H-MRS spectra.

Specifically defining muscle density as the mean CT
attenuation coefficient of mid-thigh muscle tissue, we
hypothesized that lower muscle density would be associated with
accumulation of IMCL, rendering density a potential indicator of
metabolic deficits. 1H-MRS has been used extensively to quantify
IMCL and EMCL in human subjects (Schick et al., 1993; Boesch
et al., 1997; Jacob et al., 1999; Krssak et al., 1999; Hwang et al.,
2001; Howald et al., 2002; Larson-Meyer et al., 2002), while
CT muscle density has been incorporated into many studies of
aging (Goodpaster et al., 2001a; Anderson et al., 2013; Aubrey
et al., 2014; Kalyani et al., 2014). For example, Goodpaster et al.
(2001a) found that higher muscle density is associated with
higher specific force production and lower BMI, while (Aubrey
et al., 2014) found that lower muscle attenuation is correlated
with cancer progression and poor health outcomes.

Accordingly, in this study we sought to investigate the
association between muscle density, as determined by CT
(Goodpaster et al., 2001a; Visser et al., 2005), and IMCL, as
determined by 1H-MRS using data collected from subjects
enrolled in the Baltimore Longitudinal Study on Aging (Ferrucci,
2008), a well-characterized cohort of normatively aging adults.
Specifically, we tested the hypothesis that the decrease in muscle
density associated with aging is accounted for, at least in part, by
the accumulation of IMCL. In addition, due to the documented
association between IMCL and obesity, we investigated the
individual correlations between IMCL and several markers
of obesity, including BMI itself (Amin et al., 2015), serum
cholesterol concentration (Miettinen, 1971; Kurata et al., 1990),
waist circumference (Brumbaugh et al., 2012; Raja et al., 2014),
which is also positively associated with cardiovascular disease
(Akil and Ahmad, 2011) and type II diabetes (Golay and Ybarra,
2005), and triglycerides, a major correlate of adipose tissue and
dietary fat intake in humans (Cox and Garcia-Palmieri, 1990).

MATERIALS AND METHODS

Participants
The study population, experimental design, and measurement
protocols of the Baltimore Longitudinal Study of Aging (BLSA)
have been previously reported (Ferrucci, 2008). The BLSA is
a longitudinal cohort study established in 1958 and funded
and conducted by the National Institute on Aging Intramural
Research Program. The BLSA enrolls community-dwelling adults
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with no major chronic conditions or functional impairments.
Usable 1H-MRS-based IMCL measurements (see below) were
collected from 490 BLSA participants from November 2009 to
September 2016. Of these, 314 participants had complete datasets
including BMI, cholesterol, waist circumference, circulating
triglycerides, and CT muscle attenuation measurements.
Certified technicians administered all assessments using
standardized protocols (Zane et al., 2017). The Institutional
Review Board of the National Institute of Environmental Health
Sciences approved the experimental protocol, and all participants
provided written informed consent.

Magnetic Resonance Spectroscopy
Participants were placed feet first in a 3T Philips Achieva MR
scanner (Philips, Best, The Netherlands) in a supine position.
IMCL values were obtained from in vivo spectra of 1H-containing
metabolites using the internal body coil for excitation. A pair of
Flex-M coils was used for signal acquisition, with one element
placed posteriorly and one anteriorly over the vastus medialis
muscle of the left mid-thigh. Localized spectra were obtained
using the PRESS sequence, with a voxel size of 8 × 8 × 40 mm,
with the third dimension being head-to-foot, an echo time of
55 ms, a repetition time of 2,000 ms, 32 signal averages, 4
step phase cycle, and a receiver bandwidth of 2,000 Hz. The
number of complex data points in one scan, without zero-
filling, was 1,024. The voxel was placed in close proximity to
the femur, limiting motion and avoiding EMCL and vasculature.
Voxel-specific shimming was performed using the pencil beam
technique to second order. IMCL peak area was normalized to
the area of the water peak (IMCL/water).

Analysis of MRS Data
1H-MRS data were processed using LCModel software
(Figure 1), which fits in vivo proton MR spectra to a linear
combination of in vitro metabolite basis spectra (Provencher,
1993). LCModel returns residuals defining the difference between
the acquired data and the modeled spectra, with larger residuals
indicating inability of the model to accurately describe observed
spectral amplitudes. After analysis, quality control criteria were
implemented. These involved evaluating the baseline quality,
residual amplitudes, and metabolite peak resolution within the
acquired spectra.

