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Annually, the influenza virus causes 500,000 deaths worldwide. Influenza-associated 
mortality and morbidity is especially high among the elderly, children, and patients with 
chronic diseases. While there are antivirals available against influenza, such as neuraminidase 
inhibitors and adamantanes, there is growing resistance against these drugs. Thus, there 
is a need for novel antivirals for resistant influenza strains. Host-directed therapies are a 
potential strategy for influenza as host processes are conserved and are less prone 
mutations as compared to virus-directed therapies. A literature search was performed for 
papers that performed viral–host interaction screens and the Reactome pathway database 
was used for the bioinformatics analysis. A total of 15 studies were curated and 1717 
common interactors were uncovered among all these studies. KEGG analysis, Enrichr 
analysis, STRING interaction analysis was performed on these interactors. Therefore, 
we have identified novel host pathways that can be targeted for host-directed therapy 
against influenza in our review.
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INTRODUCTION

Influenza viruses are negative-sense single-stranded RNA viruses from the Orthomyxoviridae 
family that cause respiratory diseases (MacLachlan and Dubovi, 2017). Of the 4 influenza 
virus types, A, B, C, and D, type A is the most prolific as it infects numerous hosts and 
is the main causative agent of the seasonal and pandemic influenza (Shen et  al., 2015). 
Influenza viruses constantly evolve with antigenic shifts (reassortment of viral segments, 
resulting in dramatically different viruses) and drifts (small antigenic changes to increase 
immune evasion). Due to the viral adaptation and reassortment, highly virulent strains may 
appear and result in  local epidemics or global pandemics, such as the 1918 H1N1 Spanish 
pandemic, 2005 H5N1 Bird flu, and the 2009 H1N1 Swine flu (Shen et  al., 2015). Influenza’s 
genome, which is composed of eight segments of symmetrical helixes, encodes ten proteins. 
Those include the surface glycoproteins haemagglutinin (HA) and neuraminidase (NA), matrix 
protein (M1), matrix ion channel (M2), Nucleoprotein (NP), PA (polymerase acid subunit), 
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polymerase basic subunit 1 (PB1), and polymerase basic subunit 
2 (PB2), which form the RNA-dependent RNA polymerase 
complex, NS1 (non-structural protein 1) and NS2, non-structural 
protein 2 or nuclear export protein (NEP; Noda, 2012). Segments 
of some influenza A virus strains may encode a second or 
third polypeptide in alternative reading frames (McCauley 
et  al., 2012). These functional proteins (Jagger et  al., 2012), 
such as PB1-F2 and PA-X, are known to modulate the host 
response to the virus (Klemm et  al., 2018). The influenza A 
virus can be  further classified based on its HA and NA 
glycoproteins into different subtypes. There are 18 
haemagglutinin and 11 neuraminidase subtypes known today 
(Tong et al., 2013). Only the H1, H2, H3, N1, and N2 subtypes 
have caused epidemics in humans (Bouvier and Palese, 2008).

Current Prophylaxis and Treatment of 
Influenza
Vaccination is available for influenza and is the main form 
of prevention against influenza. Vaccine efficacy is around 60% 
if matched to the current circulating strains of the virus, but 
effectiveness can be  as low as 10–20% if there is a mismatch 
between the vaccine and current strains of the virus (Eisenstein, 
2019). The current method of developing influenza vaccines 
is lengthy, with the Centre for Disease Control (CDC) 
characterizing around 2,000 influenza viruses. These viruses 
are monitored for drifts and shifts and compared to viruses 
included in the current influenza vaccine. This provides an 
indication of the vaccine’s ability to produce an immune response 
against current circulating strains of influenza (CDC, 2019). 
There are three main kinds of vaccines: egg-based vaccines, 
attenuated vaccines, and recombinant vaccines. However, due 
to the constantly evolving nature of influenza, there are problems 
associated with vaccine mismatches (Paules et  al., 2018) and 
poor immunogenicity of vaccines in the elderly (DiazGranados 
et  al., 2014). Moreover, there is a lack of a universal influenza 
vaccine covering all strains and subtypes of influenza (Krammer 
et  al., 2018).

