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Cancer: A turbulence problem 
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Abstract 

Cancers are complex, adaptive ecosystems. They remain the leading cause of disease-related death among children in North America. 
As we approach computational oncology and Deep Learning Healthcare, our mathematical models of cancer dynamics must be 
revised. Recent findings support the perspective that cancer-microenvironment interactions may consist of chaotic gene expressions 
and turbulent protein flows during pattern formation. As such, cancer pattern formation, protein-folding and metastatic invasion are 
discussed herein as processes driven by chemical turbulence within the framework of complex systems theory. To conclude, cancer 
stem cells are presented as strange attractors of the Waddington landscape. 
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Introduction to complex systems 

The Hanahan-Weinberg hallmarks demonstrate cancers are complex
adaptive ecosystems [1–3] . A complex adaptive system is a dynamical system
of many interacting agents which adaptively respond to the perturbations
of their environment. Their nonlinear interactions result in emergent
behaviors such as self-organization, dynamic multilevel structures, multiscale
information flow, pattern formation, and unpredictability. The equations of
motion pertaining to complex systems behaviors often do not have analytical
solutions or remain computationally intractable. In simple terms, complex
systems are whole systems in which the collective whole cannot be defined by
the sum of its interacting parts [2 , 3] . 

One of the fundamental problems in systems science is the causal
inference of gene expression patterns, which is at the root of distinguishing
cancer dynamics from those of healthy cells. Gene expression is often
termed a stochastic process, wherein signaling molecules are best-defined
by stochastic differential equations characteristic of their Brownian motion
[4–6] . For simplicity, let us not worry about the details of the Brownian
motion itself (i.e., whether it exhibits multifractal behaviors, anomalous
diffusion in a crowded space, etc.). Stochasticity of gene expression dynamics
has become a central dogma of systems biology supported by repeated
experimental confirmation. For instance, single-cell fluorescence studies show
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he binding/unbinding kinetics of a single transcription factor (TF) or protein
omplex to a gene promoter is best modeled as a random searching problem
overned by diffusion equations (i.e., random walks) and kinetic rate laws
4] . There lies the problem, solving these differential equations often become
ntractable when the number of chemical species or control parameters
urpasses three, reminiscent of Poincaré’s 3-body problem. This necessitates
he use of exhaustive searching heuristics and data mining approaches
o infer approximate solutions to such equations. The marriage between
rtificial intelligence (AI) and systems science may provide new alternatives
o approaching the problem of gene expression causal inference, in time. 

Cancer cells are open, nonequilibrium thermodynamic systems. Finding 
redictive patterns in their gene expression profiles is alike searching for a
eedle in a haystack, where one gets easily lost without a magnet. While it may
e tempting to assume gene expression dynamics within cancer ecosystems are
tochastic (random) processes, herein it is suggested they may be driven by
hemical processes pertaining to deterministic chaos as opposed to statistical
andomness. In argument, cancer cells are proposed to be strange attractors
f the Waddington landscape, where the cancer cell fate can fluctuate
ack and forth between valleys and hills of the landscape in an “apparent
andom” motion. That is, by definition, they exhibit sensitive dependence
o initial conditions and perturbations and their bounded trajectory in
hase space has a (multi-) fractal-dimension. Unlike a random process, a
trange attractor exhibits chaotic yet specific patterns that can be mapped
n the analysis of its corresponding phase-space or frequency spectrum with
ttractor reconstruction methods such as time-delay coordinate embedding 
lgorithms and Lyapunov exponents. However, these statistical methods have 
imensionality limits and hence, complex systems approaches, such as the use
f machine intelligence and computational algorithms are further required 
or strange attractor reconstruction in larger complex datasets. 

Complex systems theory, or simply complexity science, is an emerging
aradigm in systems science which branched off from dynamical systems 
heory. Complexity science attempts to provide a computational description 
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of nature and its emergent phenomena through the lens of information
[7] . Emergence is a characteristic signature of many nonequilibrium and
nonlinear dynamical systems, the bread and butter of complexity science,
which can be very difficult to characterize in terms of the current language
in science. Emergent behaviors often do not have mathematical models nor
equations to their description, it is alike quantifying the characteristics of
turbulent flows observed in the swirls of Van Gogh’s The Starry Night versus
simply appreciating the raw complexity for its beauty. The latter is a sentiment
shared by most complexity scientists in the study of complex emergent
behaviors. A subset of complex systems pertains to the study of chaotic
systems , i.e., systems exhibiting sensitive dependence to initial conditions
and perturbations [8] . While keeping this vague but powerful definition in
heart, keep in mind this is oddly a very unorthodox view of cancer systems-
to think how changing small pieces of sections of a large-scale system can
have unpredictable cascading or catastrophic effects in the time-course of the
system’s dynamics. Oddly , because most natural systems are indeed chaotic
systems- a meteorologist, an ecologist or any whole systems scientist would
greatly sympathize with this statement. As will be discussed in this brief
communication, cancer pattern formation and cancer network dynamics are
suggested here as chaotic systems. 

Chaotic systems are often intractable. That is, in practical cases, the
differential equations describing them do not have analytical solutions (i.e.,
nonintegrable); a property of most complex systems [8] . There is one
chaotic system revered as the Holy Grail of mathematicians for centuries:
the 3-dimensional, Navier-Stokes equations. Fluid turbulence is universal yet
finding solutions to its equations of motion remains arguably the greatest
unsolved problem in mathematical physics known as the Navier-Stokes
smoothness, existence, and regularity problem. Although there are numerical
methods in CFD (Computational Fluid Dynamics) to approximate solutions
in turbulent flows, finding exact/analytical solutions remains intractable.
Turbulence occurs in all scales from the very large to the very small; within
the astrophysical, geological, ecological, biochemical, and quantum regimes.
It is observed in the heat flow of coffee cups, the motion of galactic clusters,
flickering solar flares, gusts of wind, the swirls of Van Gogh’s The Starry Night ,
predator-prey dynamics, systemic blood flows, the dance of exosomes and
airflow in the respiratory tract [9–11] . 

