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Cholesterol and ORP1L-mediated ER contact sites
control autophagosome transport and fusion with
the endocytic pathway
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Autophagy is the main homeostatic pathway guiding cytosolic materials for degradation by

the lysosome. Maturation of autophagosomes requires their transport towards the

perinuclear region of the cell, with key factors underlying both processes still poorly

understood. Here we show that transport and positioning of late autophagosomes depends

on cholesterol by way of the cholesterol-sensing Rab7 effector ORP1L. ORP1L localizes to late

autophagosomes and—under low-cholesterol conditions—contacts the ER protein VAP-A,

forming ER-autophagosome contact sites, which prevent minus-end transport by the

Rab7–RILP–dynein complex. ORP1L-mediated contact sites also inhibit localization of

PLEKHM1 to Rab7. PLEKHM1, together with RILP, then recruits the homotypic fusion and

vacuole protein-sorting (HOPS) complex for fusion of autophagosomes with late endosomes

and lysosomes. Thus, ORP1L, via its liganding by lipids and the formation of contacts between

autophagic vacuoles and the ER, governs the last steps in autophagy that lead to the

lysosomal degradation of cytosolic material.
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A
utophagy is the primary pathway for degradation of
cytosolic material, protein aggregates and damaged
organelles in lysosomes (Lys), with its de-regulation

implicated in neurodegenerative diseases, compromised immunity
and cancer1–3. Cargo destined for such proteolysis becomes
sequestered into double-membraned autophagosomes, lined with
the distinguishing modifier LC3. Following membrane-closure these
structures fuse with lysosomes, giving rise to a hybrid organelle—
the autolysosome. Alternatively, autophagosomes progress through
an intermediate amphisome stage—the result of fusion with late
endosomes (LEs)—and subsequently mature by acquiring
lysosomal characteristics or merge with the pre-existing lysosomes
in a secondary fusion event4. While many of the essential molecular
players for these processes have been identified, our understanding
of the underlying factors controlling transport and fusion of
autophagic vacuoles (AVs, which include autophagosomes,
amphisomes and autolysosomes) remains incomplete.

Entry of autophagic cargoes into the endocytic system is
orchestrated by components from both the autophagosome and
the late endosomal/lysosomal (LE/Ly) side. A complex consisting
of autophagosome-localized ATG14L, the SNAREs STX17 and
SNAP29 as well as endosomal VAMP8 has recently been shown
to execute the heterologous autophagosome/LE (or autophago-
some/Ly) fusion event5–8. Tethering of the participating
membranes, which precedes fusion, critically depends on both
STX17 (ref. 6) and the GTPase Rab7 (refs 9–12), with the latter
likely provided by the endosome. STX17 has been shown to
recruit the homotypic fusion and vacuole protein-sorting (HOPS)
complex, which is thought to bridge the two organelles, thus
facilitating their unification by SNARE proteins13–16. In addition,
PLEKHM1 as well as RILP—both effectors of Rab7—can
bind HOPS15,17–20, with PLEKHM1 reportedly involved in
autophagosome-LE/Ly fusion17. The above tethering and fusion
proteins are recruited to the autophagosome/LE (or Ly) interface
in a stimulus-dependent manner14,17, suggesting existence of
additional factors to influence and fine-tune the fusion process.

Entry of autophagosomes into the late endosomal/lysosomal
pathway requires dynein motor-mediated transport towards the
microtubule organizing center21–26, where most lysosomes reside.
However, the nature of motor recruitment control and its effects on
transport of autophagosomes is largely unknown. During
maturation, autophagosomes acquire Rab7, typically relegated to
the LE/Ly9,10,27, perhaps as a result of fusion with these
compartments. On endosomes, Rab7 can associate with several
effectors, including RILP, which recruits the dynein–dynactin motor
for minus-end transport28,29. Whether autophagosomes utilize this
Rab7-associated transport and fusion machinery en route to the
lysosome, and if so, what factors control this process, is not known.

Here we show that transport of autophagosomes is governed by
two Rab7 effectors—RILP and the cholesterol-sensor ORP1L.
ORP1L localizes to amphisomes and autolysosomes and, under
low cholesterol conditions, contacts the ER protein VAP-A to
form intimate membrane contact sites (MCSs) with the ER. These
ER-autophagosome MCSs prevent dynactin binding to RILP, thus
blocking dynein-mediated transport. Furthermore, ORP1L in its
low-cholesterol state acts as a negative regulator of AV/LE fusion
and prevents binding of both PLEKHM1 and HOPS by
Rab7–RILP. Thus, our study reveals a molecular mechanism
whereby ORP1L, via its liganding by lipids and the formation
of contacts between AVs and the ER, controls the degradation of
cytosolic components by autophagy.

Results
Cholesterol controls autophagosome positioning. Autophagic
vacuoles are dynamic compartments that move bi-directionally

along microtubules20,21,28 and mostly encounter lysosomes
in the perinuclear region30. Intriguingly, steady-state cellular
distribution of AVs varies greatly between different cell types.
While in cervical HeLa cells AVs are dispersed throughout the
cytoplasm, in melanoma MelJuSo cells most structures containing
the autophagy marker LC3 localize at the perinuclear region
(Fig. 1a). Since intracellular AV position is determined by the
activities of kinesin and dynein motor proteins21,22,31 common to
all cells, these differences might arise from variations in motor
activity or recruitment. Strikingly, MelJuSo cells also contain
more (endosomal) cholesterol (Fig. 1a), known to promote
localization of endosomes and lysosomes at the microtubule
minus-end32,33, close to the nucleus, raising the possibility that
AV transport is modulated by endosomal cholesterol levels.