Hence, there is a need for antiviral therapy for breakthrough 
infections and for infection with influenza strains not covered 
by vaccines. M2 ion channel inhibitors (e.g., amantadine and 
rimantadine) and NA inhibitors (e.g., oseltamivir and zanamivir) 
are the original two drug classes approved for influenza treatment 
(Krammer et  al., 2018). Resistant virus strains have emerged 
and have rendered M2 inhibitors ineffective for clinical use 
while there is also increasing NA inhibitor resistance, such as 
the H274Y mutation, found in the 2009 H1N1 strain which 
conferred oseltamivir resistance (Arias et  al., 2009; Shen et  al., 
2015). Recently, baloxavir (cap-dependent endonuclease inhibitor) 
was approved by the FDA in 2018 and worked by interfering 
influenza’s ability to multiply via inhibition of viral transcription 
(Hayden et al., 2018). There are a limited number of compounds 
under development or in trials (Davidson, 2018). Hence, there 
is an increasing focus to research and developing host-directed 
therapies given there is a lower drug resistance potential (Lou 
et  al., 2014). We  hypothesized that by combining various 
influenza interactome studies, there might be  novel insights 

into viral–host interactors and processes that could be  targeted 
for antiviral therapy. In this study, we  identified novel host 
interactors of influenza via literature and database search. 
We further analyzed the data set by bioinformatics. This resulted 
in the identification of core cellular processes and druggable 
targets that could be  further studied. This provides an overall 
landscape of conserved host processes targeted by various 
influenza strains for future drug development and better 
understanding the influenza life cycle.

MATERIALS AND METHODS

Data Collection
In order to identify host interactions that are ubiquitous across 
the various influenza A strains, data was extracted from the 
Reactome database (Fabregat et  al., 2018; Jassal et  al., 2020) 
and Host Pathogen Interaction Database (HPIDB; Ammari 
et  al., 2016) while a PubMed and Scopus search of primary 
literature that performed interaction studies. Papers were chosen 
if they had found specific interactions between a host protein 
and influenza proteins. Host interactions with viral complexes 
and novel accessory viral proteins, such as PA-X and PB1-F2, 
were excluded. This is because not all influenza A strains 
express these accessory proteins. A total of 15 papers were 
retrieved, and their methodology, as well as virus strain (s) 
studied, are listed Supplementary Table S1. Reactome is a 
free, online, curated, open-source pathway database contains 
the influenza infection pathway (REACT_6167.3), specifically 
NS1 Mediated Effects on Host Pathways (Homo sapiens). This 
pathway was last reviewed on 1 May 2007, thus does not 
contain any information from the studies utilized in this project. 
Despite its age, it was still included as a point of reference 
for subsequent analysis. (Fabregat et al., 2018; Jassal et al., 2020).

HPIDB was chosen as it contains a comprehensive set of 
host–virus interactions (Ammari et  al., 2016). This includes 
experimentally derived HPI, predicted HPI via network analysis, 
and molecular interactions from other databases which include 
VirHostNet1 and UniProtKB (Consortium, 2012).2 Currently, 
in its third version, it has 69,787 unique protein interactions 
between 66 host and 668 pathogen species. In this project, 
all ten characterized influenza protein interactions (HA, NA, 
PA, PB1, PB2, NP, M1, M2, NS1, and NS2) from various 
influenza A strains with human proteins were extracted from 
the various studies and databases, compiled, and matched to 
reveal which are key interactors of influenza. The compiled 
data can be  found in Supplementary Table S1.

Data Set Analysis
Using the filtered gene data set, we  performed the following 
analysis. Enrichr (Chen et  al., 2013; Kuleshov et  al., 2016) 
was used for gene set enrichment analysis. Kyoto Encyclopedia 
of Genes and Genomes (KEGG)3 pathwayanalysis was conducted 

1 http://virhostnet.prabi.fr
2 https://www.uniprot.org/
3 http://www.genome.jp/kegg/pathway.html
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to identify genes at the biologically functional level (Kummer 
et  al., 2014). For all enrichment analysis, a value of p cutoff 
of 0.05 was used as significant. Figure  1 shows the analysis 
workflow for the bioinformatics analysis.

RESULTS AND DISCUSSION

Meta-Analysis of Influenza–Host 
Interactions
In order to better understand the landscape of influenza–host 
interactions, we  performed an analysis of influenza host 
interactors. We compiled virus–host protein–protein interaction 
data from HPIDB, Reactome, and published interactome studies. 
The published studies and their methodology are described 
in Supplementary Table S1. This data set covered various 
strains of influenza A, such as H3N2, H1N1, and H7N9. This 
data set contained protein interactions from different 
experimental methods—Affinity purification-mass spectrometry 
(AP-MS), Yeast 2 hybrid (Y2H), RNA immunoprecipitation, 
and bioinformatics prediction of interactions. Given that single 
interactome studies may result in false positives, a host interactor 
was considered to be  true if it appeared in at least 3 different 
studies and databases. Altogether, our review uncovered 1,717 

host interactions among the ten viral proteins. Both KEGG 
and Enrichr functional analysis were performed for the interactors 
of each viral protein. Details of the specific host–viral interactions 
can be  found from Supplementary Table S2.

