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Abstract

Observing the dynamics of single biomolecules over prolonged time periods is difficult to achieve 

without significantly altering the molecule through immobilization. It can, however, be 

accomplished using the Anti-Brownian ELectrokinetic (ABEL) Trap, which allows extended 

investigation of solution-phase biomolecules - without immobilization -through real-time 

electrokinetic feedback. Here we apply the ABEL trap to study an important photosynthetic 

antenna protein, Allophycocyanin (APC). The technique allows the observation of single 

molecules of solution-phase APC for more than one second. We observe a complex relationship 

between fluorescence intensity and lifetime that cannot be explained by simple static kinetic 

models. Light-induced conformational changes are shown to occur and evidence is obtained for 

fluctuations in the spontaneous emission lifetime, which is typically assumed to be constant. Our 

methods provide a new window into the dynamics of fluorescent proteins and the observations are 

relevant for the interpretation of in vivo single-molecule imaging experiments, bacterial 

photosynthetic regulation, and biomaterials for solar energy harvesting.

The investigation of single biomolecules allows the observation of unsynchronized or rare 

events that are impossible to observe in ensemble measurements.1–6 Solution-phase single-

molecule spectroscopy6–8 is particularly challenging as one must balance the desire to make 

measurements for the prolonged periods of time required for detection of a statistically 

robust numbers of photons over multiple timescales, with the experimental reality that 

techniques for biomolecule immobilization may alter the molecular dynamics or contribute 

to the same inhomogeneous broadening that one hopes to eliminate by doing a single-

molecule measurement.9 In some cases, rigorous efforts show the persistence of native 

structure after surface immobilization through comparison with bulk assays10 or 

confinement in vesicles.11 However, in other cases doubts remain as to how immobilization 

affects more subtle facets of biomolecule behavior, such as conformational dynamics.12, 13
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In this work we employ the Anti-Brownian ELectrokinetic (ABEL) trap14, 15 to examine the 

photophysics of a single fluorescent protein, Allophycocyanin (APC), in solution. The 

ABEL trap maintains the position of the fluorescent protein at the center of a microfluidic 

cavity, where it can be probed for prolonged periods of time (often >1 s) without 

immobilization. The ABEL trap provides some advantages of surface immobilization (long 

observation time) and open-volume detection (minimal surface interaction) without their 

disadvantages (structural perturbation; short observation time and significant spatial 

excitation intensity variation). By directly measuring time-dependent changes in APC’s 

fluorescence intensity and lifetime, we obtain an unprecedented view into the dynamics of a 

single fluorescent protein in solution. Changes in chromophore photophysics offer a means 

to probe protein conformational dynamics in real time.3 We observe a complex relationship 

between fluorescence intensity and lifetime that is poorly described by the common 

assumption of a static radiative rate. This behavior suggests light-induced conformational 

dynamics may be important for quantitative treatment of Forster Resonance Energy Transfer 

(FRET) involving fluorescent proteins that forms the basis for certain in vivo single-

molecule16 and fluorescence lifetime imaging microscopy (FLIM) investigations.17 

Additionally, novel intensity-lifetime dynamics can have implications for understanding 

bacterial photoprotection mechanisms and the use of biomaterials in solar energy 

applications.

The ABEL trap controls the position of a fluorescent object by using two orthogonal pairs of 

electrodes to drive electroosmotic flows that cancel the object’s Brownian motion within a 

microfluidic environment.14, 15 The biomolecule’s position is estimated using a rapidly 

rotating laser spot and lock-in detection;15, 18, 19 the correct force vector to return the 

molecule to the center of the trap is calculated with a homebuilt analog circuit phase-locked 

to the rotating spot, which uses the actual time of photon detection to estimate the position 

of the molecule. This technique allows trapping of objects significantly smaller than those 

that can be stably trapped by optical tweezers, including single chromophores.15 Recently, 

single strands of fluorescently labeled DNA were trapped in the ABEL trap, allowing 

visualization and analysis of chain dynamics that would be unobservable in bulk 

measurements and substantially altered by immobilization.20

The target for this study, APC, is a photosynthetic antenna protein found in red algae and 

cyanobacteria where it is an important component of the phycobilisome, a protein-

superstructure exciton funnel that directs energy toward the photosynthetic reaction center.21 