A numerical value was assigned to each of these quality control
measures as follows. Baseline quality was scored as 0 if a spectrum
contained broad baseline components, and 1 if the baseline was
sufficiently flat that it did not interfere with the measurement of
the IMCL resonance amplitude. Residual amplitude was scored
between 0 and 2, with 0 indicating differences >15% of peak
height, 1 indicating a difference between 5 and 15% of the peak
height, and 2 indicating a difference of <5%. Peak resolution
was scored between 0 and 2, with 0 indicating complete lack
of resolution of IMCL and EMCL peaks, 1 indicating a visible
shoulder indicating the presence of two resonances, and 2
indicating peaks resolved down to 2/3 of the IMCL peak
amplitude or better. Many cases that received a score of zero
for peak resolution had dominant EMCL resonances, rendering
quantification of the IMCL peak unreliable. Only spectra with a

score of 1 or more for each criterion were eligible for analysis.
This dataset consisted of 938 spectra. Of these, 299 were removed
according to the exclusion criteria. Of the remaining 639 spectra,
149 were longitudinal duplicates from the same participant.
After removing these, the final MRS dataset consisted of data
from 490 participants. Of these, 314 subjects had CT-based
muscle density measurements of the thigh, and were therefore
included in the analysis, with all of these subjects also having
measurements of BMI, cholesterol, waist circumference, and
circulating triglycerides.

Computerized Tomography (CT)
Muscle density was measured using computerized tomography
(CT; Somatom Sensation 10; Siemens, Malvern, PA,
United States) and quantified with BonAlyse software (Jyvaskyla,
Finland). Tissue Identification and Quantification (TIDAQ) was
used to generate tissue masks, which excluded intramuscular
adipose tissue (IMAT). The accurately segmented compartments
included air, fat, tendon, muscle, trabecular bone, and cortical
bone (Makrogiannis et al., 2018). The mean density was
calculated over all muscle included in the scanned slice of the
mid-thigh (Figure 2). Each processed image was also visually
evaluated, ensuring that there was no inaccurately identified
tissue. Participants with low EMCL showed higher muscle
quality and well-resolved muscle compartments when compared
to participants with greater EMCL. Muscle attenuation values
were reported in Hounsfield units (HU).

Ancillary Variable Quantification
Obesity status was quantified using body mass index (BMI),
which was measured as weight (kg)/height (m)2. Waist
circumference was defined as the mean of upper abdominal
circumference measurements (cm). Serum cholesterol and
triglyceride concentration were measured using a standard
clinical lipid panel assay. Physical activity was self-reported via
a questionnaire, with values ranging from zero (sedentary) to
three (very active). Physical activity scores were reported by
312 participants.

Statistical Analysis
All statistical analyses were performed in RStudio version
1.2.1335. Data were reported as mean (standard deviation), and
statistical significance was defined as p < 0.05.

Covariate Selection
In preliminary analyses, trends in the data were summarized
by locally weighted scatterplot smoothing (LOWESS) (Cleveland
and Devlin, 1988). In an effort to evaluate the association between
IMCL/water and muscle density independent of obesity, we
investigated biomarkers that would plausibly correlate with BMI.
These were BMI itself, serum cholesterol, circulating triglycerides
and waist circumference (Bray et al., 2018). The effects of these
potential confounders were evaluated by assessing individual
correlations of IMCL/water with waist circumference, circulating
triglyceride concentration, BMI and serum cholesterol levels.
Confounders that were found to be significantly correlated
with IMCL/water were included as covariates in the final
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FIGURE 1 | 1H-MRS spectrum obtained from a single voxel in thigh muscle at 3.0 T. Resonances of IMCL (1.25 ppm), EMCL (1.4 ppm), choline (3.2 ppm), and
creatine (3.0 ppm) are well-resolved. Clear resolution between the IMCL and EMCL resonance peaks is seen, with residuals displayed above the spectrum.