On the other hand, it remains debated whether only a subset or potentially
any cell state of tumor ecosystems correspond to cancer stem cells (CSC; i.e.,
plastic cell fates with self-renewal and differentiation potency). CSCs account
for the emergence of aggressive new phenotypes and therapy resistance
in relapsed/refractory cancer patients. Mathematical models demonstrate
stem cells are best represented as attractor states with high entropy (i.e.,
many possible molecular network configurations correspond to the cell fate
structure) and hence, higher information flow. A fundamental question arises,
whether such high entropy cell states are best defined as stable attractors
under stochastic fluctuations, or chaotic attractors ? In attempt to reconcile
such problems in cancer systems biology, while the scales at which fluid
turbulence occur is subjected to debate, herein, chemical turbulence will be
discussed as a complex phenomenon responsible for many of the adaptive
emergent behaviors in cancer ecosystems, such as their cancer stemness. 

It would be a laborious attempt to not only interconnect the 2 problems,
of cancer and chemical turbulence, but to further classify them under
the fundamental roadblock of computer science: the P vs. NP problem.
The P vs. NP problem asks, are problems to which solutions are quickly
verifiable, easily solvable? In complexity theory, problems are classified by
a complexity class, the time it takes an algorithm to efficiently solve them
as a function of size. While P denotes the class of computational problems
that are solvable in polynomial-time, NP (Nondeterministic Polynomial-
time) problems are quickly checkable but are either intractable or solved
by brute-force searching. That is, the exact solution of an NP problem
grows exponentially (or factorially) with the size of the number of elements
in the system. Reconstructing the gene-interaction networks of cancer
cosystems and reverse- engineering their attractor landscapes are NP- 
omplete problems [12–14] . Finding the clique or master GRNs (Gene 
egulatory Networks) controlling CSC fate transitions is a complex decision 
roblem [15 , 16] . Attractors of Boolean gene networks then may represent
ey cellular phenotypes wherein even finding fixed-point attractors is an 
P-hard problem [12] . Such complex optimization/decision problems are 

urrently studied using methods from machine intelligence and a branch 
f computational complexity known as Algorithmic Information Dynamics 
AID) [17] . While machine intelligence is useful for abstract pattern 
ecognition from complex datasets, the notions of sense-making and meaning- 
aking in machines remain relatively primitive hindering the investigation of 

haotic dynamics in cancer systems. Perhaps the emerging field of Quantum 

omputing may shed further light on this matter. 
If finding fixed-point attractors in the cancer network state-space is an NP- 

omplete problem, then how complex might it be to find strange attractors? 
his will be precisely the motivation to this short perspective, to stimulate 
 shift in thinking in cancer research towards that of nonlinear dynamics, 
hemical turbulence, emergence, fractals, and chaos. These patterns of 
ehaviors are prevalent in nature and denote the general characteristics of 
omplex systems. In fact, the term strange attractor was first coined by Ruelle
nd Takens in the description of multi-fractal structures that emerged in the 
tudy of fluid turbulence [18] . In mathematical terms, the complex structures
ormed by fluid turbulence and cancer are suggested to share a common 
anguage: strange attractors . 

ostulate 

CSCs are strange attractors on the Waddington energy landscape governed 
y turbulence dynamics at the onset of pattern formation (i.e., stem cell 
ivision/differentiation). 

n overview of gene expression 

Throughout this review-perspective, the role of chaotic gene expression 
nd chemical turbulence at the onset of CSC differentiation/division will be 
xplored. Keep in mind these concepts are not widely-used in the current 
anguage of cancer biology, hence many of the findings surveyed here may 
nly be indirectly related to the cancer problem and are discussed here to
timulate new research avenues in this direction. It remains debated whether 
SCs conform a subset of the tumor hierarchy or whether all cancer cells

re potentially stem cells (i.e., have the potency of phenotypic plasticity). In 
ttempt to resolve such fundamental problems in the description of tumor 
omplexity, precision oncology is transitioning towards the use of AI and 
eep Learning neural networks in guiding clinical decision-making and 

ancer research [19] . CSCs form complex dynamic networks at many levels 
f interaction (i.e., GRNs, protein-protein interaction networks, metabolic 
etworks, etc.) as do many complex systems. Our current statistical methods 

n modeling cancer networks mainly comprise of graph theoretic frameworks, 
nformation theory, and machine learning/data science algorithms [20–22] . 
hese methods of network biology in current practice revolve around the 

entral dogma of systems biology: gene expression stochasticity. 
Classically, due to the unpredictable nature of molecules, the transitions 

etween the attractors (i.e., low energy states of the state space) of a GRN
re defined by random walks on the network [23] . The fluctuations around
he epigenetic barriers of the attractor landscapes are then governed by 
iffusion and kinetic transport equations [24–26] . Current models adopt a 
robabilistic approach to cell state bifurcations on the Waddington landscape. 
he cell fate trajectories of CSCs (attractors) at a critical transition point 

re characterized by a bifurcation parameter μ. The dynamics of the system 

n attractor space in one dimension and in a general setting is given as
 ( t ) = F ( x ( t ), μ) [26] , wherein x is the gene expression state vector and F is
he driving force (assumed to be the Langevin-equation). The observables of a 
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system approaching a bifurcation can often be quantified as an increase in the
amplitude and temporal autocorrelation of the stochastic fluctuations. The
dynamics of the cell state is then mapped as a Fokker-Planck equation (i.e.,
time evolution of a Brownian particle’s probability density function) with
a fluctuation-dissipation term to account for the nonequilibrium statistical
mechanics. 

