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Abstract: Acridino-diaza-20-crown-6 ether derivatives as new turn-on type fluorescent chemosensors
with an excellent functionality and photophysical properties have been designed and synthesized
for metal ion-selective optochemical sensing applications. Spectroscopic studies revealed that in an
acetonitrile-based semi-aqueous medium, the sensor molecules exhibited a remarkable fluorescence
enhancement with high sensitivity only toward Zn2+, Al3+ and Bi3+, among 23 different metal
ions. Studies on complexation showed a great coordinating ability of logK > 4.7 with a 1:1 complex
stoichiometry in each case. The detection limits were found to be from 59 nM to micromoles. The
new ionophores enabled an optical response without being affected either by the pH in the range of
5.5–7.5, or the presence of various anions or competing metal ions. Varying the N-substituents of the
new host-backbone provides diverse opportunities in both immobilization and practical applications
without influencing the molecular recognition abilities.
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1. Introduction

Acridine and its derivatives have been extensively studied. Researchers typically pay
attention to the favorable fluorescent properties of these heterocyclic dyes. Unsurprisingly,
acridines have for many years also become widespread in the field of supramolecular chem-
istry. They usually play an important role as optochemically active units of sensor molecules
by providing the signaling function in the sensing process. In addition to the receptor
unit responsible for molecular recognition, the most advanced direct-type optochemical
sensor molecules also contain a signaling unit—such as an acridine fluorophore—and
are able to fulfill these two basic functions of chemical sensors together [1]. They can be
exemplified by a large number of recently developed optochemical ionophores containing
a 4,5-dimethyleneacridine unit [2–18], which is shown in Figure 1.
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Figure 1. The widespread 4,5-dimethyleneacridine fluorophore unit of optochemical ionophores.

Regarding the soft nucleophilic character of the heteroaromatic nitrogen, the appli-
cation of these sensor molecules is mostly based on their selectivity for typically soft
cations [2–8] such as Hg2+, Cd2+, Zn2+, Fe3+, Ni2+, but their representatives also include
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anion-selective ionophores [2,6,9–15] and host molecules selective toward various bioactive
organic compounds [9,10,15–18].

As the new reported sensor molecules showed Zn2+-, Al3+- and Bi3+-selectivity, a brief
summary of the optochemical sensor molecules with similar selectivity from the last five
years is needed to put the present work into context.

Zn2+ plays critical roles in biology and most often acts as a cofactor in enzymes. How-
ever, its excessive intake is connected to serious disorders [19]. The detection limit (LOD)
of all the recently published sensors [20–26] is satisfactory for the maximum permitted
level of Zn2+ in drinking water (5 mg/L ~7.6 × 10−5 M [27]). The greatest challenge is to
discriminate Zn2+ from Cd2+ due to their very similar chemical properties. Unfortunately,
many Zn2+-sensitive sensor molecules do not meet this requirement [24,26]. Although
the selectivity toward Zn2+ has been thoroughly investigated in all publications involving
11–19 potential competing cations [20–26], studies on the anion-coordinating ability or
protonation of the ionophores as possible limiting factors of detection, did not always
receive such considerable attention [20–25]. In general, the reported optochemical Zn2+-
sensors [20–26] had a logarithm of their association constant (logK) of about 4.5–7.5 in
the generally applied buffered (pH = 7.0–7.4) semi-aqueous medium (DMSO/water or
MeCN/water or MeOH/water or EtOH/water).

The recently published Al3+-selective optochemical sensors [28–40] were similarly
compared. Due to the similar atomic radius and valence to Mg2+, Ca2+ and Fe3+, Al3+

can act as a competitive inhibitor of these ions in biological processes [34] and can also
induce neurodegenerative disorders [41]. It appears that the majority of Al3+-sensors
show similar characteristics in operation—i.e., in the applied semi-aqueous medium,
similar association constants (logK = 3.5–7.5) and low limits of detection (6.0 × 10−6 M–
2.7 × 10−8 M), below the tolerance limit in drinking water (~7.4 × 10−6 M [42,43]) —as
those reported for Zn2+-selective ones [20–26]. Unfortunately, the selectivity of the reported
sensor molecules is often limited due to the interference of other cations, which were
typically Ni2+ [28,31], Cu2+ [30–32,40], Hg2+ [30,32], Fe2+ [31], Mg2+ [36], and especially
trivalent ions like Cr3+ [30,36,40]. In the case of Al3+-sensors, the study of pH-dependence
is of high importance as Al3+ acts as a Lewis acid in water, thus adding it into a sample
solution definitely results in a change of pH, which affects the photophysical behavior of
the chemosensors. Nonetheless, in most cases, the study of pH-dependence does not play
a major role and only an optimal pH value for operation is selected.