To test this, we reduced cholesterol levels in cells using statin
(to inhibit endogenous cholesterol production, supplemented
with mevalonate to provide essential nonsteroidal isoprenoids)
and lipid-free serum (to inhibit the major source of cholesterol
for cells as taken up through the LDL receptor)34. In addition, we
accumulated cholesterol in the endosomal compartment by
exposure of cells to U18666A (refs 32,34), an inhibitor of
the endosomal cholesterol exporter NPC1 (ref. 35). Strikingly, in
the case of lipid depletion, AVs were found to scatter throughout
the cytoplasmic space and accumulate at the tips of the cell, while
they concentrated at the perinuclear region under conditions
resulting in accumulated endosomal cholesterol. This was
observed both in MelJuSo and HeLa cells, as well as for statin
and lipid-free serum separately, ruling out non-cholesterol-
mediated effects caused by statin (Fig. 1b; Supplementary
Fig. 1a,b). To follow the dynamics of these AVs, we performed
live-cell imaging using mCherry-LC3 and Lysotracker to label
AVs and the late endocytic compartments. This indicated that the
AVs localizing to the tips under low-cholesterol conditions were
relatively static and remained located at their position for
prolonged periods of time (Fig. 1c; Supplementary Movies 1–3),
suggesting a defect in microtubule-based minus-end transport.
Furthermore, the majority of these peripheral AVs labelled
positive for Lysotracker (Fig. 1d and Supplementary Movies 1–3),
as well as for Rab7 (Supplementary Fig. 1c), defining them as late
or mature autophagosomes (amphisomes and autolysosomes).
Thus, manipulating cholesterol affects the transport dynamics of
late autophagosomes.

ORP1L senses cholesterol to regulate autophagosome transport.
A key distinguishing characteristic between early and late
AVs is the presence of Rab7 (ref. 36), suggesting that Rab7
effectors could be responsible for cholesterol-dependent late
autophagosome re-localization. We, and others, have previously
shown that the Rab7 effector ORP1L acts as a cholesterol sensor
on late endosomes33,37. Upon (membrane) cholesterol binding by
its ORD domain, ORP1L maintains a conformation compatible
with dynein motor recruitment and minus-end transport, while
absence of cholesterol prevents this33,37. Silencing ORP1L in
MelJuSo cells indeed reduced the fraction of AVs localizing at the
cell periphery under basal conditions (Fig. 2a; Supplementary
Fig. 2a). Furthermore, ORP1L knockdown strongly inhibited AV
scattering caused by cholesterol depletion (Fig. 2a), illustrating a
critical role for ORP1L in cholesterol-mediated AV repositioning.
To test whether cholesterol controls positioning directly via
ORP1L, we expressed GFP-tagged wild-type ORP1L or variants
altering its cholesterol-sensing properties (Fig. 2b). These were:
DORD, lacking the cholesterol-interacting ORD domain (thereby
mimicking the non-cholesterol bound state of ORP1L and acting
as a cholesterol-independent inhibitor of dynein recruitment,
since this variant cannot be inactivated by cholesterol) and
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DORDPHDPHD, where the ORD domain is replaced by a
tandem membrane-targeting PH domain (PHD) to reflect
the membrane-bound high cholesterol state (acting as a
cholesterol-independent permissive factor for dynein binding,
since the tandem PHD domains remain membrane bound
and allow dynein recruitment, mimicking the high cholesterol
state even under conditions of low cholesterol)33 (modelled in
Supplementary Fig. 2b). These constructs mimic the low or high
late endosomal cholesterol states, respectively, independently of

the actual cholesterol concentration, since the ORD domain
has been removed33. Expression of ORP1L and especially
ORP1L–DORD, but not ORP1L–DORDPHDPHD, resulted in
profound scattering of AVs (Fig. 2c,d), indicating that ORP1L
regulates AV positioning as a function of its cholesterol-bound
state. Importantly, cholesterol depletion induced scattering of
AVs in cells ectopically expressing GFP, but had no effect on
cells expressing ORP1L–DORDPHDPHD, implying that low
cholesterol levels had the effect through the ORP1L protein
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Figure 1 | Cholesterol modulates autophagosome positioning. (a) HeLa or MelJuSo cells were stained for LC3 and 4,6-diamidino-2-phenylindole (DAPI),

or with filipin to detect cholesterol. Scale bar, 10mm. Panels below: quantification for the presence of a detectable perinuclear LC3 cluster: 4100 cells were

analysed per experiment. For filipin labelling, signal intensity was measured for at least three fields per experiment and was normalized to signal intensity in

HeLa cells, which was set at 1. Bars indicate meanþ s.d. from independent triplicates, significance calculated using Student’s t-test. (b) MelJuSo cells

cultured for 24 h under cholesterol-depleting conditions (see Methods) or exposed for 24 h to 3mM U18666 were stained for LC3 and DAPI. Scale bar,

10mm. Lower panel: quantification of the average distance (mm) of the AVs from the nucleus (using the LasAF software), from 410 cells per experiment.