To illustrate the concept of an attractor in systems biology, consider a
single motif with two TFs 1 and 2, where x 1 and x 2 corresponds to their
expression levels. Let us assume these 2 TFs activate their own expression
and mutually repress each others’ in an all-or-none fate decision-making,
while ignoring other complexities such as multinested feedback loops with
other genes, gene bursting, environmental cues, and information cascades.
The following stochastic differential equations describe the motif ’s gene
expression dynamics: 

d x 1 = 

x 1 2 

K 1 + x 1 2 + k 1 x 2 2 
− b 1 x 1 + σ1 d W 

d x 2 = 

k 2 x 2 2 

K 2 + k 3 x 1 2 + x 2 2 
− b 2 x 2 + σ2 d W 

Here, it is assumed for simplicity each TF cooperatively binds to its own
promoter and to that of the other as a homodimer. The small k parameters
correspond to the normalized rate constants at which the TFs bind to the
promoters, the capitalized K parameters denote the normalized dissociation
rate constants, b parameters denote the decay rate constants and the σdenotes
the amplitude of noise in the system [92] . W denotes the Wiener process.
The state space dynamics of these stochastic differential equations form a
probability density ρt ( x 1 , x 2 ) which is defined as the attractor landscape. If
the noise level σ = 0 , and time t is fixed, even this simple binary-TF system
forms a stochastic multistable switch with many steady-state attractors in
its phase-space (i.e., fixed point attractors and stable equilibria, visualized
as energy minima on the landscape) [92] . However, with noise, unsteady
attractors and aberrant structures emerge. Here lies the problem, (1) imagine
the combinatorial complexity as the attractor space increases to hundreds and
thousands of gene interactions, and (2) we are unable to distinguish stochastic
noise from “chaotic fluctuations”in gene expression networks. Identifying
the minimal set of TFs/motifs corresponding to cancer stemness remains an
intractable problem in computational systems oncology. 

The logical structure of gene networks and the above-defined attractor
states corresponding to their gene expression dynamics are extensively
modeled as Random Boolean Networks. For example, in the Kauffman
NK model time is discrete and each network element computes a Boolean
function based on the values of inputs to that element [27] . The on/off gene
promoters can be represented as binary occupancies of 0 or 1. The length of
attractors depends on the critical connectivity parameter K c denoting phase-
transitions in the network defined as: 

K C = 

1 
2 p c 

(
1 − p c 

)

where p c denotes the critical probability [28] . A Boolean network can exhibit
chaotic behavior when the critical value of the average number of connections
of nodes K = K c is reached. In the unstable regime, the Hamming distance
between 2 initially close attractor states on average grows exponentially
in time denoting chaotic phase-transition. Typically, values of K > 2 can
result in chaotic network dynamics. Attractors, a concept derived from
dynamical systems theory, formed by these networks may characterize the
distinct cell types of the system. Attractors can be of many forms such
as fixed-point attractors (stable equilibria), oscillatory and chaotic (strange
attractors). While chaotic attractors are inherent to the mathematical fabric of
these networks and emerge in computational simulations of gene expression
dynamics, they lack evidence in experimental settings. 

Given a first-order reaction rate k , let P n be the probability that n
proteins exist at time t. Then, the probability distribution of a single protein’s
roduction/degradation kinetics is given by the chemical master equation 
29] : 

∂ P n 
∂t 

= k [ P n −1 − P n ] − d [ n P n − ( n + 1 ) P n +1 ] . 

For the cell fate decision of a simple gene-pair Boolean circuit, the minimal
ystem of ordinary differential equations (ODE) is casted into the vector
orm: d x 

dt = F (x) = [ F 1 ( x 1 , x 2 ) , F 2 ( x 1 , x 2 ) ] , where x 1 , x 2 represent the cellular
xpression or activation levels of the 2 lineage-determining TFs x 1 , x 2 . F 1 and
 2 are the driving forces of the system in a general 1D setting [30 , 31] . The
bove-defined stochastic differential equations are a good model system yet
et us consider a slightly different model to illustrate how a different set of
oupled differential equations can mimic new behaviors in the context of the
ame (simple) GRN motif. Here, d x 1 

dt = 

a 1 x n 1 
S n + x n 1 

+ 

b 1 S n 

S n + x n 2 
− k 1 x 1 = F 1 ( x 1 , x 2 ) ,

nd d x 2 
dt = 

a 2 x n 2 
S n + x n 2 

+ 

b 2 S n 

S n + x n 1 
− k 2 x 2 = F 2 ( x 1 , x 2 ) , where in both expressions

he first term denotes the self-activation (often assumed to be a sigmoidal
ransfer function of strength a i , i = 1, 2, respectively), and the second term
enotes the mutual inhibition given a basal expression of strength b i , i = 1,
, respectively; the last term in each of the two expressions is the first-
rder inactivation (degradation rates k i , i = 1, 2, respectively). The a and
 terms are the association/dissociation kinetic constants characterizing the 
inding/unbinding kinetics. The parameter S denotes the half-maximum of 
he Hill function (i.e., the activation function), while n denotes the Hill
oefficient. Gene bursting and sudden abrupt changes in gene expression are
gnored for simplicity of the model [30 , 31] . 

In general, these analytic methods of gene expression networks using
ifferential equations become intractable once the number of chemical 
pecies in the system reaches more than 3 [29] . Again, it must be stressed
ifferential equations are often without analytical solutions. Hence, rather 
han solving the master equation for the chemical kinetics, brute-force
earching algorithms such as the Gillespie algorithm, Monte Carlo method
r the piecewise deterministic Markov processes are often used to simulate
he dynamics [29–31] . It is often assumed the mRNA transcription and
ts protein product synthesis-degradation dynamics settle to steady-state 
robability distributions (i.e., fixed-point attractors or stable equilibria). 
owever, if GRNs exhibit chaotic gene expression dynamics, they are best

efined as strange attractors - unsteady states exhibiting nonequilibrium 

uctuations and chaotic behaviors. Although computational/mathematical 
odels can exhibit strange attractors, their experimental verification in gene

xpression datasets remains limited primarily due to the lack of time-series
atasets in systems biology, and adherence to the central dogma of systems
iology (i.e., probabilistic interpretation of gene expression). 