HA Interactors Are Mainly Involved in 
Protein Processing
HA is a trimer of identical subunits, each containing two 
polypeptides that result from proteolytic cleavage of a singular 
precursor (Skehel and Wiley, 2000). This cleavage is essential 
to activate membrane fusion potential and hence infectivity 
(Garten and Klenk, 1999; Steinhauer, 1999). A newly synthesized 
70 kDa HA is cleaved into HA1 and HA2, which are linked 
by disulfide bonds. HA1 contains the sialic acid binding site. 
After binding, the virus is internalized into endosomes. 
Endosomal acidification triggers a marked and irreversible 
change in HA, which results in the dissociation of HA1 from 
the endosomal membrane and HA1 moving away from HA2. 
There is a loop-to-helix transition in HA2 which enables the 
fusion peptide at the N-terminus of HA2 to attach to the 
endosomal membrane. This promotes the fusion of the viral 
and endosomal membranes and this results in the vRNP release 
into the cytoplasm (Das et  al., 2010).

HA binding to sialic acid receptor determines the species-
specific infectivity of the influenza virus (Rogers and Paulson, 
1983). Avian and equine viruses prefer α-2,3-galactose-linked 
sialic acid, human viruses prefer α-2,6-linked sialic acid and 
swine viruses appear to bind to both linkages of sialic acid 
(Rogers and D’Souza, 1989; Gambaryan et  al., 1997; Ito 
et  al., 1998).

Based on our meta-analysis, 36 common host interactors 
were found across the various studies. The top KEGG pathway 
identified for HA interactors was the proteasomal pathway (i.e., 
PSMD6 and PSMD7), protein processing in endoplasmic reticulum 
(i.e., RPN1, CALR, and PDIA6), and adherens junction (i.e., 
ACTN1 and ACTN4; Figure  2A; Supplementary Figure S1A). 
The functional analysis of the interactors revealed that they 
were mainly involved in the immune pathway (i.e., PSMD6, 
PSMD7, ACTN4, ARF1, and ANXA2), protein processing (i.e., 
PSMD6, PSMD7, CALR), and post-translational modification 
(i.e., PSMD6, PSMD7, CALU, and PDIA6; Figure  2B; 
Supplementary Figure S1B). Given that HA is being transcribed 
and translated in the infected cell during the viral life cycle, 
this would point to the importance of the protein processing 
being key in influenza replication. Any drug targeting this 
process would affect the formation of new virions. This is 
supported by a previous study which showed HA being synthesized 
by ER-bound biosynthetic machinery and interacting with ER 
chaperone proteins calnexin and calreticulin (Hebert et  al., 
1997). Any drug targeting this process would affect the formation 
of new virions. Moreover, HA requires glycosylation for binding 
to sialic receptors (de Vries et  al., 2010), while palmitoylation 
of HA is essential for the virus to form infectious virions (Chen 
et  al., 2005). Therefore, this presents a key druggable target 
for a new therapy to target or prevent influenza infection. 
DAS181 has already been developed as a sialidase fusion protein 

FIGURE 1 | Bioinformatics analysis of influenza and host interactors. HPIDB: 
Human Pathogen Interactions Database. Host interactors of influenza were 
separated into known and newly determined interactions. PubMed search of 
Viral–host interactome studies (IP-MS, Y2H, computer homology) was 
conducted. Papers were filtered if they were in English and full data set was 
available for analysis. Compiled data set of interactors was analyzed using 
STRING, Gene set enrichment analysis, and KEGG pathway.
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to prevent the binding of haemagglutinin to sialic acid receptors. 
It has reached late-stage clinical trials (Koszalka et  al., 2017).

An interesting observation was that immune-related processes 
were highly enriched from the gene set analysis. A previous 
study had reported that HA subunit 1 drove the IFN receptor 
chain IFNAR1 degradation, thus suppressing IFN-triggered 
JAK/STAT. The reduced JAK/STAT activation would lead to 
lower type I  interferon production, resulting in decreased 
immune response and thereby increasing viral replication (Xia 
et  al., 2016). This would confirm that HA is involved in 
regulating the host immune response as part of the influenza 
life cycle.

NA Interactors Are Involved in Vesicle 
Transport
NA is a mushroom-shaped protein and is found as a tetramer 
of identical subunits, with the mushroom head suspended from 
the viral membrane on a thin, long stalk. Each subunit that 
forms the mushroom head is made up of a six-bladed propeller-
like structure (Varghese et  al., 1983).

During viral replication, NA removes sialic acid from cellular 
glycoproteins and glycolipids, as well as from both viral 
glycoproteins. This prevents newly assembled viruses from 
rebinding to the infected cell surface and with self-aggregate 
through HA-sialic acid interactions. New virions are then 
released from the cell to infect new cells and further the 
infection spread (Gamblin and Skehel, 2010). It is also thought 
that NA aids viral infectivity by breaking down the mucins 
in the respiratory tract secretions to allow the penetration of 
the virus to the respiratory epithelium and may play a role 
in viral entry into respiratory epithelial cells (Matrosovich 
et  al., 2004).