Bars indicate meanþ s.d. from independent triplicates, significance calculated using Student’s t-test. (c) Distribution and dynamics of mCherry-LC3-

marked vesicles in control versus lipid-depleted MelJuSo cells. Confocal image at start of time lapse is shown on the left, vesicle trajectories over a 480-s

interval are displayed on the right. Colours of individual vesicle trajectories reflect maximal displacement rate (blue¼0, red¼0.8mm s� 1) achieved during

the 480-s interval. Scale bar, 10mm. (d) Quantification of the localization of mCherry-LC3 vesicles either or not labelling for Lysotracker in MelJuSo cells

treated as indicated. At least five cells per replicate were quantified, bars indicate meanþ s.d. from independent triplicates. Significance calculated using

Student’s t-test (Supplementary Movies 1–3). NS, not significant, *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001). AV, autophagic vacuole.
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(Fig. 2d and Supplementary Fig. 2c). In line with this, GFP-
ORP1L and even more pronounced the ORP1LDORD construct
resisted AV clustering following cholesterol accumulation by
U18666A, unlike GFP or the ORP1LDORDPHDPHD construct
mimicking the high-cholesterol form of ORP1L (Fig. 2d;
Supplementary Fig. 2c). While cholesterol manipulation of cells
may result in several effects on lipids and proteins, the fact that
the low- and high-cholesterol state configurations of ORP1L
override these effects suggests that the effects of cholesterol on
AV positioning are largely ORP1L mediated.

To investigate which AV substructures are subject to regulation
by ORP1L, we investigated the types of structures ORP1L
localized to. As assessed by super-resolution total internal
reflection (TIRF) microscopy, ORP1L localized to the limiting
membrane of AVs, (Fig. 2e), which was confirmed by
cryo-immuno-EM, where ORP1L was found to localize to
single-membrane AVs, which defines them as amphisomes or
autolysosomes (Fig. 2f). In support of this, all ORP1L marked
AVs co-labelled for Rab7 (Fig. 2g; Supplementary Fig. 2d).
Together, these data suggest that cholesterol as sensed by ORP1L
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Scale bar, 10mm. (d) Quantification of cells with scattered autophagic vesicles in cells under different cholesterol manipulation conditions and expressing
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dictates the intracellular position of Rab7-marked late
autophagosomes.

Low cholesterol and ORP1L yield of ER-AV contact sites.
When recruited to LE by Rab7, ORP1L has a conformational state
allowing interactions with ER-protein VAP-A to establish a MCS
between these two compartments. VAP-A then controls the
binding of the dynein motor to RILP33,38. This interaction
with VAP-A is stabilized by mutating or deleting the ORD
domain of ORP1L and is promoted by low cholesterol culture
conditions38 (Fig. 3a). To assess whether ORP1L has the ability to
form physical contacts between late autophagosomes and the ER,
coincidence of ER marker calnexin and LC3 was detected as a
function of ORP1L mutants. Robust distribution of (calnexin
positive) ER pockets to LC3þ structures occurred in the presence
of either ORP1L or ORP1LDORD, and could be prevented by
eliminating the VAP-A-binding site FFAT (two phenylalanines
(FF) in an Acidic Tract) in the latter (by mutating Y477 and D478
into alanines, Fig. 3a). Typical MCSs are characterized by a spatial
separation of less than 10� 30 nm between two compartments39,
which required analyses of these contact sites by EM and
superresolution light microscopy. Cryo-immuno-EM showed
long stretches of ER closely positioned to vesicles positive for
both ORP1L and LC3 (Fig. 3b; Supplementary Fig. 3a). 3-Colour
superresolution TIRF microscopy confirmed the existence of
VAP-A–ORP1L contacts on LC3 positive structures, with AVs
containing ORP1L significantly surrounded by ER protein VAP-
A (Fig. 3c). At this level of resolution, ORP1L was again found at
the limiting membrane and surrounded by VAP-A, covering
major parts of the vesicle (Supplementary Movie 4).

Similar to overexpression of ORP1L and ORP1LDORD,
cholesterol depletion profoundly stimulated re-distribution of
the ER towards LC3 puncta, creating a distinct punctate ER
contacting the LC3þ structures (Fig. 3d; Supplementary Fig. 3b).
Notably, silencing of either ORP1L or VAP-A reduced these ER
contacts with LC3 in the cell periphery, while perinuclear MCSs
were only sensitive to silencing VAP-A (Supplementary Fig. 3c).
This suggests that cholesterol controls the formation of
ORP1L–VAP-A contact sites, as well as contact sites between
VAP-A and a different autophagosomal protein. Together, these
results visualized a novel membrane contact site, one between late
autophagosomes and the ER.

RILP regulates transport of late autophagosomes. On LE/Ly,
ORP1L forms a tripartite complex with Rab7 and RILP and
controls binding of the dynein motor complex to RILP33,40. RILP
is also found on AVs and its recruitment to Rab7 is enhanced
under conditions that promote the autophagic flux41, suggesting
that RILP could also drive dynein acquisition on late
autophagosomes—and is by extension sensitive to ORP1L. To
assess this, we silenced RILP in MelJuSo cells, which yielded AV
scattering and accumulation in the tips of the cell (Fig. 4a,b).
Conversely, ectopic expression of RILP in HeLa cells produced
strong clustering of AVs in the perinuclear region (Fig. 4c,d),
while a RILP mutant deficient in dynein–dynactin interactions40

(D199) left the AVs scattered in the cell periphery. Furthermore,
RILP induced recruitment of the dynein–dynactin subunit
p150glued to AVs (Supplementary Fig. 4a). RILP-mediated AV
repositioning is dynein dependent, as disruption of the dynein
motor complex by ectopically expressing p50dynamitin (ref. 42),
which by itself accumulated AVs at the tips of cells
(Supplementary Fig. 4b), negated the perinuclear clustering
induced by RILP (Fig. 4e). RILP localized to a fraction of the
LC3þ vesicles (Fig. 4e), constituting the Rab7-marked late
autophagosomal pool (Fig. 4f). This was further supported by

immuno-EM analysis that showed RILP(D199) (full-length RILP
strongly clustered AVs, LEs and Lys in the perinuclear region,
thus preventing proper analyses) localizing to the limiting
membrane of single membrane autophagosomes (amphisomes
and autolysosomes43; Fig. 4g). These data suggest that the Rab7
effector RILP recruits dynein for minus-end transport of mature
autophagosomes.