ymmetry-breaking 

In this section, we will visualize how chemical turbulence could in
rinciple emerge in cellular pattern formation systems. This section will cover
ome equations pertaining to pattern formation made available to all systems
hinkers. Chemical systems form patterns as the various oscillatory modes
f pertinent chemical species (e.g., protein complexes, receptors, protein 
uids, etc.) combine in or out of phase. Only a subset of these oscillatory
odes is periodic. Aperiodic chemical oscillations are then the root cause

f chemical turbulence . Here, chemical turbulence will be used as a term to
enote the spatiotemporal chaos observed in the reaction-diffusion systems of
roteins during the onset of stem cell pattern formation (i.e., differentiation
nd division). Ruelle described nonperiodic cases of chemical oscillations in
 reaction-diffusion system which may exhibit chaotic dynamics at critical
hase-transitions [32] . Such nonperiodic oscillations may arguably be the
roblem underlying cancer pattern formation (e.g., onset of cell division,
tem cell differentiation, etc.). That is the patterns of protein flows behave
like a fluid bath undergoing turbulent fluctuations at certain critical times
r threshold of protein activities. 
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Turing in 1952 was the first to define morphogenesis using a set of
nonlinear partial-differential equations characterizing the activator-inhibitor
dynamics of morphogen gradients [33] . Tumorigenesis is merely a subset
of morphogenesis (suggested here as that which exhibits chaotic pattern
formation). The general reaction-diffusion equation for tissue patterning is
given by: 

∂c 
∂t 

= F 
(
c, x, y, z, t 

) + D�c, 

where D is the diagonal matrix of diffusion coefficients, ( x, y, z ) are the 3-
dimensional Cartesian coordinates of space, t is time, F determines the local
reactions of chemical species and c is the concentration density. The Turing
pattern formation for 2 chemical species ( u and v ) is given by: 

∂u 
∂t 

= F ( u, v ) − d u + D u �u 

∂v 
∂t 

= G ( u, v ) − d v + D v �v 

The equations state that the rate of change of u and v is the result
of Production - (degradation + diffusion) terms (i.e., F and G describe
the production, d determines degradation, and D denotes the diffusion
coefficients). These general equations are at the heart of pattern formation
and are suggested as modeling tools for any systems scientists further willing
to explore the complexity of cancer patterning. 

Each tumor is analogous to an ecosystem. The fundamentals of
ecology illustrate every ecosystem comprises of two essential role-players:
predators and preys. The Lotka-Volterra equations, simple models to describe
oscillatory behaviors in predator-prey interactions, are also well-known to
produce chaotic behavior reminiscent of fluid turbulence [34 , 35] . The Lotka-
Volterra dynamics are simple first order differential equations describing
population density changes in time according to their growth rates given by: 

d x 
d t 

= ax − βxy 

d y 
d t 

= δxy − γ y 

( x and y are coordinates of two species, t = time and the remainders are
growth/decay parameters). Smale in 1976 showed that when the Lotka-
Volterra model is applied to model the concentrations of N ≥ 5 chemical
species at certain conditions, asymptotic behaviours occur resembling those
seen in experimental fluid dynamics [36] . The Hopf-Turing bifurcations
of such many-body chemical systems can form strange attractors . For
cancer, being a complex, heterogeneous niche of dynamical phenotypes, the
applicability of strange attractors must be self-evident – but science is a
story built on repeated measurements and not intuition alone. Such is the
motivation to this brief communication, to stimulate interest in investigating
cancer pattern formation systems as dynamical systems . 

Current mathematical models assume the chemical oscillations of
morphogens behave as quasi-periodic oscillators. However, genetic oscillators
and protein oscillations can exhibit nonlinearity/aperiodicity as just discussed
and nonequilibrium behaviors when sudden outbursts of gene expression
are encountered (i.e., intermittency). Such aperiodic flows of proteins and
nonlinear oscillations in the gene expression networks regulating such
morphogens/proteins are postulated to exhibit strange attractor dynamics in
cancer ecosystems. In support of this argument, using the finite-elements
method, Halatek and Frey recently showed that the mass-conserved reaction-
diffusion system of an E. coli pattern formation complex––the Min system–
–must undergo an initial phase of turbulent flows characterized by a
Kolmogorov-Richardson-like energy cascade [37–39] . Such dynamics govern
in a highly coordinated process the biosystem’s intracellular protein-mediated
pattern formation, which plays a critical role in many cancer-related processes
uch as cell division and morphogenesis. If simple healthy cellular systems 
an exhibit chemical turbulence, then it is reasonable to assume chemical 
urbulence is observed at the onset of CSC pattern formation. 

Simulations of the Min system showed that at the critical transition 
ime (bifurcation), the propagating wavefront triggers an energy cascade 
f destabilized local equilibria entering a turbulent state whereby all state 
ynamics of the kymogram are spatially uncorrelated [39] . The Min protein 
omplexes are key regulators of cell polarity and asymmetric stem cell division. 
he mammalian orthologue of these proteins is known as PAR complexes. 
he PAR 3/6-aPKC complexes are determinants of stem-cell fate choice. 
hey interplay the self-renewal and cleavage of CSCs through feedback loops 
etween the mitotic spindle network and cytoskeletal-ECM (Extracellular 
atrix) remodeling pathways [40 , 41] . We must further investigate what 

ther pathways pertaining to the CSC niche exhibit turbulent chemical 
scillations at the onset of their pattern formation to potentially find 
eprogramming routes to their “chaotic” behaviors. 