A total of 36 NA interactors were found across the various 
studies. These proteins are involved in fatty acid metabolism 

(i.e., TECR and HACD3); focal adhesion tight and  
adherens junction (i.e., ACTN1 and ACTN4), and cell cycle 
(i.e., MCM7 and PRKDC) via KEGG analysis (Figure  2A; 
Supplementary Figure S2A). Functional analysis of NA 
interactors found that the most highly enriched processes were 
intra-Golgi vesicle transport and vesicle transport (i.e., COPB2, 
COPA, and COPG1; Figure  2B; Supplementary Figure S2B). 
Given that acetylation of α-tubulin occurs as part of the viral 
release (Husain and Harrod, 2011), this would suggest that 
NA is involved in this mechanism.

NP, PB1, PB2, PA Interactors Are Involved 
in Spliceosome Activity
NP is a structural protein with no enzymatic activity but 
is the most abundant viral protein in infected cells (Hu 
et  al., 2017). It is an important part of the vRNP complex 
and its functions include RNA packing (Eisfeld et  al., 2015), 
nuclear trafficking (Amorim et  al., 2013; Chutiwitoonchai 
and Aida, 2016), and vRNA transcription and replication 
(Eisfeld et al., 2015). A NP monomer has a molecular weight 
of 56 kDa that is able to bind to 24 bases of RNA (Hu 
et  al., 2017). It is crescent-shaped with head, body, RNA 
binding, and tail domains (Cianci et  al., 2013). The residues 
in the basic loop (residues 73–91) were found to be  required 
for RNA binding (Ng et al., 2008). NP oligomerization occurs 
via a flexible tail-loop (residues 402–428) that can insert 
into the body domain of a neighboring NP monomer (Ye 
et  al., 2006). This tail insertion is facilitated by R419 and 
E339 which forms a critical salt bridge for stabilization 
(Cianci et  al., 2013). NP also directly interacts with PB1 
and PB2 subunits of the viral polymerase (Biswas et  al., 
1998; Fodor, 2013; Eisfeld et  al., 2015; Davis et  al., 2017). 
The C-terminus of NP (aa 340 to 498) contains a PB2 binding 
site and a sequence that regulates the NP-PB2 interaction. 

A B

FIGURE 2 | Summary of the main processes found to be represented for each viral protein. (A) Enriched KEGG pathway for interactors of each viral protein (B) GO 
analysis of interactors of each viral protein. Proteins were analyzed using Enrichr BP, MF, and CC represent Biological Process, Molecular Function, and Cellular 
Component groups of gene ontology (GO).
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In addition to its role in the vRNP, NP has been found to 
induce apoptosis in host cells (Tripathi et  al., 2013; Nailwal 
et  al., 2015) and inhibit PKR activation via Hsp40 (Sharma 
et  al., 2011).

The vRNP polymerase complex is a heterotrimer formed 
together by PB1 with PB2 and PA in the viral polymerase 
(Eisfeld et  al., 2015). PB1 itself has the polymerase activity 
and is enclosed by the PA linker on one side (Ma et  al., 2017) 
and the N-terminal domain of PB2 at the other side (Stevaert 
and Naesens, 2016). PA contains the endonuclease domain 
while PB2 has the cap-binding domain (te Velthuis and Fodor, 
2016). The LLFL motif in PB1 N-terminus (residue 7–10) 
interacts with the PA C-terminus hydrophobic core (F411, 
M595, L666, W706, F710, V636, and L640; Massari et  al., 
2016). Based on a crystal structure, the C-terminus of PB1 
(residues 678–757) was found to complex with the N-terminus 
of PB2 (residues 1–37; Sugiyama et  al., 2009).

Among the three subunits of the vRNP polymerase complex, 
PB1 had the least interactome studies and the least number 
of interactors. The most identified interactor for PB1 was PP6R3. 
Among all the studies, PA had 316 interactors while NP  
had 51 interactors and PB2 had 45 interactors. The interactors 
of NP, PB2, and PA are mostly involved in spliceosome  
based on the KEGG pathway (Figure 2A; 
Supplementary Figures S3A–C). The common process for all 
the interactors of NP, PB2, and PB1 is the transportation of 
proteins into the nucleus (i.e., NCBP1, SRSF1, PHAX, U2AF1, 
SRRM1, BAG3, UBR5, and IPO5; Figure 2B; 
Supplementary Figures S3D–G). This is expected as the vRNP 
is required to enter the nucleus for viral replication. In addition, 
spliceosome pathway is a common process for the interactors 
of all the vRNP components (i.e., SF3B4, DDX5, SF3B2, SF3B3, 
SF3B6, SRSF1, U2AF1, CHERP, TRA2B, DHX15, SRSF3, SRSF6, 
SRSF7, SF3B1, RBMX, DDX5, FXR2, NCBP1, PCBP1, and 
SNRPA). These interactors are also involved in general RNA 
processing (Supplementary Figures S3D–G). This may explain 
the spliceosome being identified with these host interactors, 
since the spliceosome is part of the RNA processing pathway 
(Licatalosi and Darnell, 2010; Wilkinson et  al., 2020). This is 
a unique observation as NS1 has traditionally been the viral 
protein associated with spliceosome inhibition due to its binding 
to CPSF4 (Twu et al., 2006; Ramos et al., 2013). It was previously 
reported that the vRNP complex is required to stabilize the 
NS1-CPSF30 complex, specifically NP and PA (Kuo and Krug, 
2009). However, the role of the viral polymerase complex alone 
in spliceosome regulation has yet to be  studied.