To assess the effect of ORP1L on RILP-mediated transport, we
co-expressed RILP with ORP1L. While overexpression of ORP1L
had only minor effects on RILP-induced perinuclear clustering of
AVs (Fig. 4h,i), ORP1LDORD completely eliminated this
clustering, an effect dependent on its ability to bind VAP-A,
since mutating the interacting FFAT motif in ORP1LDORD
restored RILP-induced perinuclear clustering. Similar to this,
recruitment of dynactin subunit p150glued to AVs was blocked by
co-expression of RILP with ORP1LDORD (Supplementary
Fig. 4a). These data indicate that Rab7-effector RILP recruits
the dynein motor to late autophagosomes for minus-end
transport, and that ORP1L further controls this transport via
the formation of ER-contact sites with VAP-A.

ORP1L controls autophagosome maturation. Since transport
of AVs is associated to their maturation, we reasoned that
ORP1L might inhibit the autophagic flux. Consistent with this,
ORP1L silencing reduced the number of LC3þ structures in cells
(Figs 2a and 5a), as well as overall LC3B-II and p62 levels
(Fig. 5b). This decrease was negated by blocking lysosomal
degradation (Fig. 5b), illustrating that ORP1L depletion spurs the
autophagic flux. Decreased p62 levels could imply that ORP1L
also controls clearance of ubiquitinated protein aggregates.
Aggregate-like induced structures are formed on cellular stress
and recognized by selective autophagy receptors, including p62,
for targeting to the autophagic pathway. While ORP1L knock-
down had no effect on the generation of puromycin-induced
aggregate-like induced structures, the number of cells containing
ubiquitinated aggregates at 4 and 6 h following puromycin
washout was reduced when compared with control cells (Fig. 5c).
At these time points, most remaining aggregates stained positive
for LC3, indicating effective targeting to the autophagosomal
pathway. Thus, silencing of ORP1L increases the autophagic flux
and the rate of protein aggregate degradation.

Conversely, ectopic expression of ORP1L increased the number
of AVs in cells, which was more pronounced by expressing
ORP1LDORD (Fig. 5d). This phenotype was largely corrected for
by mutating the VAP-A interacting FFAT motif in ORP1LDORD.
Co-staining with the LE/Ly marker CD63 revealed that
overexpression of either ORP1L or ORP1LDORD increased the
numbers of both early (LC3þCD63� ) and late (LC3þCD63þ )
autophagosomes. Surprisingly, the most significant difference was
observed for the early (ORP1L negative) autophagosomes,
suggesting that in addition to fine-tuning dynein motor-driven
transport, ORP1L controls autophagosome fusion with the LE/Ly.
To test this, we used the tandem mRFP-GFP-LC3B construct that
contains a pH insensitive mRFP and a pH sensitive GFP molecule
to distinguish early (GFPþRFPþ ) from late (GFP�RFPþ ) more
acidic autophagosomes12. Following amino-acid starvation to
accelerate the autophagic flux, cells expressing the low cholesterol
mimic ORP1LDORD harboured a significantly elevated fraction
of early autophagosomes when compared with cells expressing
wild-type ORP1L and vector control (Fig. 5e). Thus, ORP1L-
induced ER contact sites are able to modulate autophagosome
maturation.

We then tested whether cholesterol depletion or accumulation
would also affect the autophagic flux. Whereas cholesterol-
lowering conditions did not yield measurable changes in
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autophagic flux (Supplementary Fig. 5a,b), in agreement with
others44,45, we found that increased lysosomal cholesterol levels
prevented autophagosome-LE/Ly fusion (positioning them in
very close proximity, Supplementary Fig. 5a,b). Since cholesterol
reduction affects many cellular processes, it could be that
compensatory mechanisms are in place, or that the cholesterol
reduction is not strong enough to observe an effect on
autophagic flux. Yet, the observed block in fusion with
ORP1LDORD suggests a role for endosomal cholesterol in
autophagosome maturation.

ORP1L controls PLEKHM1/HOPS acquisition by RAB7–RILP.
The observations that ORP1L blocks autophagosome–LE/Ly
fusion, together with the preferential localization of ORP1L to
Rab7-positive compartments, suggest that ORP1L likely affects
fusion between autophagosomes and LE/Lys from the latter side.
Recent work has implicated the Rab7 effector PLEKHM1 as
pertinent to this fusion step17. To test a possible functional
interplay between ORP1L and PLEKHM1, we co-expressed
GFP-tagged PLEKHM1 with ORP1L and its mutants. Strikingly,
ectopic expression of ORP1LDORD inhibited distribution of
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PLEKHM1 to Rab7, yielding cytosolic PLEKHM1 instead (Fig. 6a).
Mutating the VAP-A interacting FFAT motif of ORP1L restored
acquisition of PLEKHM1 by Rab7, suggesting that ORP1L does not
simply compete with PLEKHM1 for Rab7-binding space, but

rather actively informs PLEKHM1 recruitment in a manner
dependent on the association with the ER protein VAP-A.