As mentioned, there are very little empirical findings in support of 
haotic gene expression dynamics, since biosystems are very noisy systems. 
istinguishing noise from chaos is currently an intractable problem. The 

ollowing are few simple examples to demonstrate the few reported presence 
f chaotic gene expression dynamics in GRN. A recent modeling confirmed 
haotic gene expression dynamics in the TF NF- κB, a well-described 
ranscriptional regulator in cancer networks, can affect downstream protein 
roduction [42] . The TF NF- κB was modeled as a nonlinear oscillator,
hich when periodically driven by sufficiently large TNF (tumor necrosis 

actor) amplitudes, was shown to exhibit deterministic chaos. That is, small 
nitial changes in a cell (e.g., mutation of a cancer driving gene) can lead
o huge downstream cascading effects (i.e., the butterfly effect). In another 
tudy, the RNA-Seq data of the PI3K-mTOR axis was used as a toy-model to
xhibit chaotic gene expression dynamics in breast cancer cells [43] . Chaotic 
otifs (subgraphs within a complex network) have been detected in few-node 

utonomous GRNs modeled by strongly coupled ODEs [44] . The study 
oncluded that chaos can only appear in gene expression dynamics through 
ompetitions among different oscillatory modes and feedback loops of a 
RN [44] . Although numerical/computational models of GRNs can exhibit 

haotic behavior, the lack of time-series datasets remains a fundamental 
oadblock in experimentally detecting chaotic gene expression dynamics. 

ractals and chaos 

Cancer is a chaotic patterning system with emergent, multi-fractal 
tructures [45] . Fractal image analysis techniques show tumor vasculature is 
rimarily determined by heterogeneity of the ECM (niche) rather than by 
radients of diffusible angiogenic growth factors [46] . In hypoxic conditions, 
umor vasculature responds by growing into an extended fractal network 
hrough a heterogeneous ECM (i.e., invasion percolation) [47 , 48] . The 
ractal dimension and multifractal analysis measures (e.g., Hurst indices, 

ölder exponents, etc.) can detect subtle changes in images and could 
otentially provide clinically useful information relating to tumor type, stage, 
nd response to therapy [49] . Numerical results show anomalous fluctuations 
n the fractal dimension at interfaces of tumor-host networks [49] . The 
ncreased fractal characteristics of chromatin structure have been proposed 
s a diagnostic indicator of tumor self-organization [50] . As mentioned, 
ultifractality is also a characteristic signature of fluid turbulence [51] . 

Electric cell impedance recordings were performed in rat’s prostate 
ancers. The time-series Fourier analysis of cancer micro-motions was 
ssessed by Takens’ theorem (time-delay embedding) to detect patterns 
istinguishable from a random signal. The attractor reconstruction showed 
ositive Lyapunov exponents in phase portraits (i.e., a signature of chaos) 
52] . Posadas et al demonstrated the Verhulst logistic map is a simple chaotic
scillator that encapsulates the period-doubling bifurcations observed in the 
ancer cells [52] . Strange attractor solutions resembling the Lorenz attractor 
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emerged in the reaction-diffusion-invasion model of melanoma with oxygen
nutrient dependence. 

A chaotic tumor growth model was shown by Itik and Banks adapted
from an earlier model proposed by de Pillis and Radunskaya, describing the
competitive interactions among three cell populations: host cells, effector
immune cells, and tumor cells [53] . It only differed from the earlier model
by a nonconstant influx of effector immune cells. Chaotic attractors emerged
in the reaction-diffusion modeling of tumor growth depending on changes in
the control bifurcation parameters, which vary amidst different phenotypes of
a heterogeneous ecosystem (e.g., oxygen concentration, glucose level, tumor
volume, diffusion from surface and growth parameters) [54] . Lyapunov
exponents and fractal dimension were calculated for the tumor patterning.
While the Lorenz attractor has a fractal dimension of ≈2.06 (assessed by
the Box-counting algorithm), the cancer models showed a fractal dimension
of ≈2.03 indicating a chaotic attractor with Shilnikov-like bifurcations
[53 , 54] . Similar studies by Lettelier et al demonstrated the solutions to the
competitive cancer growth model are topologically equivalent to the spiral
Rössler attractor, a strange attractor [55] . 

Tumor growth rates are assumed to fit logistic equations or Gompertz
functions, as deemed appropriate with experimental fitting. With a set
of parameters defining the growth and death rates of each cell type
chaotic attractors emerged along with fixed points (stable equilibria) in
the bifurcation analysis [55] . The tumor-immune competitive networks
described by a coupled set of three ODEs showed period-doubling
bifurcations on the route to chaos with time-delay analysis, wherein
oscillatory, strange attractor solutions emerged as indicators of tumor relapse.
The results were recently reconfirmed for a time-delayed cancer model with
time-delay as the bifurcation parameter. It exhibited periodic oscillations as
well as chaotic behavior (strange attractors), which are indicators of long-
term tumor relapse [56] . These findings collectively indicate cancer cells are
unstable attractors of their network state-space forming chaotic structural
patterns [57] . 

Chemical turbulence in pattern formation 

As discussed, recent data suggests the role of chemical turbulence in
the emergence of ordered structures during cellular pattern formation and
protein folding. While the following discussion will not strictly speak of
pattern formation in cancer cells, the implications are strongly connected.
While conventionally cells are assumed to be highly viscous structures with
laminar protein flows, phase-transition to chemical turbulences can occur
in reaction-diffusion systems. Chemical turbulence at the onset of protein-
mediated cellular pattern formation was recently confirmed experimentally
[58] . Following turbulence transition, coherent patterns emerged through
diffusively coupled local equilibria. The chemical turbulences were shown to
occur in very rapid bursts followed by laminar-like flows (i.e., intermittency).