Unlike the previously mentioned metal ions, specific optical sensors for detecting Bi3+

are much rarer. As the use of bismuth in medicine has become more widespread [44–46],
the chances of organisms to be exposed to bismuth have been increased. There are a
number of instrumental techniques [47–51] available for its analysis; however, there are
not many options for its simple chemosensor-based detection. For a few years, rhodamine,
Schiff base and naphthalimide derivative-based chemiluminescent sensor molecules have
been primarily used [35,52–54]. We note here, that to the best of our knowledge, no
bismuth-selective macrocyclic host molecule has yet been reported.

In summary, strong-coordinating and regenerable hosts would be advantageous for
the effective optochemical sensing of metal ions. These properties can be characterized by
stability constants where, based on the relevant literature, the optimal logK values need
to be between 3.5 and 7.5. In terms of photophysical properties and optical signaling,
turn-on type ionophores with low quantum yields of free ligands are the most efficient
ones, since the baseline signal of real samples is usually zero and detecting an increase
in emission intensity leads to the best signal-to-noise ratio, which results in the highest
sensitivity. In addition to the degree of signal change, the Stokes shift is also important.
Sensor molecules, which have small Stokes shifts, restrict the sensing and imaging of their
analytes in real samples. Using the sensors in physiological conditions requires a stable
operation at around pH 7.0. A higher pH than 7.5 is not worth applying, as precipitation
occurs in the cases of Zn2+, Al3+ and Bi3+, and also the biologically relevant range is up to
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a pH of about 7.5. In contrast, low pH can also significantly limit the applications, thus
proper pH-range-tolerating sensors are in the highest demand.

Herein we report the synthesis, photophysical characterization and complexation
properties of acridino-diaza-20-crown-6 ethers as a new class of fluorescent chemosensors
for metal ion detection. Based on the present work, the new sensor molecules hold
great promise for the future development of ion-selective optochemical sensing methods
and devices.

2. Results and Discussion
2.1. Synthesis

For the initial step of the synthesis, the bromomethylation of acridine (1) at positions
4 and 5 was carried out based on a reported method [55] using bromomethyl methyl ether
(BMME) as a reagent. Since, in our experience, the commercially available reagent did not
have the proper quality, the alkylating agent was freshly prepared according to a previously
reported procedure [56] as outlined in Scheme 1.
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Scheme 1. Preparation of the key intermediate 4,5-bis(bromomethyl)acridine.

Bis(bromomethyl)acridine 5 is an important starting material for the subsequent
synthetic steps, thus its preparation has been optimized. The yields of the reactions were
examined as a function of three conditions. Experimental data can be found in Table 1.

Table 1. Summary of the effects of conditions on the yield of the bromomethylation of acridine.

Experiment No. BMME
(molar eq.) 1

Temperature
(◦C)

Reaction Time
(h)

Yield
(%)

1 4 50 18 48 [55]
2 4 50 24 49
3 4 65 24 51
4 4 65 48 55 (chrom)

2
/79 (cryst)

3

5 6 65 48 37
6 4 75 48 40

1 Related to the amount of acridine. 2 Performing the reaction in optimized conditions and then purifying the
crude product by column chromatography. 3 Performing the reaction in optimized conditions and then purifying
the crude product by recrystallization.

It can be seen that raising the temperature and increasing the reaction time resulted
in moderately increased yields. The optimization resulted in a 7% higher yield than that
which was reported in the literature (described in [55]), after a chromatographic purification.
Further studies were carried out to improve the yield by modifying the work-up procedure.
When the reported chromatographic purification step [55] was omitted and the crude
product was first triturated with propan-2-ol and then recrystallized twice from methanol,
the yield increased to 79%. In this case, the recommended chromatographic purification
was not necessary. The use of a larger excess of reagent and a temperature above 70 ◦C
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resulted in more by-products. In cases when the times of the reactions were longer than
48 h, no higher conversions were observed.