To mediate fusion, PLEKHM1 binds the HOPS complex, a
multiprotein complex organizing the SNARE proteins for
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fusion46, likely through a direct interaction with HOPS
subunit VPS39 (ref. 17). Whether this interaction drives
recruitment of the entire HOPS complex to Rab7 is unknown.
To test this, we expressed several HOPS subunits in combination
with PLEKHM1. While all subunits tested were cytosolic when
expressed on their own, co-expression of PLEKHM1 relocalized
both VPS39 and VSPS41 to LEs/Lys (Fig. 6b; Supplementary
Fig. 6a). No recruitment was observed for an alternate HOPS
complex member, VPS33b (refs 16,20; Supplementary Fig. 6b),
implying that PLEKHM1 specifically recruits the HOPS core
complex to Rab7. Introduction of ORP1LDORD blocked
membrane distribution of both VPS39 and VPS41, as well as
PLEKHM1 in a manner dependent on the FFAT motif (Fig. 6c;

Supplementary Fig. 6a). At the same time, ORP1LDORD had no
effect on localization of fusion factor VAMP8 (Supplementary
Fig. 6c). These data support the premise that ORP1L-mediated
ER-contact sites orchestrate tethering of autophagosomes with
LE/Ly by modulating recruitment of the autophagic effector
PLEKHM1, and subsequently that of HOPS, to Rab7.

Besides PLEKHM1, also RILP can recruit the HOPS complex
to Rab7, through a direct interaction with VPS41 (refs 15,19).
This begs the question whether both Rab7 effectors—RILP and
PLEKHM1—mediate fusion of different vesicular subpopulations,
or rather cooperate to recruit HOPS, the latter possibility
supported by the requirement for both adaptors in ensuring
efficient access of endocytosed EGFR to the LE/Ly
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compartment17,47. RILP and PLEKHM1 robustly co-localized on
the
same vesicles (Fig. 7a; Supplementary Fig. 7a), and silencing
RILP relegated PLEKHM1 to the cytosol (Fig. 7b), implying a
functional interplay between the two effectors. The latter was
not related to the HOPS recruitment capacity of RILP, since
the RILPD199 mutant (which fails to recruit HOPS15) did not
affect endosomal membrane targeting of PLEKHM1 (Fig. 7a;
Supplementary Fig. 7a). Furthermore, expression of constitutively
active Rab7(Q67L) restored membrane targeting of PLEKHM1
(Supplementary Fig. 7b), indicating that the phenotype is likely a
result of an altered activated Rab7 state, as observed previously
for effector silencing or overexpression18,28. While in the
presence of RILPD199, PLEKHM1 was still able to recruit

VPS39 (Fig. 7c; Supplementary Fig 7c), it poorly recruited VPS41
to endosomes (Fig. 7c). Co-immunoprecipitation experiments
confirmed that the interaction between PLEKHM1 and VPS41
was attenuated by RILPD199 (Fig. 7d), implying that functional
RILP is required for PLEKHM1 to mobilize VPS41 and thus the
entire HOPS complex. RILP and PLEKHM1 physically associated
with each other, which was strongly reduced by using RILPD199,
and more efficient when co-expressing VPS41 (Fig. 7e),
suggesting that RILP and PLEKHM1 form a complex via
HOPS. Together, these observations suggest that the HOPS
complex is jointly recruited to LE/Lys by the Rab7 effectors
PLEKHM1 and RILP, where PLEKHM1 binds to HOPS subunit
VPS39 and RILP to VPS41. Whereas RILP remains associated to
Rab7 following formation of ORP1L–VAP-A contact sites by
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ORP1LDORD15, PLEKHM1 and the HOPS complex are released,
obstructing fusion of autophagosomes with LEs/Lys (Fig. 8).

Discussion
Autophagic proteolysis of bulky cargoes acquired in the cytosol
necessitates their entry into the endocytic system for degradation
by lysosomal hydrolases. Endosomes present a challenging target,
as they traverse different maturation stages, all while moving
quickly between the peripheral and interior regions of the cell.
How fusion and transport of autophagosomes are negotiated
within this dynamic vesicle network in space and time is poorly
understood. Here we show that maturing autophagosomes hijack
late endosomal fusion and transport machinery to access the
lysosomal compartment, and in doing so, become subject to
endosome-centric regulatory mechanisms. Among these, we
identify a negative regulator of autophagosome fusion with the
LE/Ly—which functions as a cholesterol sensor poised on receiving
vesicles to either licence or refute autophagic progression.

Enclosure of cytosolic substrates within LC3þ double-
membranes gives rise to early autophagosomes, which mature
by fusion with lysosomes or endosomes harbouring late
characteristics. For fusion to take place, the autophagic
membrane-bound SNARE protein STX17 (ref. 6) needs to
contact the endosome-associated HOPS tethering complex13,14.
On the LE/Ly side of the merger, the small GTPase Rab7 recruits
its effectors PLEKHM1 and RILP, capable of respectively binding
the VPS39 and VPS41 components of HOPS. Our data suggest

that these effectors jointly recruit the same HOPS complex, which
is analogous to yeast, where the Rab7 homologue YPT7 acquires
HOPS by binding to both VPS39 and VPS41 (refs 48,49). Since
RILP and PLEKHM1 bind the same motif on Rab7 (ref. 18), two
Rab7 molecules probably associate to the two different effector
proteins—RILP and PLEKHM1—which associate to two subunits
of one tethering HOPS complex.