The proteasome pathway was a specific pathway identified 
for PA interactors (i.e., PSMD6, PSMD7, PSMD4, PSMD2, 
PSMD3, and PSMD1). This would correlate to other studies 
which has found that treatment with proteasome inhibitors 
resulted in an antiviral state in cells (Dudek et  al., 2010; 
Haasbach et  al., 2011). It was also reported that treatment 
with the clinical approved proteasomal inhibitor PS-341 resulted 
in degradation of IκB and the activation of NF-κB and JNK/
AP-1 pathway (Dudek et  al., 2010). Hence, this suggests that 
the proteasomal pathway may be  present a novel method of 
targeting influenza.

An interesting finding was that Annexin A2 (ANXA2) was 
identified as an interactor of PA across 3 papers (Bradel-
Tretheway et  al., 2011; Watanabe et  al., 2014; Heaton et  al., 
2016) and HPIDB. Previously, it was reported that ANXA2 
binds to highly pathogenic H5N1 influenza NS1 to enhance 
viral replication. Moreover, ANXA2 is incorporated into IAV 
particles to enhance viral replication, via the conversion of 
plasminogen to plasmin (LeBouder et  al., 2008).

M2 Interactors Are Involved in Fatty Acid 
Metabolism
The M gene encodes for both M1 and M2 proteins (Lamb 
et  al., 1981). M1 protein consists of 252 amino acids, with 2 
domains (N-terminal domain from amino acid 1 to 164 and 
the C-terminal domain from amino acid 165 to 252) linked 
by a protease-sensitive loop (Ito et  al., 1991). It forms the 
matrix layer by oligomerizing directly below the lipid envelope 
and binds the viral ribonucleoproteins. It has the important 
function of stabilizing the whole envelope structure of a fully 
formed virion (Harris et  al., 2001; Calder et  al., 2010; Schaap 
et  al., 2012; Adachi et  al., 2017). M1 contacts with both viral 
RNA and NP, promoting the vRNP complex formation and 
cause the RNP dissociation from the nuclear matrix (Wakefield 
and Brownlee, 1989; Elster et  al., 1994, 1997; Nasser et  al., 
1996; Chaimayo et  al., 2017). M1 plays an important role in 
assembly by recruiting viral components to the assembly and 
an essential role in budding, such as viral particle formation 
(Gómez-Puertas et  al., 2000; Latham and Galarza, 2001). M1 
had the least interactome studies and only three  
common interactors were found: EZRI, HSP7C, and STAU1. 
Based on these three interactors, the interactors were found 
to be  positive regulators of virus replication (Figure  2; 
Supplementary Figures S4A,B).

The M2 protein comprises of 97 amino acids with three 
domains: extracellular (24 amino acids), transmembrane domain 
(19 amino acids), and cytoplasmic domain (54 amino acids). 
It is a membrane protein which is inserted into the viral 
envelope and projects from the surface of the virus as tetramers 
(Lamb et al., 1985; Holsinger and Alams, 1991). The M2 protein 
is a proton channel and is required in the acidification of the 
viral particle upon endocytosis (Lamb et  al., 1985) and prior 
to membrane fusion to enable the release of vRNPs into the 
cytosol (Helenius, 1992). It is also required to prevent the 
Golgi lumen pH from becoming too acidic so that the nascent 
HA do not undergo premature conformational arrangement 
while being transported to the plasma membrane (Sugrue and 
Hay, 1991).

Eighty-nine host proteins were found to interact with M2 
across the various interactome studies. The most common 
interactors were 4F2, AFG32, ECHB, SPTC1, and TMX3. KEGG 
analysis revealed that these proteins were mainly involved in 
fatty acid metabolism (i.e., TECR and HACD3) and  
DNA replication (i.e., RFC3 and MCM7; Figure  2A; 
Supplementary Figure S4C). Functional enrichment analysis 
showed that these proteins were involved in vesicle transport 
(i.e., COPB2, COPA, ZW10, GBF1, and COPG1; Figure  2B; 
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Supplementary Figure S4D). Given that ubiquitination of M2 
is required for viral packaging and release (Su et  al., 2018), 
this would confirm the importance of the vesicle pathway for 
influenza via M2.