Bis(bromomethyl)acridine 5 was reacted with three different primary amines to pre-
pare the new secondary amines required for the macrocyclization reactions as outlined in
Scheme 2.
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Scheme 2. Preparation of new secondary amines (7, 11 and 14) and their macrocyclization with tetraethylene glycol diiodide (8).

Diiodo-compound 8 was prepared from its dichloro-analogue according to a reported
procedure [57]. It is noteworthy to mention, that diiodo-compound 8 undergoes rapid
decomposition in light or above 70 ◦C; therefore, it is recommended that it should be stored
below −30 ◦C and in the dark until use. The first reaction gave the expected secondary
amine 7, but the macrocyclization failed, probably due to the steric repulsion of the bulky
tert-butyl groups. The macrocyclization with diiodide 8 and diamine 11 gave the expected
macrocycle (12), but with a poor yield. The reaction of diamine 14 with dibromo-compound
5, and the subsequent macrocyclization, gave a N-protected azacrown ether derivative 15.

The structure of the obtained macrocycles is advantageous from several aspects. The
heteroaromatic unit provides sufficient rigidity to the host to render the required selectivity,
while the flexible methylene groups attached to positions 4 and 5 of the heterocycle allow a
rapid conformational change, thus allowing the easy uptake of the active ion-trap confor-
mation. Since the fluorophore unit is a part of the coordination sphere, the complexation
of a guest ion induces photophysical changes directly. While the macrocycle containing
benzyl groups (12) have a highly lipophilic character (logP = 6.5, logDpH=7.0 = 3.8 predicted
by ChemAxon), its analogue 15 with allyl groups is suitable for direct polymerization.
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The former property facilitates the physical immobilization, the latter one enables the
covalent immobilization of the sensor molecule, paving the way for a wide range of
future applications.

Activating the amino function of N-benzyl-protected macrocycle 12 was carried out by
catalytic hydrogenation followed by oxidation of the unstable intermediate 16 as outlined
in Scheme 3. Moreover, macrocycle 17 containing secondary amine groups can also be used
as a partially water-soluble sensor molecule (logDpH=7.0 = −1.3 predicted by ChemAxon),
a property which can be exploited in bioimaging.
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In addition to the deprotection, the reduction of the acridine unit to acridane 16 is
inevitable in these conditions. Acridane 16 was oxidized by elemental oxygen to acridine
17 in an acetic acid-ethanol mixture.

In the case of diallylamino-macrocycle 15, deprotection was carried out catalytically
in mild conditions based on reported analogies [58]. This is particularly important because
hard conditions and acids can induce polymerization of the allyl groups. The catalyst
was tetrakis(triphenylphosphine)palladium(0), which promoted the intermolecular trans-
allylation reaction between the tertiary amine and 1,3-dimethylbarbituric acid via redox-
processes as shown in Scheme 4.
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Macrocycle 17 is a stable compound due to the benzylamine nature of its amino
groups. Furthermore, it has a widely modifiable synthetic receptor backbone due to its
secondary amine functionalities. This new macrocyclic derivative will hopefully serve as a
precursor for a number of acridino-20-crown-6 ether-type fluorescent chemosensors.

2.2. Spectral Properties

Determination of quantum yields was carried out according to the method based on
the comparison with a reference [59]. Acridine (1) was selected as a reference compound
(Φ = 3.50 × 10−4 in acetonitrile [60]) and an excitation wavelength of 249 nm was chosen.
The UV/Vis absorption and fluorescence emission spectra of the new crown compounds
are shown in Figure 2.
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Figure 2. UV/Vis absorption (left) and fluorescence emission (right) spectra (λexcitation = 249 nm) of the new macrocycles
(cmacrocycles = 0.1 µM, filter = open, slit width = 10 nm) in acetonitrile.