In addition to PLEKHM1 and RILP, Rab7 recruits another
effector, the cholesterol-sensor ORP1L, which binds Rab7 in the
presence of RILP40 and engages directly with ER-located VAP-A.
Genetic manipulation of underlying interaction determinants
casts AV/LE fusion as subordinate to complex formation between
ORP1L and VAP-A. In support of this, we find that in the
presence of ORP1L predisposed to binding VAP-A, PLEKHM1
becomes relegated to the cytosol, while RILP remains associated
to Rab7 but releases HOPS. This results in diminished entry of
LC3þ compartments into the acidified luminal LE environment
and expansion of the now-arrested early autophagosomal
repertoire. Given that ORP1L-mediated ER-contact sites are
modulated by cholesterol or oxysterols as recognized by the ORD
domain of ORP1L, cholesterol on the cytosolic leaflet of
Rab7–ORP1L compartments could control the autophagic flux.
While the effects of the different ORP1L mutants on the
autophagic flux revealed a clear and interpretable effect, this
was less so for lipid manipulation of cells. This could be due to
the milder nature of cholesterol manipulation, the multitude of
other pathways that are affected by cholesterol, or another
unknown factor controlling ORP1L contact site formation.
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However, our data with the ORP1L mutants suggest that
cholesterol is instrumental for the autophagic flux, and
demonstrate that the interplay between ORP1L and VAP-A
determines whether a given AV/LE encounter will result in
fusion, and by extension maturation of the autophagosome en
route to proteolysis.

Following AV/LE fusion, the resulting amphisome needs to
reach the lysosome to fulfil proteolysis of its contents. A large
share of motor-based transport of autophagic vesicles is
accounted for by amphisomes21,24,50, and several transport
adaptors, including dynein intermediate chain-interacting
proteins Snapin24,51 and Huntingtin52,53 are common between
amphisomes and LEs. We demonstrate that LC3þ amphisomes
retain both transport and regulatory determinants of its parent
LE, all converging onto the small GTPase Rab7. On RILP
engagement with amphisomes, the dynein–dynactin complex can
be recruited for minus-end-directed transport towards lysosomes,
typically congregating near the microtubule organizing center.
Concomitant association of ORP1L to the Rab7–RILP complex
adds an additional layer of regulation, involving a novel
membrane contact site between amphisomes and the ER.
Superresolution fluorescence imaging and immuno-EM revealed
ORP1L on single-membrane-enclosed LC3þ amphisomes,
juxtaposed against VAP-A on the ER, indicating an interaction
occurring in trans rather than resulting from possible ERGIC-
derived VAP-A spillover into nascent autophagosomes54.
Formation of the amphisome-ER contact site is cholesterol
dependent, advocating that via ORP1L, cholesterol can toggle
decisions regarding transport of amphisomes. Why cholesterol is
used to mark this step in autophagosome maturation is unclear.
Possibly ORP1L confines the active transport machinery to
defined regions on a vesicle, cholesterol-enriched subdomains. If
so, decisions regarding transport are restricted to a few locations
on a vesicle, so-called transport nodes, which potentially
simplifies regulation of bidirectional transport. In support of
this theory, it was recently shown that on phagosomes Rab7 and
the dynein motor are recruited specifically to cholesterol-enriched
subdomains to control minus-end transport55. Interestingly, plus-
end transport of amphisomes depends on PI(3)P binding by
FYCO1 (ref. 31), suggesting a broader role for lipids in the
regulation of amphisome transport. ORP family members have
been demonstrated to also bind phosphoinositides within their
ORD domain56–58, which may also apply for the ORD domain of
ORP1L. The physiological role for transport regulation by
cholesterol or other putative ligands of ORP1L is unclear, but it
is possible that it functions as a timer, where older amphisomes
can be recognized from a distinct lipid composition of their
cytosolic leaflet, leading to minus-end transport and subsequent
fusion with the lysosome. On top of the transport regulating
ORP1L–VAP-A contact sites, we also observed cholesterol- and
VAP-A-dependent but ORP1L-independent AV/ER contact sites.
These could be facilitated by other ORP family members
harbouring the FFAT motif, or afforded by the divergent
cholesterol-binding proteins STARD3 or STARD3NL38,59,60,
and will be subject for further study. Thus, via ORP1L, the ER
and lipids in the limiting membranes of endosomes regulate late
autophagosome transport, illustrating its complexity and
intercompartmental control.

In addition to their role in autophagy induction through the
regulation of mTOR activity30,61, our data implicate LE/Ly as
potent drivers of autophagic flux, capable of imposing restrictions
on acceptance of autophagic vesicles into its fold. Fusion is thus
not simply imposed by the autophagosome, but is also subject to
licence by the LE. This mechanism can be exploited on
the individual endosome basis and activated on a specific set of
LE/Ly, for example, melanosomes or exocytic LEs/Lys, to prevent

incoming cargo. Alternatively, ORP1L could serve as a quality
control switch on LE/Ly to prevent incoming traffic when the
endosome is not equipped to handle additional cargo, for
example, just after acquiring autophagosomal cargo. Following
autophagic lysosome reformation62, revitalized endosomes could
inactivate ORP1L to take on a new degradation cycle. Given that
starvation enhances AV/LE fusion63, it will be interesting to
investigate a potential interplay between mTOR signalling and
ORP1L activity.