An interesting observation was the involvement of M2 
interactors in fatty acid metabolism. Fatty acid oxidation was 
found to be  reduced in influenza-infected mice (Ohno et  al., 
2020), while supplying palmitic acid increased influenza 
replication (Limsuwat et  al., 2020). Influenza replication could 
be  reduced by a fatty acid import inhibitor (Limsuwat et  al., 
2020). Hence, this would suggest that M2 may be  involved 
in the fatty acid metabolism dysregulation caused by influenza 
infection. In addition, a recent study reported that M2 clustering 
which enables membrane scission is mediated by cholesterol 
(Elkins et  al., 2017). Given that cholesterol is involved in viral 
membrane fusion, viral genome release, and viral budding, 
this may explain the efficacy of cholesterol-lowering drugs, 
gemfibrozil, and lovastatin in reducing the stability and infectivity 
of progeny virus (Bajimaya et al., 2017). It was also demonstrated 
that overexpression of Annexin A6 as well as the addition of 
U18666A, a hydrophobic polyamine, was able to reduce 
cholesterol levels in the plasma membrane and inhibit viral 
replication (Musiol et  al., 2013).

NS1 Interacting Partners Are Involved in 
Spliceosome and Autophagy
NS1 is not part of the virion structural component, but it is 
expressed at high levels in infected cells (Hale et  al., 2008). It 
is composed of 231–237 amino acids, depending on the strain, 
and has a molecular mass of around 26 kDa (Hale et  al., 2008). 
It has two distinct functional domains: an N-terminal RNA 
binding domain (amino acids 1–73) and a C-terminal effector 
domain (amino acids 86-231/237), which mediates binding with 
host cell proteins (Wang et  al., 2002; Kochs et  al., 2007; Hale 
et al., 2008; Das et al., 2010). NS1 was reported to have multiple 
functions that contribute to viral replication and virulence (Kochs 
et  al., 2007; Hale et  al., 2008; Fournier et  al., 2014). These 
include: (i) temporarily regulating viral RNA synthesis (Hale 
et  al., 2008; Ayllon and García-Sastre, 2015); (ii) viral mRNA 
splicing control (Hale et  al., 2008, Ayllon and García-Sastre, 
2015); (iii) enhancing viral mRNA translation via PKR inhibition 
(Li et al., 2006); (iv) regulating the creation of the virus particle 
structure (Hale et al., 2008; Pereira et al., 2017); (v) suppressing 
the host immune or apoptotic responses (Ehrhardt et  al., 2007; 
Kochs et  al., 2007; Iwai et  al., 2010; Jia et  al., 2010; Mata 
et  al., 2011; Gao et  al., 2012; Anastasina et  al., 2016); (vi) 
activating phosphoinositide 3-kinase (Ehrhardt et al., 2007; Gaur 
et al., 2011; Ayllon and García-Sastre, 2015); and (vii) involvement 
in strain-dependent pathogenesis (Hale et  al., 2008). NS1 exists 
as a homodimer. The RNA binding domain binds to RNA and 
the binding is dependent on R38 and other charged residues, 
such as R35 and K41 (Lalime and Pekosz, 2014; Ayllon and 
García-Sastre, 2015). In addition, the effector domain of NS1 
has been found to bind to CPSF30, which results in reduced 
IFN-β mRNA production. The key amino acid residue for the 
CPSF30 interaction is W187 (Engel, 2013). Moreover, multiple 

mutations in NS1 have been found to increase virulence (Ozawa 
et  al., 2011; DeDiego et  al., 2016) and viral pathogenicity 
(Ehrhardt et  al., 2007; Engel, 2013; Nogales et  al., 2017).

NS1 had the most interactome studies among all the viral 
proteins. A total of 252 interactors were found among the 
interactome studies. The most common interactor found was 
STAU1 found in nine studies, followed by PRKRA. Based on 
the KEGG pathway, these interactors are involved in spliceosome 
(i.e., SF3B2, SNW1, FUS, NCBP2, PCBP1, TRA2B,  
TRA2A, DHX15, SRSF3, SRSF6, SRSF7, and RBMX) and autophagy 
(i.e., IRS1, BAD, IRS4, RAF1, and TANK; Figure  2A; 
Supplementary Figure S5A). Enrichr analysis also revealed that 
these interacting partners are involved in mRNA splicing (i.e., 
DDX17, PRDX6, QKI, FXR1, PTBP1, FXR2, SNW1, SON, TRA2B, 
TRA2A, SRSF3, SRSF6, SRSF7, and RBMX) and RNA processing 
(i.e., CPSF4, SF3B2, CHTOP, RBM14, CPSF1, FUS, NCBP2, 
CPSF2, PTBP1, SNW1, SON, PCBP1, TRA2B, TRA2A, DHX15, 
SRSF3, RALY, SRSF6, SRSF7, and RBMX; Figure  2B; 
Supplementary Figure S5B). NS1 is a well-known interactor of 
the spliceosome pathway, given its interactions with CPSF4 and 
NS1-BP (Wolff et  al., 1998; Thompson et  al., 2018; Zhang et  al., 
2018). It has been previously reported that NS1 interacts with 
hnRNP-F to modulate host mRNA processing (Lee et  al., 2010). 
In addition, NS1 is required for unspliced M1 nuclear export 
(Pereira et  al., 2017). NS1 is also a well-known inducer of 
autophagy (Zhirnov and Klenk, 2013; Zhang et  al., 2019). It 
was previously reported that NS1 induced autophagy via its 
interaction with JNK (Zhang et  al., 2019).