It is a disc-like trimer (αβ)3, 11 nm in diameter and 3 nm thick, with each monomer (αβ) 

comprised of strongly bound α and β subunits.22 Photophysical properties of APC are 

dominated by six covalently-bound phycocyanobilin (PCB) molecular cofactors that form 

three pairs at the interfaces between the protein monomers upon fulfillment of the protein’s 

native quaternary structure, Fig 1.21 The center-center distance between paired 

chromophores is 2.1 nm.22 A strong excitonic interaction within these pairs was 

conclusively demonstrated via ultrafast transient anisotropy.23 After rapid electronic 

dephasing and localization,24 excitons may hop between PCB’s of the same or different 

pairs via FRET.22, 25 Two reports have examined APC at the single-molecule level, with 

one group26 immobilizing APC in polyvinyl alcohol (PVA) and the other27 using agarose or 
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non-specific adsorption on glass. Interestingly, these studies show different photobleaching 

behavior of APC, with one group observing up to six distinct photobleaching steps26 and the 

other up to three.27 Consequently, APC seems particularly well-suited for solution-phase 

investigation without immobilization.

Results

Multiple Intensity Levels

Single molecules of APC, upon diffusion into the excitation volume, are localized at the 

center of the trap and experience spatially flat excitation from the rapidly rotating laser spot. 

Once in the trap, intensity changes, Fig. 2, are primarily from molecular photo-dynamics, 

unlike fluorescence correlation spectroscopy (FCS) where diffusion in a nonuniform 

Gaussian spot introduces additional intensity fluctuations. Multiple stepped intensity levels 

have previously been observed in immobilized APC26, 27 and are a common feature of 

weakly-coupled multi-chromophore systems.4, 5 To count the number of intensity levels per 

APC, we employed the change-point-finding algorithm of Watkins and Yang28 which yields 

the blue traces in Fig. 2 and faithfully captures the stepped intensity behavior.

As seen in Fig. 2, similar intensity levels are often visited multiple times. To evaluate the 

number of distinct levels per burst we combine the agglomerative hierarchical grouping 

method of Watkins and Yang28 with evaluation via the Bayesian Information Criterion 

(BIC). A histogram of the number of distinct levels identified from each APC molecule is 

shown in Fig. 3a and suggests at least four distinct intensity levels. At least four distinct 

levels is obvious from Fig. 2 as well. This number parallels that for APC immobilized in 

PVA26 but contrasts with APC immobilized in agarose or on glass where a maximum of 

three levels was observed27 and suggests that some immobilization environments may cause 

APC to deviate from its solution-phase behavior.

Fluorescence Lifetime Fluctuations

Time-stamping of recorded photons relative to each excitation pulse opens a second channel 

for observing the dynamics of solution-phase fluorescent proteins.6 Histogramming arrival 

times from photons collected over a given time interval allows visualization of the 

fluorescence decay, Fig. 3c,d. The intensity change-points determined above define intervals 

for pooling arrival times. The ABEL trap frequently enables the recording of many 

thousands of photons from each molecule allowing robust analysis, an improvement over 

open-volume methods without feedback where over one order of magnitude less photons are 

typically collected.

Most intervals show a relatively constant fluorescence lifetime, as verified by subdividing 

the interval and refitting the decays. After assigning lifetimes to each intensity interval, we 

histogram the number of photons detected with various fluorescence lifetimes, Fig 3b. This 

highly asymmetric distribution requires at least three Gaussians for an adequate fit. The 

highest peak has a full width at half maximum (FWHM) of 0.13 ns. This is significantly 

smaller than the FWHM of approximately 0.55 ns for the analogous peak in molecules of 

APC trapped in PVA.26 This reduction implies that immobilization has a tangible effect on 
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the photo-dynamics of APC and contributes to inhomogeneous broadening of APC’s 

lifetime. Importantly, these effects are much reduced in our solution-phase experiment. A 

more detailed comparison is found in the Supplementary Information.