Cell division is orchestrated by intracellular protein patterning, mainly
from EMT (epithelial-mesenchymal transition) pathways, cytoskeletal
filaments and cell polarity complexes. Abnormal cell division is the primary
signature of cancer. By convention, the dynamics corresponding to low
concentrations of intracellular proteins are modeled as stochastic fluctuations.
Classical theory states these chemical systems are close to equilibrium and
inertial effects are negligible, given a highly crowded, viscous cytoplasm.
However, the recent theory by Halatek and Frey challenged the dogma [39] .
Using the finite elements method (FEM), a computational algorithm used to
approximate complex fluid flows, simulations predicted chemical turbulence
at the onset of the pattern-forming instabilities within cells. Chemical
turbulence was qualitatively used to characterize the spatio-temporal chaos
observed at the onset of pattern formation. Cytosolic diffusion constants
D c were in the order of 60 μm 

2 s −1 , where the MinD-ATP/ADP in bulk were
iven by the Turing reaction-diffusion equations: 

∂ t u D ( z, t ) = D c ∇ 

2 
z u D − F u D , 

∂ t u T ( z, t ) = D c ∇ 

2 
z u T + F u D , 

ith F u D denoting the local-reaction term, and u D and u T defining the cytosolic
ensities of MinD- ATP/ADP conformations; the MinD-ATP was assumed 
o bind to the membrane via nonlinear coupling rate constants. The resultant
ymograms demonstrated turbulent flow patterns at low MinE/MinD ratios .
s mentioned, low levels of gene expressions or protein fluctuations are
ltered out in the single cell datasets in the pre-processing step for cell

ineage tracking algorithms. Herein, low levels of the cell polarity complex
inE/MinD ratios were shown to produce the chemical turbulences. 
he theoretical predictions of Halatek and Frey have been confirmed

xperimentally [39 , 58] . 
The PAR cell polarity complex is the mammalian equivalence of the Min

roteins complex which coordinate cancer cell division. According to these
ndings, chemical turbulence in pattern formation is used as a synonym for
patio-temporal chaos, i.e., a broad distribution in the power spectrum and
 low spatial correlation length reminiscent of the Kolmogorov spectrum.
he term was adapted from the work by Nobel laureate Gerhard Ertl on

eactions of heterogeneous catalysis [59] . According to this work, during
hemical turbulence, both the amplitude and the phase of local concentration
scillations are strongly fluctuating, creating spiral waves as seen in the
ndings of Denk et al concerning Min proteins pattern formation [58] .
urbulent chemical oscillations can give rise to both patchy multifractal
tructures and ordered patterns in cellular reaction-diffusion systems as seen
n the multifractal self-organization of cancer cells [60 , 61] . 

Allow me to briefly mention a few other emerging data suggestive
f the importance of turbulence in cancer stemness. In a recent study,
to et al experimentally demonstrated turbulent flows in the environment
an increase the level of iPSC production in hematopoietic stem cells
62] . Turbulent flow generating turbines and microPIV (particle imaging 
elocimetry) techniques were used to increase the production of platelet-
orming stem cells [62] . Low levels of turbulence generated in turbines
ncreased the levels of platelets produced by the iPSC-derived megakaryocytes
ignificantly. Turbulence stimulated macrophage migration inhibitory factor 
MIF), insulin growth factor binding protein 2 (IGFBP2) and nardilysin,
ccounting for the increased platelet generation [62] . In speculation, such
echanisms may be utilized by CSCs to undergo rapid clonal expansion

nd mass-production during metastatic flow. Such findings suggest CSCs 
f different tissues and molecular groups must be placed in turbulent flows
s within this experiment, to observe what gene expression pathways are
ctivated under systemic turbulence ( Figure 1 ). 

Many of the attributes of cancer are associated to oncoproteins. As
entioned, we are currently adherent to the central dogma of systems biology,

isualizing protein folding as a stochastic process. However, the simulated
rotein folding transitions of the SH3-domain (Src Homology 3) protein
as shown to obey the vortex dynamics and hydrodynamical equations
f Kolmogorov’s statistical theory of turbulence [63 , 64] . The spatial flow
istributions of the probability fluxes were determined to be self-similar
Kolmogorov-Richardson cascades) with a fractal dimension that decreases 
oward the native state, indicating that paradoxically the flow becomes
ore turbulent at more stable protein conformations [63 , 64] . To shed some

ontext to fluid turbulence, the Kolmogorov-Richardson cascade observed in 
hese protein folding simulations describes experimentally observed isotropic 
urbulence of an incompressible fluid, where large-scale flow structures
eddies and vortices) decay into smaller fractal structures. Most focal
dhesion complexes and tyrosine receptor kinases mediating the initiation 
nd progression of cancer metastasis (e.g., EMT transitions) depend on the
tructural conformation of SH3 domains (e.g., Src/FAK/Crk/Cas pathways; 
igure 2 ). Likewise, the folding dynamics of the villin subdomain HP-35
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Figure 1. Waddington landscape. The Waddington landscape shows a stem cell S bifurcating to various cell fates represented by the blue balls. As seen in red, 
the flows of gene expression underlying the differentiated cell states S1 and S2 seem more laminar. However, cell fates are reversible as indicated by the dotted 
line. Multiple bifurcation routes exist towards a local energy minimum X which shows highly turbulent protein flows and chaotic gene expression dynamics 
in its underlying gene regulatory networks. The attractor X is a chaotic cell fate (i.e., cancer stem cell). A cancer stem cell is shown as a strange attractor on the 
developmental landscape, with cell fate reprogramming towards the initial benign stem cell fate indicated by the two-way black arrow. Multiple other strange 
attractors (in different colors) are shown to occupy the attractor space. 
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protein in a FRET (Forster resonance energy transfer) experiment was shown
to obey the β-model of turbulence with many orders (scales) of turbulent
flow transitions for the eddies in the 3D conformational space [65] . 

On a final note with regards to turbulence , Ruelle treated turbulence as a
heat flow problem using the nonequilibrium statistical mechanics of moving
fluid particles in three-dimensional lattice boxes [66] . The macroscopic fluid
transitions were characterized by Boltzmann-Gibbs distributions as would
equally apply to the transitions in the metastable cell states of the Waddington
attractor landscape. The critical Reynolds number was shown to be in the
order of ∼60 to 100 for Taylor-Couette and Rayleigh-Benard convection
systems, which is relatively feasible at biologically relevant scales [66 , 67] .
Recall that the Reynolds number is an ill-defined parameter. For instance,
whether one consider the diameter or radius of a pipe will alter the number
by 2-fold. Thus, turbulence remains a scaling problem even in mathematical
physics. Furthermore, the recent field of research deals with active turbulence
in active matter such as cytoskeletal and bacterial suspensions [68 , 69] . The
Reynolds number at which turbulence is observed is subject to debate, and
within the field of active matter systems it is more ambiguous. Active matter
systems suggest that turbulent energy cascades may help explain collective cell
migration and pattern formation systems [70 , 71] . The cytoskeletal protein
microtubules and actin are being recognized as candidates for these active
turbulence models, wherein the swarming/flocking behaviors of proteins can
phase-transition from Brownian motion to the turbulent regime of Navier-
Stokes equations, at relatively low Reynolds numbers [72] . 