FIGURE 2 | Axial mid-thigh computerized tomography images acquired from three participants with (A) low EMCL measurements (0.0031 ± 0.0002) and three
participants with (B) high EMCL measurements (0.202 ± 0.085). Participants with low EMCL exhibit higher muscle CT density when compared to those with high
EMCL content.
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TABLE 1 | Participant characteristics.

n = 314 Men (n = 142) Women (n = 172) Significance (Sex) Significance (Race)

Age (years) 70.7 ± 12.6 71.4 ± 12.6 70.1 ± 12.5 NS N/A

BMI (kg/m2) 26.5 ± 4.0 27.1 ± 3.5 25.9 ± 4.3 p < 0.01 p < 0.001

Waist circumference (cm) 89.9 ± 11.4 97.1 ± 8.6 84.0 ± 10.1 p < 0.001 p < 0.05

Cholesterol (mg/dL) 180.7 ± 36.2 168.4 ± 32.8 190.9 ± 35.7 p < 0.001 NS

Circulating triglyceride concentration (mg/dL) 95.9 ± 47.6 103.1 ± 56.0 90.0 ± 38.3 p < 0.05 p < 0.001

Muscle attenuation (HU) 50.5 ± 3.3 51.0 ± 3.1 50.0 ± 3.4 p < 0.01 NS

IMCL/water 0.017 ± 0.008 0.019 ± 0.008 0.017 ± 0.007 p < 0.05 NS

Age adjusted IMCL/water 0.018 ± 0.008 0.019 ± 0.008 0.017 ± 0.007 p < 0.05 NS

EMCL/water 0.038 ± 0.029 0.033 ± 0.031 0.043 ± 0.025 p < 0.001 NS

FIGURE 3 | Relationship between muscle density from CT and age. As expected, muscle density decreases significantly with age (p < 0.001).

analysis; these were waist circumference, circulating triglyceride
concentration and BMI.

Age-Adjusted IMCL
To examine the possible dependence on age of the correlation
between IMCL/water and muscle density, a multivariate local
polynomial regression (LOESS) analysis was performed to
construct an age-adjusted IMCL variable. LOESS fits a model to
a localized subset of data through multivariate smoothing and
permits identification of independent variables responsible for
the variation in a dependent variable.

RESULTS

The characteristics of the 314 participants (142 men, mean age
71.4 (12.6) years, age range 34–92 years; 172 women, mean age
70.1 (12.5) years, and age range 32–98 years) included in the
analyses are reported in Table 1. Values are reflective of the good
general health status of BLSA participants. The mean value of
the IMCL resonance normalized by the water resonance was
0.017 (0.008), with a significant difference between men and

women [women: 0.017 (0.007); men: 0.019 (0.008); p = 0.02].
The mean value of the EMCL resonance normalized by the water
resonance was 0.038 (0.029), with a significant difference between
men and women [women: 0.043 (0.025); men: 0.033 (0.031);
p < 0.001]. The average muscle attenuation in normalized
Hounsfield units was 50.5 (3.3), with a significant difference
found between women and men [women: 50.0 (3.4); men: 51.0
(3.1); p < 0.01].

Muscle density was evaluated as a function of age (Figure 3)
and exhibited a significant inverse correlation (p < 0.001).
A significant correlation was also found between muscle density
and both IMCL/water (unadjusted; Figure 4) and EMCL/water
(Figure 5). Of note, IMCL/water and age were not significantly
associated (Figure 6). However, EMCL/water and age were
significantly associated at p < 0.001 (Figure 7).

Muscle density was then independently evaluated as a
function of the obesity-related variables, including BMI
(Figure 8), circulating triglyceride concentration (Figure 9),
and waist circumference (Figure 10). After adjusting for
IMCL/water, the significant relationship between muscle density
and BMI became weaker. A similar effect was found in the
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FIGURE 4 | Relationship between muscle density from CT and IMCL/water (p < 0.001).

FIGURE 5 | Relationship between muscle density from CT and EMCL/water (p < 0.001).

muscle density and waist circumference model. However,
adjusting for IMCL/water increased the significance of
the relationship between muscle density and circulating
triglyceride concentration.

In order to identify potential confounders of the muscle
density and IMCL relationship, we examined clinical obesity-
related variables. Cholesterol was not significantly associated with
IMCL/water and was excluded as a covariate, while BMI, waist
circumference, and circulating triglyceride concentration were
significantly correlated with IMCL/water and therefore included
as covariates (Table 2).