In Fig. 2, calculated fluorescence lifetimes are plotted alongside intensity fluctuations. It is 

evident that while these two channels are usually correlated, they are sometimes 

uncorrelated or anti-correlated. A diversity of behavior was also seen in immobilized APC.
26, 27 To investigate, we plotted for each intensity interval, the average intensity vs. the 

determined fluorescence lifetime, Fig. 4a, for 1,048 individual APC molecules. Each marker 

indicates one point in the intensity-lifetime trajectory of one APC molecule. The intensity-

lifetime trajectory of the APC molecule in Figure 2d is shown in red in Fig. 4a, with eight 

intensity plateaus represented by eight data points. Two salient features are evident. First, a 

high concentration of data points occurs near 20 cpms and 1.5 ns, Fig. 4b. Second, there is a 

smooth continuum of intensity-lifetime values with lower intensities generally correlating 

with lower and more widely distributed lifetimes. While fewer photons are generally 

recorded for lower intensity intervals, enough are obtained to have good statistical 

confidence with most data points having expected standard deviations <0.1 ns, Fig. S2. To 

visualize the transitions, each individual jump in the intensity-lifetime trajectory is plotted as 

a vector starting at the origin in Fig. 4c. Most shifts to lower intensities are accompanied by 

shifts to lower lifetimes (quadrants 1,3). This relationship between fluorescence intensity 

and lifetime is expected for weakly-coupled multi-chromophoric systems since the dark 

states that result in incremental loss of fluorescence intensity may also partially quench 

remaining active emitters, leading to a shorter lifetime. Unexpectedly, a statistically robust 

minority (13%) show the reverse correlation.

Surprisingly, ~1–2% of intensity intervals show significant lifetime fluctuations at near 

constant intensity as determined by successive binning of every 500 photons and displayed 

in the green trace in Fig. 5a,b. Fluorescence decays and fits for high and low lifetime regions 

in the same intensity interval are shown in Figs. S3–S7 and have conspicuously different 

time constants. Fluctuations in lifetime at constant intensity29, 30 are very unusual due to the 

algebraic relationship between lifetime and quantum yield31 and will be further discussed 

below. Large shifts (> 4 standard deviations) in lifetime at near constant intensity are also 

recorded in Fig 4c along the y-axis.

Discussion

Microstate properties and transitions

Essential to understanding the solution-phase dynamics of APC is the number of underlying 

microstates for one molecule during its time in the trap. Several methods exist for discerning 

the number of microstates in single-molecule systems, including Expectation-Maximization 

clustering28 and Hidden Markov Models (HMM).32 For APC we desire a method that 

preserves the divisions found above by the change-point-finding algorithm,28 since these 

intervals successfully capture much of the intensity dynamics, and a method that includes 

the time-ordering of the data, since each lifetime-intensity data point in Fig. 4a is one point 

in a single APC’s trajectory (red trace). We developed a Time-Order Clustering (TOC) 

method that is further described in the Methods section and Supplementary Information. 
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TOC seeks to explain the state changes with the smallest number of parameters using 

statistical methods to choose between alternatives and suggests four contributing states with 

properties summarized in Fig 6a-c.

Figure 6d offers a succinct description of state dynamics and includes inter-state rate 

constants calculated from TOC. Upon entering the ABEL trap, most “fresh” APC molecules 

(67%) belong to State 1, with a high intensity and narrow lifetime distribution. This fraction 

is likely underestimated, as previously probed molecules frequently reentered the trap during 

experiments performed at substantially lower concentration. The molecule then has 

comparable rates of shifting into States 2 and 3. While return to more fluorescent states is 

possible, most state shifts (68%) are to dimmer states where the molecule becomes 

increasingly likely to completely photobleach or be lost by the trap. Though strong coupling 

initially exists between the two PCB’s of each of APC’s three chromophore pairs, the 

observation of at least four emissive states suggests that each state cannot be simply 

correlated to each chromophore pair successively becoming dark. This observation, 

combined with blue shifting of the emission maxima sometimes accompanying decrease in 

fluorescence intensity,26 and more than three states being observed in polarization 

anisotropy measurements,26 led Loos et al. to conclude that decreases in fluorescence 

intensity can stem from only a single member of the pair becoming dark, leading to up to six 

fluorescence intensity levels.26 Our results support this picture in solution-phase APC. 

Observation of only four states is consistent with Fig. 3a and likely a result of APC 

molecules in minimally luminous states being difficult to confine in the ABEL trap.