Prospects in stem cell reprogramming 

With the brief survey of chemical turbulence in stem cell pattern
formation, let us shift our thoughts to the posed problem of what is a
CSC? In this section, we will briefly discuss how cancer stemness may
be an emergent behavior in cancer ecosystems, wherein any differentiated
cancer cell may potentially interconvert into a stem cell. Recent findings
suggest current regiment therapies enhance cancer aggressiveness and
stemness. Glioblastoma CSCs preferentially stimulated tumor angiogenesis
n comparison to nonstem glioblastoma cells through VEGF secretion 
73 , 74] . Bevacizumab, a standard-care chemotherapy for GBM patients, 
as shown to enhance the proangiogenic effects of CSCs, wherein hypoxia- 

ssociated pathways reprogrammed non-CSCs towards a stem cell phenotype. 
ypoxia promotes the self-renewal capacity and asymmetric cell division 

f CSCs, as well as promoting a stem-like phenotype in the nonstem 

opulation. Furthermore, hypoxia upregulates stemness factors, such as 
CT4, NANOG, and c-MYC through the hypoxia-inducible factor-2a 

HIF-2a) [74] . 
Depending on the tumor microenvironment (stem cell niche), a cancer 

ell exhibits phenotypic plasticity/switching, i.e., it can transdifferentiate into 
nother cell type, and terminally differentiated cancer cells can dedifferentiate 
nd acquire stem cell properties [75] . It has been speculated that solid tumor
ells exposed to chemotherapeutic agents can dedifferentiate to a plastic 
tem cell fate, and further transdifferentiate into other cancer cell types. 
he speculations were recently confirmed by Xiong et al, where cancer cells 

xposed to chemotherapy were shown to reprogram into plastic stem cell 
tates leading to tumor relapse/recurrence as result of the increased cancer 
temness [75] . Temozolomide, an oral chemotherapy drug, is often the first- 
ine treatment for Glioblastoma. The findings showed that temozolomide 
ot only increased the glioma stem cell population, but also reprogrammed 
D133-negative glioma cell lines or patient-derived glioma cells into 
D133-positive glioma stem cells, both in vitro and in vivo, in part by the

ctivation of HIF and iPSC networks (Yamanaka factors) [75] . 
GBM stemness and recurrence was also seen in exposure of differentiated 

lioma cells to ionizing radiation therapy, causing the cells to acquire stem 

ell properties. Collectively, the findings suggest that despite the tremendous 
uccess rates in most pediatric cancer therapies with current regiments 
ignoring the life-long side effects and quality of living), current treatments 
nduce the cellular reprogramming of differentiated cancer cells to plastic stem 

ell fates, thereby causing resistance, disease progression and cancer recurrence 
73 , 75] . The epigenetic landscape of GBMs (Glioblastoma Multiforme) 
hows tremendous spatiotemporal heterogeneity. Regardless, a core set of 
eurodevelopmental TFs (POU3F2, SOX2, SALL2, OLIG2) were identified 
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Figure 2. Cancer Stem Cell Niche. A simplified representation of the cancer stem cells’ local microenvironment. Morphogens pertaining to the EMT program 

such as the Wnt/ βcatenin pathway, Notch, VEGF, HIF-1, ECM (extracellular matrix)-remodeling pathways, etc. are shown to induce phenotypic plasticity 
and regulate the iPSC (induced pluripotency stem cell) network of Yamanaka factors (OCT4, SOX2, c-MYC, KLF4). They form multi-nested feedback loops 
with the ECM-stroma focal adhesion pathways and differentiation-cancer growth pathways such as the Src/mTOR pathway (note: these processes are not to 
be reduced to particular functions but seen as an undivided whole comprising of dynamic feedback loops/cybernetic systems). 
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Figure 3. GBM landscape. As discussed, the essential drivers of GBM stemness are shown on a Waddington landscape, based on the findings of reference [76] . 
The multicolored landscape demonstrates tumor heterogeneity. The attractor X represents a cancer stem cell expressing the SOX2 gene, while the attractor state 
Y represents a cell fate expressing the SOX2-OCT7 regulatory network. The cell fate Z represents the GBM stem cell expressing all of the identified essential 
drivers of cancer stemness (including OLIG2 and SALL2), and hence, at the highest peak of the mountain (i.e., highest stem cell potential). Note that the 
OCT7 gene is shown to exhibit a Rössler attractor-like dynamics, whereas the cell fate Z expressing all four factors displays a Lorenz-like strange attractor with 
chaotic gene expression dynamics as speculated by the flow cytometry/ FACS (fluorescence-activated cell sorting) data in reference [76] . The tumor suppressor 
p53 is shown as a cell cycle regulator in circuit with the stemness network. Cell cycle oscillations are the gateways to conferring cancer attractors. Epigenetic 
regulators are ignored for simplicity. These speculations are not experimentally supported due to the absence of dynamics (time-dependent information) in 
the datasets. Chaotic gene expression is predicted as a measure of cancer stemness. 
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to be essential drivers for GBM propagation and stemness [76] . These
experiments must be repeated to further pave reprogramming CSCs to
benignity ( Figure 3 ). 

Although only in speculation, it is proposed here that cancer stemness
may be attributed to chaotic gene expression at the level of the stemness
clique identified by Suva et al [76] . Furthermore, it is proposed here that these
chaotic gene expressions are accompanied by chemical turbulence at the onset
of CSC differentiation by certain proteins and morphogens. Identifying these
complex networks remains an NP-hard problem. In proposition, algorithms
which can detect strange attractor behaviors at the level of GRN dynamics,
using time-series single cell datasets must be investigated to overcome this
challenge in systems science and computational oncology . Therefore, I will
bring this communication to an end with some suggested algorithms to
explore the emergence of strange attractor dynamics in cancer gene expression
and protein-mediated pattern formation. 