After introducing age as a potential confounder in the
regression model (Table 2: Model 1), the significant relationship
between muscle density and IMCL/water was retained, and the
inverse relationship between age and muscle density remained
statistically significant. After further adjustment for physical
activity, sex and race (Table 2: Model 2), the independent
relationship between IMCL/water and muscle density remained
statistically significant.

The role of obesity in the relationship between IMCL
and muscle density was also investigated (Table 2: Model 3);
with waist circumference being significantly associated with
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FIGURE 6 | Relationship between age and IMCL/water (p = 0.5).

FIGURE 7 | Relationship between age and EMCL/water (p < 0.001).

a lower muscle density. Surprisingly, circulating triglyceride
concentration exhibited a significant positive correlation with
muscle density. The analysis showed no significant interaction
between CT values for muscle attenuation and BMI. After
adjusting for age, sex, race, physical activity, BMI, circulating
triglyceride concentration, and waist circumference, the
relationship between IMCL/water and muscle density remained
significant (p < 0.01).

To further visualize the relationship between IMCL and
muscle density, LOESS regression was used to construct
an age-adjusted IMCL/water variable. Muscle density was
then evaluated as a function of age-adjusted IMCL/water
(Figure 11). As in the non-adjusted analysis, greater age-adjusted
IMCL/water was significantly associated with lower muscle
density (p < 0.01; Table 3: Model 1). Additionally, circulating
triglyceride concentration was found to be significantly and
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FIGURE 8 | Relationship between muscle density from CT and BMI (p < 0.01). This relationship remained significant (p < 0.01) after adjustment for IMCL/water.

FIGURE 9 | Relationship between muscle density from CT and circulating triglyceride concentration (p = 0.18). After adjustment for IMCL/water, the relationship
between muscle density and circulating triglyceride concentration became significant (p = 0.04). However, when the one participant with high triglyceride
concentration is removed (circulating triglyceride value of 483), this correlation is no longer significant (p = 0.12).

positively correlated with muscle attenuation, while waist
circumference showed a significant negative correlation. No
significant correlation was found between muscle attenuation
and BMI. After adjusting for all covariates mentioned above,
the relationship between age-adjusted IMCL/water and muscle
density remained significant (p < 0.05), suggesting that the
association is independent of physical activity level, sex, race
(Table 3: Model 2), and general obesity markers (Table 3: Model
3). The association was linear across the muscle attenuation range
of 40.7–59.3 normalized Hounsfield units.

DISCUSSION

We found a statistically significant inverse relationship between
IMCL/water ratio and muscle density. This relationship
was maintained after formal adjustment for demographic
and obesity-related variables. Our findings are consistent
with those reported by Goodpaster et al. (2000a) in which
muscle attenuation values from CT were negatively correlated
with skeletal muscle lipid content, as determined by muscle
biopsy followed by quantification of intramuscular fat with
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FIGURE 10 | Relationship between muscle density from CT and waist circumference (p < 0.01). This relationship remained significant (p < 0.01) after adjustment for
IMCL/water.

FIGURE 11 | Correlation between age-adjusted IMCL/water ratio obtained from MR spectroscopy and muscle density obtained from CT. As shown, decreased
density was associated with increased age adjusted IMCL/water (p < 0.01). The age adjusted IMCL/water values were calculated using a LOESS regression.

histochemical analysis. While causation was not addressed
in our work, the reported correlations suggest a hypothesis
that the accumulation of IMCL may be a significant
contributor to the reduction of muscle density with aging.
This would form the basis for further investigation through a
longitudinal study.

Aging is associated with decreased muscle strength, mass
and density (Doherty, 2003; Newman et al., 2005; Kuk et al.,
2009; Miljkovic and Zmuda, 2010). The decline in strength

contributes to the diminished physical performance with aging
(Brill et al., 2000). Given the established correlation between
muscle density and strength, IMCL accumulation may contribute
directly to the decrease in muscle strength and function with age
(Siparsky et al., 2014), in addition to its likely causative role in
metabolic disorders.

Our results are important because while muscle density is
a crucial correlate of the disabling effect of aging and many
chronic diseases and is associated with increased hospitalizations
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TABLE 2 | Multivariate analysis adjusting for confounding variables.