Dynamic conformational diversity

Within the four primary states (Fig. 6), the continuous distribution of intensities and 

lifetimes rather than discrete groupings strongly suggests conformational diversity among 

APC molecules. This explanation is supported by the inherent sensitivity of the fluorescence 

quantum yield (Φ) of PCB to its protein environment,33 with conformational changes in 

biliproteins initiated by a denaturant appearing as changes in Φ before changes were 

observed in absorption spectra or circular dichroism.33, 34 The protein’s conformation is 

integral to APC being a bright emitter, with bulk APC in buffer demonstrating an excellent 

quantum yield with Φ=0.68 and fluorescence lifetime τ=1.6 ns (majority component).26 

Bare PCB in solution is nearly completely quenched with τ<40 ps35 due to a complex 

combination of Z→E isomerization about exocyclic olefins, internal conversion owing to 

PCB’s flexibility, and excited state proton transfer, with relative magnitudes of each 

component depending on PCB’s instantaneous geometry.36 APC maintains a high Φ by 

keeping PCB “stretched-out” on a protein scaffold via covalent and non-covalent 

interactions, Fig 1.22 A broad distribution of PCB conformers as a result of subtle changes to 

protein conformation is likely the primary contributor to the observed continuum of 

intensities and lifetimes.

However, this lifetime diversity is absent in the tight grouping at 20 cpms, Fig. 4a,b, that 

comprises the majority of State 1, Fig. 6c. As described above, most APC molecules 

entering the ABEL trap belong to State 1 and show this narrow lifetime distribution. In 

addition, the fluorescence decay in bulk samples is multi-exponential with 90% of the 
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fluorescence decay amplitude coming from a 1.6 ns component (with the rest from a faster 

component).26 These two observations suggest the majority of APC molecules exist in State 

1, their native state, before photoexcitation. A relatively homogenous population of APC 

molecules enters the ABEL trap, but upon prolonged excitation, molecules shift to dimmer 

states with larger lifetime distributions, Fig. 6, implying not only static diversity but 

dynamic diversity as well.

Large-scale intensity jumps between states likely result from formation of non-emissive 

radical cations, which have been directly observed upon UV excitation37 while charged 

photocarriers have been observed upon visible excitation in photovoltaic studies.38 

Coulombic interactions between PCB-centered cations and the protein matrix likely cause 

conformational changes. Electron transfer reactions have been shown to electrostatically 

cause significant internal motions in proteins with embedded redox centers like the 

photosynthetic reaction center39 and to cause local unfolding as a result of even non-

specifically bound sensitizers for photo-induced electron transfer.40

Photophysical consequences of conformational changes

Protein conformational diversity can explain the range of observed photophysical 

trajectories in Fig. 4a,c. Decreases in intensity are expected to be accompanied by decreases 

in lifetime (Fig. 4c, quadrants 1,3) as cations, acting as energy sinks, should effectively 

quench distal emitters via FRET26 due to favorable spectral overlap37 and rapid non-

radiative decay. This relationship is supported by a correlation between the size of the 

intensity drop between consecutive intervals and the lifetime of the product state: large 

transitions from State 1 to State 4 result in a member of State 4 with a mean τ of 0.55 ns, 

whereas the mean τ values for smaller transitions from States 3 or 2 to State 4 are 0.72 and 

0.90 ns, respectively. This correlation makes sense, as a small drop in fluorescence intensity 

can arise from a non-quenching dark state since it will leave non-perturbed chromophores 

fully emissive, while larger decreases in fluorescence intensity require affecting multiple 

chromophores simultaneously through a long-distance interaction like FRET and will 

consequently display a shorter lifetime, as observed.

Fluorescence intensity changes at near constant lifetime (Fig. 4c, x-axis) are indicative of a 

non-quenching dark state. Cation formation can lead to reductions in intensity, but with 

small or negligible changes in lifetime if the conformation of the chromophore bearing the 

cation has shifted to display poor spectral overlap or orientation to quench its neighbors. The 

range of slopes near the x-axis supports this picture. The extinction coefficient of PCB is 

also a function of conformation,41 although this change is also expected to affect lifetime. 

Additionally, conformational changes may alter the extinction coefficient by affecting the 

degree of exciton coupling within a PCB dimer.