Collectively, our data suggest (Fig. 8) that the cholesterol
sensor ORP1L regulates AV/LE fusion, and attenuates
recruitment of PLEKHM1 and HOPS to Rab7–RILP complexes.
Rab7 effectors PLEKHM1 and RILP then jointly attract HOPS for
fusion. Following fusion, the resulting amphisome utilizes
Rab7–RILP-associated dynein motor machinery for minus-end-
directed transport, which is also under control of the very
same ORP1L, through a novel type of MCS engaging late
autophagosomal structures with the ER. These data provide a
molecular basis for the potential role of a major dietary
lipid, cholesterol, in controlling autophagosome transport and
degradation of its content in lysosomal compartments64,65.

Methods
Cell culture and constructs. MelJuSo cells were cultured in IMDM supplemented
with 10% FCS, HeLa and HEK 293 T cells in DMEM with 10% FCS. All cells were
checked for contamination by other cells (using morphological analysis and surface
marker expression) and were regularly tested for mycoplasma contamination.
Constructs for expression of ORP1L, Rab7, RILP, p50, VPS39, VPS41, VPS33b,
VAMP8 and VAP-A were described previously15,33. HA-ORP1L and mutants were
obtained by swapping GFP in the GFP-C1 vector for a 2xHA tag.
ORP1LDORDydaa was generated by mutating the residues Y477 and D478 into
alanines using the primers: 50-gaggacgagttcgctgcggcgctgtcagattccg-30 and
50-tctgacagcgccgcagcgaactcgtcctcgctaag-30 . Both residues were mutated because a
minor interaction with VAP-A was still observed in the D478A single amino acid
mutant. PLEKHM1-GFP was a kind gift from Wim van Hul (Department of
Medical Genetics, University of Antwerp, Belgium)66 and was recloned into
2Flag-N1 using XhoI and HindIII. mRFP-mGFP-LC3 was generated by cloning
mGFP and LC3 into an mRFP-C1 vector, mCherry-LC3 by cloning LC3 into an
mCherry-C1 vector. All constructs were sequence verified.

Reagents and antibodies. Lipid depletion was carried out by incubating cells in
DMEM/IMDM supplemented with 5% delipidized bovine serum (Pel-Freez
Biologicals) in the presence of 50 mM lovastatin (Millipore) to inhibit cholesterol
production and 230 mM Mevalonate (Sigma-Aldrich) to supply essential non-sterol
isoprenoids. For endosomal cholesterol accumulation, cells were treated with
3 mg ml� 1 U-18666A (Cayman Chemicals), for lysosomal staining Lysotracker
green (Molecular Probes) was used. Starvation, used for the mRFP-mGFP-LC3
experiment, was performed by culturing cells in EBSS (ThermoScientific) for the
indicated time. Puromycin (Gibco) was used at 4 mg ml� 1. Antibodies used: rabbit
anti-LC3B (Novus Biologicals NB100-2220, used for all experiments except co-
staining with endogenous Rab7, microscopy 1:400, western blot 1:1,000), mouse
anti-LC3B (Cosmo Bio LC3-1703, only used for co-staining with Rab7, 1:100),
rabbit anti-ORP1L (1:1,000), rabbit anti-GFP (1:1,000), mouse anti-CD63 (1:500)
and rabbit anti-CD63 (1:100) (all described in ref. 33), rabbit anti-PDI (1:10, as
described in ref. 67), mouse anti-HA (Covance 16B12, 1:1,000), rat anti-HA 3F10
(Roche, 1:200), mouse anti-p62 D3 (1:500), goat anti-calnexin C-20 (1:40), goat
anti-VAP-A K15 (microscopy 1:40, western blot 1:500), mouse anti-Ubiquitin
P4D1 (1:50) (all Santa Cruz), rabbit anti-Rab7 D95F2 (Cell Signaling Technologies,
1:100), and mouse anti-p150glued (BD Biosciences 610473, 1:100), rabbit anti-Flag
F7425 and mouse anti-Flag M2 (Sigma, 1:1,000). Secondary antibodies (goat
anti-mouse Alexa 405/488/568/647, goat anti-rabbit Alexa 488/568/647, donkey
anti-goat Alexa 488/568, donkey anti-mouse Alexa 488/555/647 and donkey
anti-rabbit Alexa 488/647) were purchased from Life Technologies and donkey
anti-rat CF568 from Biotium (all 1:200).

Transfections. For expression studies, MelJuSo and HeLa cells were transfected
using Effectene (Qiagen) according to the manufacturer’s instructions. Cells were
transfected 1 day before fixation or lysis. For siRNA-mediated depletion, cells were
reverse transfected with DharmaFECT transfection reagent #1 and 50 nM siRNA
(catalogue numbers: siCtrl: D00120613-20, siORP1L: D008350-(01,05,18,19),
siVAP-A: D021382-(01,02,03,04), siRILP D008787-(01,02,03,04) of the Human
siGenome SMARTpool, Dharmacon) according to the manufacturer’s protocol.
Briefly, siRNAs and DharmaFECT were mixed and incubated for 20 min in a
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culture well, after which cells were added and left to adhere (reverse transfection).
Three days later, cells were fixed and stained or lysed for biochemical analysis.