NS2 Interactors Are Mainly Involved in 
Focal Adhesion and ECM–Receptor 
Interaction
NEP or non-structural protein 2 (NS2) is a structural protein 
and is associated with M1 (Yasuda et  al., 1993). NEP mediates 
vRNP nuclear export into the cytoplasm via an export signal 
(O’Neill et  al., 1998) through XPO1 interaction (Neumann 
et  al., 2000). NEP has also been found to interact with 
nucleoporins and is suggested to act as an adaptor between 
vRNPs and the nuclear pore complex (O’Neill et  al., 1998). 
It has been proposed that NEP is involved in the transcription 
and replication of the influenza virus (Robb et  al., 2009).

Forty host proteins were found to be  NS2 interactors across 
the different studies. These proteins are involved in focal adhesion 
and ECM–receptor interaction (i.e., LAMC3, ZYX, and LAMB1), 
and ubiquitin-mediated proteolysis (i.e., PIAS3 and SKP1) via 
KEGG analysis (Figure  2A; Supplementary Figure S6A). 
Functional enrichment analysis showed that these proteins are 
involved in microtubule reorganization (i.e., DCTN2, CENPH, 
and ZWINT) and ER-Golgi transport (i.e., COG8 and COG6; 
Figure  2; Supplementary Figure S6B).

Influenza Interacting Partners Are Involved 
in the Spliceosome, Focal Adhesions, and 
Protein Processing in the ER
A global analysis of the protein interactors revealed that most 
of these interactors are involved in the spliceosome, followed 
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by focal adhesion and protein processing in the ER via KEGG 
analysis. Given the large proportion of NS1 interactome studies, 
this may have resulted in spliceosome being the top process. 
However, it was interesting to note that focal adhesion and 
protein processing in the ER was one of the top processes 
revealed for influenza interactors.

A previous study revealed that actin reorganization is required 
for influenza assembly and budding via cofilin-1 phosphorylation 
(Liu et al., 2014). Focal adhesion kinase (FAK) is a non-receptor 
tyrosine kinase (non-PTK) and part of focal adhesions that 
tether actin cytoskeleton to the extracellular matrix. It was 
previously shown that FAK is involved in phosphatidylinositol-
3-kinase (PI3K) activation and reorganization of cytoskeleton 
for endosomal trafficking during IAV entry (Elbahesh et  al., 
2014). In addition, FAK was found to positively regulate IAV 
replication and polymerase activity of different IAV strains 
(Elbahesh et  al., 2016). FAK-dependent regulation of innate 
immune responses was observed during severe IAV infection 
in mice (Bergmann and Elbahesh, 2019). Given that HA, NA, 
and NS2 have interactors involved in focal adhesions or ECM, 
this may be  a potential target for novel influenza therapy.

In addition, a novel finding was the involvement of these 
interactors in protein processing in the ER. Figure  3 describes 
the interaction of the influenza proteins and host proteins 
involved in ER protein processing. It was previously reported 
that influenza modulates vesicle trafficking via disruption of 
the Golgi complex (Yadav et  al., 2016). In addition, brefeldin 
A, an ER to Golgi transport inhibitor, was found to affect the 
intracellular distribution of HA (Russ et  al., 1991; Ciampor 

et  al., 1997) and induce apoptosis in influenza-infected cells 
(Saito et  al., 1996). Monensin, a Golgi complex disruptor, was 
found to reduce viral budding and HA localization to the cell 
membrane (Edwardson, 1984).

Given the role of influenza proteins, NS1, NP, PA, and 
PB1  in spliceosome activity, targeting this pathway may be  a 
potential target for influenza. Cdc2-like kinase 1 (CLK1) is a 
kinase that regulates alternative splicing of pre-mRNA (Bullock 
et  al., 2009). CLK1 inhibition by TG003 or CLK1 knockdown 
was shown to decrease M2 mRNA generation and downstream 
M2 protein expression, thus reducing IAV propagation (Karlas 
et  al., 2010).