More exotic behavior is seen in quadrant 2, Fig. 4c, where an unexpected increase in 

lifetime accompanies decreasing intensity. 82% of molecules exhibiting a quadrant 2 

transition have previously visited states 2, 3, or 4 implying the prior formation of cations and 

consequent local denaturation. Trajectories along the y-axis of Fig. 4c, displayed in Fig. 

5a,b, are also unexpected as changes in lifetime at constant intensity are very rare. Such 

changes were seen in highly fluorescent (Φ ~1) dyes embedded in a polystyrene matrix by 
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Vallée,29 who inferred a fluctuating spontaneous (natural) emission lifetime, τRAD. This 

possibility is appealing here due to the relationship between the average intensity (AI), 

quantum yield (Φ) and the rate equations relating Φ, τ, τRAD, and the characteristic time of 

non-radiative processes, τQ,
31 wherein Φ is far more sensitive to changes in τQ than τRAD.4

In Fig. 5b, the trapped APC shifts from a lifetime of 0.81 to 1.27 ns with negligible change 

in fluorescence intensity. Assuming a constant τRAD that can be calculated from bulk 

measurements of Φ and τ, and that only τQ is changing (the usual assumptions), the intensity 

should jump from the observed value of 7 to >11 cpms, which is clearly not observed. In 

contrast, assuming a constant τQ and variable τRAD predicts a shift from 7 to 6 cpms, a 

much smaller change. Figure 5c shows two curves of constant observed lifetime, τ, 

corresponding to the starred intervals in Fig. 5b. Transitions from τ=0.81 → 1.27 with 

constant τRAD require an increase in Φ. Transitions with constant τQ, however, require a 

decrease in Φ and can explain transitions in Fig. 4c, quadrants 2,4. Transitions at near 

constant Φ, as in Fig. 5b, require changes in τRAD and τQ. Simultaneous changes in τQ and 

τRAD would result in a diversity of correlations between lifetime and intensity, as observed 

experimentally, Fig. 4c. Observation of this diversity provides strong evidence of a 

fluctuating τRAD.

The origin of variations in τRAD described by Vallée29 lies in changes in the microscopic 

environment of each chromophore. Specifically in this model, chromophores experience a 

fluctuating polarizable polymer solvation shell where introduction of voids results in a 

shifting dielectric profile and consequently shifting τRAD.
30 A similar situation exists in a 

biological setting where partial denaturation in the vicinity of the chromophore could also 

result in a shifting dielectric environment and consequent shifting of τRAD. A dynamic τRAD 

was previously suggested in light-harvesting complexes4, bilirubin-albumin complexes,42 

and chromophores embedded in membrane rafts,43 with the latter study employing an 

adapted version of Vallée’s model. In APC multiple charged or aromatic residues are 

proximal to PCB22 and changes in their formal charge or orientation will influence the 

dielectric environment. PCB’s are positioned close to the protein-solvent interface, Fig. 4d, 

and varying infiltration of solvent into the chromophore’s micro-environment can also play 

a role due to dielectric contrast between the solvent and the protein’s interior.44 Finally, 

changes in the conformation and polarizability of PCB itself will affect τRAD and will 

provide an interesting target system for molecular dynamics simulations.

Conclusion

By allowing a new way of probing solution-phase protein dynamics, the ABEL trap revealed 

previously hidden photo-dynamics at the single-molecule level, including light-induced 

conformational changes. Evidence of modulation of the spontaneous emission lifetime, 

which is usually assumed constant, was observed and is likely linked to these 

conformational changes. Similar conformational and photo-dynamics are likely present in 
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other fluorescent proteins such as Green Fluorescent Protein (GFP) and will be particularly 

conspicuous in other multi-chromophoric proteins. These dynamics have implications for 

the widespread use of lifetimes measured from fluorescent proteins in bio-imaging where 

changing lifetimes are frequently attributed uniquely to the changing population or 

orientation of an external quencher. Additionally, photo-induced denaturation appears to be 

another form of photodamage that can occur under intense illumination and highlights the 

need for cellular protection mechanisms. Finally, this photodamage must be addressed for 

strongly pumped chromophores in proteins to be used for solar energy applications.

Methods

Sample Preparation

ABEL trap cells made of fused silica with 700 nm cell depth were constructed as previously 

described.15 Cell interiors were coated with two pairs of layers of polyethylene imine (PEI) 

and polyacrylic acid (PAA) ending in PAA to prevent non-specific adsorption.45 Without 

this treatment, we observed conspicuous sticking of APC to the surfaces of the trap. 