Algorithms for strange attractors detection 

As mentioned, there are no efficient algorithms for the detection of
strange attractors in cancer datasets, whether it be the time lapse imaging
of intracellular protein patterning or the attractor Waddington landscape
reconstructed from time-series gene expression datasets. Athough various
network science approaches currently exist, each pipeline consists of a
istinct ensemble of machine learning algorithms specific to a target dataset 
herein finding the optimal path and hyperparameter tuning are NP- 

omplete optimization problems. The detection of strange attractors even 
n fluid turbulence is restricted to experimental mapping techniques such 
s power/frequency spectra analysis and phase portraits (Lyapunov spectra). 
owever, the attractor reconstruction methods such as Takens’ time-delay 

oordinate embedding used to achieve these results are not well-suited 
or large complex datasets. Distinguishing noise from chaos remains a 
undamental roadblock in cancer biology. The following are a few algorithmic 
rospects to overcome this challenge. 

Takens mentioned entropy measures and multifractality as general 
echniques for strange attractor detection in turbulent systems [77] . Entropy 
nd other information-theoretic measures remain amidst the most widely 
sed algorithms used in the network visualization of gene expression datasets. 
ven simple machine learning algorithms such as decision trees and ensemble 
ree learners can help distinguish noise from chaos in biological signals [78] . 

AI is emerging as the most powerful statistical tool available in deciphering 
ancer networks. As such, 2 additional algorithms are proposed herein 
s heuristics (approximation tools) to map strange attractors in complex, 
haotic datasets: ensemble Deep Learning Networks (DLN) and complexity 
easures from AID. Deep Learning architectures are the current state-of- 

he-art approaches in pattern recognition from complex datasets. Hopfield 
etworks and Deep learning architectures can predict irregular patterns 
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observed in complex fluid flows as well [79 , 80] . Strange attractors have
been mapped in recurrent neural networks and gene networks [81] . Ling
et al first-demonstrated the applicability of Deep Learning Networks
(DLN) to predict the turbulent flows of the Reynolds-averaged Navier-
Stokes equations [82,83] . A Galilean-invariance embedded, DLN network
architecture (Tensor Basis Neural Network) underwent training on various
turbulent flow datasets followed by the Bayesian optimization for the neural
network’s hyper-parameters (i.e., the number of hidden layers, the number
of nodes per hidden layer, and the gradient descent algorithm’s learning
rate). Therefore, Deep Learning architectures trained for mapping complex
fluid flows can be optimized for detecting strange attractors within cancer
networks. 

Recurrent neural networks are subtypes of artificial neural networks that
can accurately map the phase-space portraits of chaotic systems [84] . While
time-delay coordinate embedding is effective for the attractor reconstruction
of low-dimensional systems, Reservoir Computing (RC) is a machine-
learning algorithm that trains recurrent neural networks to find the Lyapunov
exponents of high-dimensional datasets. For example, RC has demonstrated
applicability in the chaotic attractor reconstruction of complex fluid flows
[85] . The RC well predicted the short-term time-series forecasting of the
Kuramoto-Sivashinsky equation to several multiples of Lyapunov time. The
KS equation is a chaotic system whose pattern formation closely resembles
that of fluid turbulence [86 , 87] . Hence, this is another class of machine
learning algorithm that can be utilized on time-series cancer datasets to test
the presence of strange attractors. 

Lastly, AID is an emerging frontier of complex systems science most
pertinent to our discussion. AID treats cancer as a computer program
with unresolved algorithmic complexity and studies dynamical systems with
perturbation analysis in software space [17 , 88] . While currently employed
machine learning algorithms in biological network reconstruction and
pseudo-time ordering methods for gene expression datasets are based on
statistical learning approaches, they do not inform us about cause and
effect [88 , 89] . Current approaches perform pattern recognition on general
statistical features of the datasets and are heavily dependent on dimensionality
reduction techniques. As such, these fail to treat the cells and their interaction
networks as dynamical systems . Therefore, AID is a vastly unexplored AI
platform available for inferring causality in gene expression dynamics, CSC
differentiation mapping and potentially map strange attractors in gene
expression networks. According to AID, cancer is defined as a computer
program in an infinite loop with no halting condition [17] . Cells are viewed
as computing machines, nucleic acids as the operating system (software) and
gene expressions as computer programs. Studies in AID have shown the high-
dimensional phase space of the dynamical immune system to display healthy
cells and unhealthy states as fixed and strange attractors, respectively [17] .
Hence, AID is proposed as a promising tool to explore the emergence of
strange attractors in cancer networks [89] . 

Conclusion 

To conclude, tumor pattern formation is intrinsically a nonequilibrium,
(nonlinear) dynamical system [90] . Reaction-diffusion systems can exhibit
spatio-temporal chaos in the flows of their protein fluids at the onset of
pattern formation, which is hereby defined as chemical turbulence [91] . Time-
series single cell RNA-Seq in combination with machine intelligence and
AID are suggested as tools for network reconstruction in CSCs, wherein
strange attractor dynamics are suggested as the “missing tool” to map CSC
fate choices and decision-making. Criticality in GRNs must be experimentally
tested by perturbing gene expression networks and monitoring single-cell
dynamics. Insights into chemical (fluid) turbulence within cells with the aid
of algorithmic complexity measures and ensemble Deep Learning networks
may pave the visualization of strange attractors in cancer datasets. The
applications of quantum computing in solving these NP-hard problems can
nly be verified in time. In postulate, mapping strange attractors and chaotic
ene expression dynamics at the level of gene-regulatory networks in CSCs
ith machine intelligence/algorithms may help identify the essential network 

tructures that drive cancer stemness, and hence plausibly the phenotypic
eprogramming of CSCs to benignity. 
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