Model 1: MD = IMCL Model 2: MD = IMCL + Race + Sex Model 3: MD = IMCL + Race + Sex + Obesity

Parameters β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

IMCL/water −62.64
(−84.28,
−41.00)

0.004** −76.48(−97.70,
−55.26)

< 0.001*** −60.61 (−81.75, −39.47) 0.004**

Age −0.126
(−0.139,
−0.113)

< 0.001*** −0.124 (−0.136,
−0.111)

< 0.001*** −0.120 (−0.132, −0.108) < 0.001***

Race − − 0.248 (0.097, 0.399) 0.101 −0.019 (−0.171, 0.133) 0.899

Sex − − 1.19 (0.861, 1.52) < 0.001*** 1.92 (1.48, 2.36) < 0.001***

Physical activity − − 0.390 (0.209, 0.571) < 0.05* 0.278 (0.103, 0.453) 0.113

BMI (kg/m2) − − − − −0.082 (−0.152, −0.012) 0.238

Waist
Circumference (cm)

− − − − −0.061 (−0.091, −0.031) 0.041*

Circulating
triglyceride
concentration
(mg/dL)

− − − − 0.012 (0.009, 0.015) < 0.001**

IMCL/water is a significant covariate in the relationship between muscle density (MD) and age, indicating that increased IMCL may play a significant role in this relationship.
***p < 0.001,**p < 0.01, and *p < 0.05. Physical activity data were available for 312 participants.

TABLE 3 | Multivariate analysis adjusting for confounding variables.

Model 1: MD = Age Adjusted IMCL Model 2: MD = Age Adjusted Model 3: MD = Age Adjusted IMCL +

IMCL + Race + Sex Race + Sex + Obesity

Parameters β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

Age adjusted
IMCL/water

−64.08 (−88.84,
−39.32)

0.010* −75.79 (−100.13,
−51.45)

< 0.01** −60.11 (−84.36, −35.86) 0.014*

Race − − 0.263 (0.090, 0.436) 0.123 −0.041 (−0.216, 0.134) 0.816

Sex − − 0.914 (0.539, 1.29) < 0.05* 2.13 (1.63, 2.63) < 0.001***

Physical activity − − 0.664 (0.459, 0.869) < 0.01** 0.551 (0.353, 0.749) < 0.01**

BMI − − − − 0.032 (−0.047, 0.111) 0.690

Waist
circumference (cm)

− − − − −0.111 (−0.145, −0.077) < 0.001***

Circulating
triglyceride
concentration
(mg/dL)

− − − − 0.015 (0.011, 0.019) < 0.001***

Age Adjusted IMCL/water is significantly associated with lower muscle density, independent of additional obesity markers. ***p < 0.001, **p < 0.01, and *p < 0.05.
Physical activity data were available for 312 participants.

in older persons, the mechanistic underpinnings of decreased
muscle density remain elusive (Cawthon et al., 2009; Delmonico
et al., 2009; Demontis et al., 2013). Aside from its role in
aging, low muscle density has been shown to correlate with
other pathology, including rheumatoid arthritis (RA), a systemic
inflammatory condition that can result in disability and joint
deformity. In particular, CT-determined thigh muscle density
was found to correlate with increased serum interleukin-6
levels, glucocorticoid requirement, number of joints exhibiting
tenderness, and disease progression (Kramer et al., 2012). Muscle
density is also associated with physical function in idiopathic
inflammatory myopathy (IIM) patients. In these individuals, low
muscle density is correlated with a decrease in physical function,
endurance, and strength (Cleary et al., 2015). In these studies,

however, the potential role of fat infiltration as a causative factor
in lower muscle density was not investigated. Low muscle density
is also considered a biomarker of impaired metabolism and it
is often observed in people with increased insulin resistance
and metabolic syndrome (Kim et al., 2003). Similarly, increased
levels of IMCL are associated with insulin resistance in obese
patients (Pan et al., 1997). Insulin resistance in muscle is in part
characterized by decreased oxidative capacity and impaired fatty
acid oxidation (Goodpaster et al., 2001b). Our findings reinforce
the hypothesis that IMCL accumulation in skeletal myocytes
is an essential part of the reduction of muscle density with
aging and not merely the result of the confounding effects of
body composition changes. Whether interventions that diminish
IMCL infiltration also affect muscle quality, improve metabolic
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control and reduce insulin resistance remains an important topic
for future studies.