Covalently cross-linked APC46 was purchased from Molecular Probes as in the other single-

molecule studies26, 27 and purified as instructed. APC was diluted in a 1:1 (v/v) mixture of 

0.1 M PBS buffer at pH=7.5 and glycerol. APC has been shown to be minimally perturbed 

in this solvent mixture.47 Sample solutions were diluted to a final concentration of 0.06 nM 

immediately before data collection with a glycerol:buffer mixture that had been sparged 

with Argon for at least 25 minutes. All experiments were performed under a blanket of 

Argon due to APC’s production of several reactive oxygen species upon excitation in air and 

significantly higher photostability under inert atmosphere.48

Excitation, Detection, and Feedback

Excitation was provided by the spectrally filtered supercontinuum output of a non-linear 

photonic crystal fiber (Femto White 800, Newport) pumped by a mode-locked Ti:Sapphire 

laser (790 nm, 200 fs pulse length, 76 MHz repetition rate, Mira 900, Coherent) yielding 

pulses centered at 596 nm with FWHM of 3 nm and length < 3 ps. The laser light was 

steered into the epi-port of a Nikon TE-3000 microscope and focused with an oil objective 

(NA=1.0) to provide an average power of 1.7 kW/cm2 at the sample. Beam deflection to 

produce the rotating spot is achieved through the same apparatus described previously.15 

The excitation spot is 0.8 μm in diameter in the sample plane, as measured by scanning a 

fluorescent bead through the focal volume, and is rotated at 40 KHz with a radius of 0.33 μm 

in the sample plane. Sample fluorescence is collected back through the same objective and 

passed through dichroic (620DCLP) and long pass (HQ620LP) filters, a 200 μm pinhole and 

focused onto an APD (Perkin Elmer, SPCM-OD 2801). Time-correlated single-photon 

counting (TCSPC) is achieved using the PicoHarp 300 (Picoquant) timing module. A total 

instrument response function (IRF) of 0.3 ns was measured from scatter from a glass 

coverslip. Feedback direction and magnitude are calculated for each 25 μs cycle by phase-

sensitive integration of photons detected in the previous cycle. A single detected photon 

produces a feedback pulse of 24 V vector magnitude lasting 25 μs which is applied across 

the 20 μm transverse width of the shallow region of the cell.15 This field is expected to have 

a negligible effect on the absorption spectra, as described in the Supplementary Information. 
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Voltages are produced by four PA-83 high voltage operational amplifiers (Apex 

Microtechnologies) to generate forces in the appropriate direction to cancel Brownian 

motion.

Experiments were also repeated with a CW 638 nm excitation source (FiberTEC, Blue Sky) 

and showed qualitatively similar results, albeit with longer survival times, as observed 

previously.27 A fraction of fluorescence bursts showed short lived intensity spikes between 

25–50 cpms. The fraction showing this level decreased as a function of sample 

concentration and was assumed to originate from two APC molecules briefly co-occupying 

the trap. Simulations confirmed this explanation and these bursts were eliminated from all 

analysis.

Data Analysis

All calculations were implemented in Matlab. The change-point-finding algorithm28 was 

applied to 1 ms binned data. Modeling the fluorescence decays is accomplished via the 

method of Zander.49 Standard deviations in parameter determination are calculated from the 

observed Fisher information.50 Error bars in Fig. 5a,b represent ± 1 standard deviation. 

More detailed calculations are given in the Supplementary Information.

In the agglomerative clustering analysis,28 a maximum or leveling off of the BIC indicates 

proper dimensionality has been identified. The number of APC molecules exhibiting higher 

numbers of levels (>4) is dependent on the threshold used to identify the leveling off of the 

BIC. However, the existence of at least four distinct intensity levels is independent of this 

threshold.

Time-Order Clustering (TOC) classifies states based on their proximity to a center intensity 

value (similar to k-means) with a conditional reclassification procedure for consecutive 

intervals. Classifications are judged with a HMM analysis in the evaluation configuration, 

where the likelihood of observing the experimental data (xk) is determined given the inferred 

descriptions of the microstates, including intensity center value (Ici) and variance (Iσi), and 

transition probabilities (ti→ j) between states, which can be determined from the TOC state 

assignments.