Co-immunoprecipitation and western blotting. For co-immunoprecipitation
experiments, cells were lysed in lysis buffer (0.5% NP-40, 5% glycerol, 150 mM NaCl,
50 mM Tris-HCl pH 8.0, 5 mM MgCl2 supplemented with complete EDTA-free
Protease Inhibitor Cocktail (Roche)) and cleared by centrifugation. Lysates were
incubated with GFP-Trap beads (Chromotek) or protein G-Sepharose 4 Fast Flow
resin with the indicated antibodies and after incubation washed extensively with lysis
buffer before addition of sample buffer (2% SDS, 10% glycerol, 5% b-mercap-
toethanol, 60 mM Tris-HCl pH 6.8 and 0.01% bromophenol blue).

For whole cell lysate analyses, cells were lysed directly in sample buffer. Proteins
were separated by SDS-PAGE (polyacrylamide gel electrophoresis) and transferred
to western blot filters. Blocking of the filter and antibody incubations were done in
PBS supplemented with 0.1 (v/v)% Tween and 5% (w/v) milk powder. Blots were
imaged using the Odyssey Imaging System (LI-COR) or ChemiDoc (Bio-Rad).
Uncropped western blot images are presented in Supplementary Fig. 8.

cDNA synthesis and qPCR. RNA isolation, complementary DNA synthesis and
quantitative PCR with reverse transcription were performed according to the
manufacturer’s (Roche) instructions. Signal was normalized to GAPDH and
calculated using the Pfaffl formula. Primers used for detection of GAPDH and
RILP were: GAPDH fw: 50-TGTTGCCATCAATGACCCCTT-30 , GAPDH rv:
50-CTCCACGACGTACTCAGCG-30 , RILP fw: 50-AAGCAGCGGAAGAAGA
TCAA-30 , RILP rv: 50-TTGTCATCGGAGAGCAGGAT-30.

Confocal microscopy. Cells were seeded on coverslips, transfected 18 h later and
treated as indicated. Twenty-four hours later, cells were fixed in 3.7% formaldehyde
for 10 min and permeabilized in ice-cold methanol for 2 min. Staining was per-
formed with the antibodies mentioned above and 4,6-diamidino-2-phenylindole
(Invitrogen) to stain DNA or Filipin (Cayman Chemicals) to detect cholesterol.
Images were acquired using a Leica TCS SP5 confocal microscope (Leica
Microsystems, Wetzlar, Germany) at � 63 magnification. For live-cell imaging, the
microscope was equipped with a climate control chamber and cells were imaged for
8 min with B5 frames per minute. Images were quantified using Image J plugin
Jacob for Mander’s coefficient calculations or FIJI’s Trackmate plugin for live-cell
imaging and processed using Adobe Photoshop and Illustrator.

Cryo-immunoelectron microscopy. Transfected HeLa cells were fixed for 2 h in
2% paraformaldehydeþ 0,2% glutaraldehyde in 0.1 M PHEM buffer (60 mM
PIPES, 25 mM HEPES, 2 mM MgCl2, 10 mM EGTA, pH 6.9) and then processed
for ultrathin cryosectioning. Briefly, 50-nm cryosections were cut at � 120 �C
using diamond knives in a cryoultramicrotome (Leica Aktiengesellschaft, Vienna,
Austria) and transferred with a mixture of sucrose and methylcellulose onto for-
mvar-coated copper grids. The grids were placed on 35-mm Petri dishes containing
2% gelatine. Ultrathin frozen sections were incubated at room temperature with
primary antibody and then incubated with 10 nm protein A-conjugated colloidal
gold (EM Lab, Utrecht University, The Netherlands) as described68. For double
labelling, the sections were first washed and then fixed for another 10 min in 1%
glutaraldehyde, blocked and incubated with the second primary antibody and
15 nm gold-labelled protein A. The sections were embedded in a mixture of
methylcellulose and uranyl acetate and examined with a Philips CM10 electron
microscope (FEI, Eindhoven, The Netherlands).

Super-resolution microscopy. Super-resolution microscopy was performed with a
Leica SR GSD microscope (Leica Microsystems, Wetzlar, Germany) mounted on a
Sumo Stage (#11888963) for drift-free imaging. Collection of images was done with
an EMCCD Andor iXon camera (Andor Technology, Belfast, UK) and an oil
immersion objective (HCX PL Apo 100X, NA 1.47). Laser characteristics were
405 nm/30 mW, 488 nm/300 mW and 647 nm/500 mW, with the 405-nm laser used
for back pumping and the others for wide field/TIRF imaging. Ultra clean coverslips
(cleaned and washed with base and acid overnight) were used for imaging. The
number of recorded frames was variable between 10,000 to 50,000, with a frame rate
of 100 Hz. The data sets were analysed with the Thunder Storm analysis module69

and images were reconstructed with a detection threshold of 70 photons, sub pixel
localization of molecules and uncertainty correction, with a pixel size of 10 nm.

Statistical analysis and experimental set-up. All experiments shown in the
paper are performed independently at least three times and images are repre-
sentative of at least 10 cells viewed per individual experiment. For co-localization
quantification, numerical values of individual cells were used for calculations, while
for population quantifications, the averages per experiment were used. Statistical
significance was calculated using an unpaired Student’s t-test, except for normal-
ized signals, for which a paired t-test was done. Statistical values are as following:
*Po0.05, **Po0.01, ***Po0.001, ****Po0.0001.

Data availability. All data supporting the findings in this study are included in the
article, either in the main figures or the supplementary information files.
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