We note that EMCL is expected to dominate IMCL in terms
of overall fat content, even when macroscopic fat deposits are
excluded. Accordingly, CT-based muscle density would depend
more strongly on EMCL. However, as outlined above, EMCL,
being much less readily accessible to intracellular machinery,
is not as metabolically active as IMCL. Thus, in spite of its
weaker correlation with HU, it is IMCL in which we are primarily
interested. We have found this correlation to be operative
on a population-based scale, though not on the scale of an
individual subject.

Although, as far as we know, this is the largest study to date
using 1H-MRS to quantify IMCL in muscle, certain limitations
remain. Accurate quantification of IMCL by 1H-MRS requires
strict attention to spectral quality. We ensured the accurate
measurement of IMCL using 1H-MRS through application of
specific quality control criteria. The most common reason for
excluding a spectrum from our analysis was an absence of clear
resolution between the IMCL and EMCL peaks, in which case
IMCL cannot be accurately quantified. This lack of resolution
was most often due to a large EMCL resonance from the
selected spectral voxel, indicating high EMCL content. However,
rejection of these spectra may have also excluded those with high
IMCL concentrations, limiting our range in IMCL/water ratio.
Nevertheless, this range is comparable to those found in the
literature. Additionally, the presence of macroscopic, “marbled”
fat can result in poorly resolved separation between IMCL and
EMCL peaks. Removing these spectra from analysis has the
potential to introduce bias through exclusion of individuals with
a greater degree of obesity. Indeed, BMI data were available for
297 participants for which spectra were excluded. The average
BMI of these participants was 27.4 ± 3.9, compared to an average
BMI of 26.5 ± 4.0 for included participants. While this difference
in BMI did reach statistical significance (p < 0.01), the difference
in absolute terms was small (∼3%).

Since 1H-MRS only provides normalized metabolite
concentrations, we were unable to determine absolute water
concentrations. However, previous work has indicated that
the ratio IMCL/water was significantly correlated with IMCL
normalized to an external oil phantom (Larson-Meyer et al.,
2006). This supports the use of quantitative IMCL/water
measurements in our analysis.

Voxel placement considerations represent a further limitation
of our study. While the majority of participants had IMCL data
obtained from the vastus medialis region of the lower extremity,
data were collected from regions closer to the vastus intermedius
for participants with large amounts of EMCL, as the vastus
medialis was too small to contain the voxel without encroaching
on macroscopic fat deposits. In these individuals with greater
macroscopic fat, there was particularly poor resolution between
these two muscles, making it very difficult to specify which
provided the predominant contribution to the MRS signal. In
addition, the CT imaging voxels and the corresponding MRI
spectroscopic voxels could be co-localized, but not precisely
registered. Briefly, the MRS technique used is a localizing
technique, but not an imaging technique. The much larger MRS

voxels will exhibit partial overlap with several CT pixels, and
will not be registered with them, so there will not be a simple
correspondence between the contents of the MRS voxel and a set
of CT pixels. Moreover, the CT slice of 10 mm was considerably
thinner than the MRS voxel, which was up to 40 mm long in
the inferior-superior direction, depending on voxel orientation.
Thus, the MRS values will include contributions from regions not
covered by CT. Nevertheless, while we cannot register on a pixel-
by-pixel basis, we did obtain data from the same region using the
two techniques to achieve the desired correspondence.

Use of the BLSA population enabled us to perform
measurements in a relatively well-controlled healthy cohort
across a large age range but may limit the applicability of
these results to more typical populations. Nevertheless, our
methods permitted an assessment of the correlation between
IMCL and the decrease in muscle density with age, which is
expected to be generalizable. The present correlative findings
support further investigation of the hypothesis that increased
concentration of IMCL is associated with poor muscle quality;
our results are consistent with but greatly extend previous
findings (Larson-Meyer et al., 2006).

In sum, we find that the correlation between IMCL and
functional biomarkers, and in particular muscle density assessed
through CT, cannot be meaningfully established in an individual
subject. However, population-based IMCL measurement may
serve as an indicator of metabolic and functional health in the
aging population.
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