Leveling off of the likelihood (Fig. S8) suggests four contributing states, with assignments 

and properties shown in Fig. 6. A more detailed description is given in the Supplementary 

Information. Transition probabilities can be used to calculate inter-state rate constants by the 

relationship

Rate constants used to create Fig. 6d and transition matrix probabilities are shown in Tables 

S1 and S2.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structure of APC
Each monomer of the APC trimer contains two phycocyanobilin (PCB) chromophores (red). 

The strongest interaction between pairs of PCB’s is at the interface between the subunits. 

Produced from PDB structure 1ALL.22
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Figure 2. Intensity and lifetime dynamics of single molecules of APC trapped in the ABEL trap
(a-f) Traces for six individual trapped APC molecules displaying fluorescence intensity 

binned at 10 ms (red, left axis), the average intensity from intervals defined by the change-

point-finding algorithm (blue, left axis), and lifetimes from those same intervals (green, right 

axis). Multiple intensity plateaus are easily identifiable. Shifts in intensity and lifetime are 

sometimes found to be correlated (a,e,f), anticorrelated (b), or non-correlated (c,d). Trace a 
also includes 1 ms binned data (gray).
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Figure 3. Intensity level and lifetime histograms
a Histogram of the number of APC molecules showing between one and six distinct 

intensity levels, suggesting at least four observable APC microstates. b Histogram of the 

number of photons collected as a function of fluorescence lifetime with a compound fit (red 

trace) to three component Gaussians (blue traces). The narrow main peak suggests limited 

inhomogeneous broadening. c An example of a single-molecule fluorescence decay (blue 

trace) with fit (red trace) yielding τ = 1.64 ns from 6034 photons. d Another molecule with τ 

= 0.52 ns from 1268 photons.
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Figure 4. Correlations between fluorescence intensity and lifetime suggest conformational 
dynamics
a Fluorescence intensity and lifetime for intensity intervals of 1,048 molecules with the 

intensity-lifetime trajectory of one APC (from Fig. 2d) superimposed in red. Transitions to 

or from intervals with <200 recorded photons did not yield lifetimes of sufficiently small 

expected error and were not included in the plot. b Contour plot of a highlighting the dense 

grouping at 20 cpms. c Individual intensity-lifetime trajectory shifts from 1,048 molecules 

plotted as vectors beginning at the origin and classified into four quadrants depending on 

their orientations. Vectors in different quadrants and along different axes indicate 

discernibly different photophysical processes.
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Figure 5. Fluorescence lifetime fluctuations at near constant intensity
a,b Traces for two individual APC molecules displaying fluorescence intensity binned at 10 

ms (red, left axis), the average intensity from intervals (blue, left axis), and lifetime 

measured from consecutive bunches of 500 photons (green, right). Error bars indicate ± 1 

standard deviation. c Curves of constant observed lifetime, τ, for the starred intervals in b 
from plotting the equation for quantum yield, Φ, in the text. Transitions between the two 

observed lifetimes are shown with constant τRAD (left), constant Φ with requisite changing 

of τQ and τRAD (middle), and constant τQ (right). The middle process likely describes the 

transition between the starred intervals in b.
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Figure 6. Results from state identification by Time-Order Clustering
a Coloring of data points by state number on the Intensity-Lifetime correlation plot and 

showing interpenetrating microstates. b Histogram of intensity levels of intervals belonging 

to each state. c Histogram of fluorescence lifetimes of intervals belonging to each state with 

progressively widening distribution. d Summary of interstate dynamics calculated from the 

transition probabilities determined by TOC. Sizes of nodes denote the relative amount of 

time spent in each state. Black arrows denote transitions to a lower state and gray arrows to 

a higher state. Arrows to the outside denote irreversible photobleaching/trap loss. The 

relative size of the arrows is indicative of the relative size of the rate constant, with the 

largest arrow emerging from state 4 representing 3.1 s-1. Single molecules of APC tend to 

enter the trap in State 1, then shift to higher numbered states where they are dimmer, show 

larger distributions of fluorescence lifetime, and are increasingly likely to irreversibly 

photobleach and/or be lost by the trap.
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