A total of 190 host proteins had more than 1 viral protein 
interaction. 4F2 was the most promiscuous host protein with 
6 viral protein interactions. ADT3, ANXA2, PSD11, PSD12, 
PSD13, and TCPE had 5 viral protein interactions each. Given 
that these proteins have interactions with multiple viral proteins, 
this may indicate that these proteins are key for multiple aspects 
of viral replication and life cycle and, hence, should be  further 
studied for novel host-directed therapy.

CONCLUSIONS AND FUTURE WORK

Identifying novel host interactors in influenza is key in 
understanding the viral life cycle as well as for the development 
of novel therapies against the virus. Our review of influenza 
interactors has comprehensively compiled influenza interactome 
studies together with host–virus interaction databases. While 
other studies have done interactome studies on influenza 
proteins, no study has done a comprehensive review on influenza 
interactors. Using interactome studies to derive our data set 
also enables a more direct virus–host interaction compared to 
RNAi studies and would include essential genes which may 
lead to cell death in RNAi studies, thus reducing false negatives 
(Watanabe et  al., 2010). While Watanabe et  al. (2010) and 
Tripathi et  al. (2015) both did meta-analysis of RNAi studies, 
no other study has done a meta-analysis of interactome studies 
for influenza. Our study has revealed novel influenza interactors 
which can be  potentially targeted for novel therapies against 
influenza. It also filters out possible false positives that may 
be derived from a single interactome study. Given that we used 
a benchmark of at least three separate studies to filter out 
true positive, this would reflect the sensitivity of our study to 
detect conserved host interactors of influenza. Moreover, given 
that our study included various strains of influenza A, this 
would increase the likelihood that these pathways are globally 
used by all influenza A strains for their life cycle. Hence, 
these pathways can be  further studied as potential universal 
therapy against influenza.

Based on our bioinformatics analysis of influenza proteins, 
we  observed that protein transport to the ER is one of the 
top biological processes exploited by influenza (Figure  2). This 
supports the previous study by Heaton et  al. (2016), where 
they identified Sec61 knockdown was found to reduce influenza 
replication. This suggests that the protein transport to the ER 
is one of the key processes that influenza exploits for its life 

FIGURE 3 | A network analysis of influenza proteins and host proteins 
involved in ER protein processing. Proteins classified as belonging to the ER 
protein processing pathway were analyzed by STRING database. The viral 
proteins are represented by orange triangles and host interactors are 
represented by green hexagons. Each interaction is represented by edges 
connecting the two nodes with the arrow reflecting a positive association 
between two proteins.
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cycle. In addition, ER transport is a key process in the innate 
immunity. A member of the COPII complex, Sec13, was previously 
identified in a CRIPSR knockout screen to reduce influenza 
replication (Li et  al., 2020). This would support the important 
role of ER processing for influenza. Hence, more studies into 
how it can be  targeted for influenza treatment should 
be  undertaken. Several pro-inflammatory cytokines, such as 
IL6 and IFN-β, are secreted (Murray and Stow, 2014) via the 
ER-Golgi pathway. Influenza’s control over this pathway would 
enable it to replicate without detection from immune cells and 
this would reflect the importance of the protein transport system. 
Moreover, influenza’s ability to overstimulate the immune response 
via cytokine storm has been shown to be  correlated to virus 
virulence (Kido, 2015; Li et  al., 2018; Short et  al., 2018). This 
correlates with other RNAi studies performed in influenza which 
reflect the importance of the ER to Golgi transport pathway 
in viral replication (Tripathi et al., 2015). Given the importance 
of post-translational modification of influenza proteins in viral 
replication and host response, as discussed by Hu et  al. (2020), 
this would be a potential target for influenza treatment, especially 
in the context of severe influenza. This finding can be extrapolated 
to other viruses as discussed in the review (Ravindran et  al., 
2016). Both enveloped and non-enveloped viruses were described 
to hijack the ER for replication. HIV utilizes the ER to synthesize 
its envelope glycoprotein (Checkley et  al., 2011). Antiviral 
therapeutics that impair ER-resident glycan trimming enzymes 
α-glucosidases I  and II have been shown inhibit viral infection 
by DNA and RNA viruses (Chang et  al., 2013). Moreover, an 
inhibitor against HSP70, a cytosolic chaperone that controls 
ER-associated degradation, has been shown to inhibit flavivirus 
infection (Taguwa et  al., 2015).

Future work would be  to validate the targets identified in 
this review via in  vitro and in vivo models. However, this 
review has reflected the key processes that can be  potentially 
targeted for host-directed therapy against influenza. Given the 
key role these processes play in influenza as well as normal 
host cell maintenance, it would be  important to find key 
differences between normal cellular maintenance and viral 

infection. This would enable specific targeting of influenza-
driven pathways without killing the host. Another aspect that 
would need to be  studied is how these processes contribute 
to severe influenza, which is still currently unknown. Therefore, 
a more detailed analysis of IAV–host interactions would provide 
clues for therapeutic targeting and molecular mechanisms of 
viral replication.
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