The quantum yields of sensor molecules 12, 15, and 17 were calculated to be 2.60 × 10−4,
2.21 × 10−3, and 2.06 × 10−3, respectively, indicating a relatively poor fluorescence in the
form of free host molecules. The absorption peak wavelengths were 253–254 nm, while
the emission peak wavelengths were 424–437 nm, which resulted in extremely high Stokes
shifts of 171–184 nm. This is an advantageous spectral property as it helps to eliminate
autofluorescence, thus facilitates the sensitive analysis of real samples.

2.3. Studies on Metal Ion Complexation

Studies on metal ion-selectivity were carried out by adding 23 different metal salts
(with carbonate counterions: Rb2+, Li+, Cs+; sulfate counterions: Mn2+, Fe2+; a hydroxide
counterion: Ba2+; chloride counterions: Sr2+, Al3+, Hg2+, Bi3+; an iodide counterion:
Cd2+; acetate counterions: K+, Ni2+, Co2+, Na+, Cu2+, Ag+, Ca2+, Zn2+, Mg2+, and nitrate
counterions: Cr3+, Pd2+, Pb2+) in 50 mM aqueous solutions in 10 molar equivalent amounts
(regarding the host molecule) separately to the solution of the macrocycle in acetonitrile.
Among the 23 metal salts, only Zn2+, Al3+ and Bi3+ caused a detectable change in the
fluorescence signal as shown in Figure 3.
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In the cases of the other metal salts, no spectral change was observed, indicating that
no complexation took place with these cations. To the best of our knowledge, macrocycle
15 is the first one to show selectivity toward Bi3+. Furthermore, complexed cations rarely
occur as contaminants of each other in practical analysis. Although these macrocycles tend
to complex three different ions, they can be considered selective in practice, as interference
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with competing contaminants is not expected in real samples. In the cases of macrocycles
12 and 17, it was found that the different N-substituents did not affect their complexing
properties (the spectra can be found in Supplementary Materials). This is not surprising
as the substituents are not parts of the coordination sphere of the macrocycle. This prop-
erty allows the new host analogues to be diversely N-substituted without altering their
coordination ability, resulting in an excellent functionality of this macrocyclic backbone.

In order to determine the stability constants (K) of the ligand-metal ion complexes
(detailed calculation method can be found in Section 4.2) the acetonitrile solution of the
host molecule was titrated with aqueous solutions of the preferred three metal salts. The
observed titration series in the case of macrocycle 15 with Zn2+, Al3+ and Bi3+ are shown in
Figure 4.
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solutions of (A): Zn2+ (cmacrocycle = 10 µM, slit width = 5 nm), (B): Al3+ (cmacrocycle = 10 µM, slit width = 10 nm) and (C):
Bi3+ (cmacrocycle = 1 µM, slit width = 7 nm) in acetonitrile (λexcitation = 249 nm, filter = 290 nm cut-off).

To determine the complex stability constants, a nonlinear regression curve was globally
fitted on titration data based on the least squares method, which is shown in Figure 5 in
the case of titration with Zn2+.

Based on the calculations, 1:1 complex stoichiometry is preferred with every metal
ion. Since studies showed no significant dependence of the molecular recognition ability
on the different N-substituents of the macrocycles, experimental results for macrocycle
15 were only reported here (further spectroscopic examinations on compounds 12 and 17
can be found in the Supplementary Materials). The calculated logK and LOD values are
summarized in Table 2.
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Figure 5. Nonlinear function globally fitted to the titration spectrum of Zn2+ over the entire wave-
length range of measurements for calculating logK (Fobs refers to the observed fluorescence signal
upon addition of the corresponding amount of Zn2+, while F0 is the initial fluorescence of free
host 15).

Table 2. The lower limits of detection (LOD) and the logarithms of the calculated stability constants (logK) of the new
macrocycles with the preferred metal ions.

Preferred Ion Macrocycle Peak Wavelength of the Complex 1 [nm] LOD [M] logK

Zn2+
12 444 7.0 × 10−8 5.5 ± 0.1
15 434 1.7 × 10−7 5.6 ± 0.2
17 446 2.3 × 10−6 5.1 ± 0.3

Al3+
12 437 2.2 × 10−7 5.5 ± 0.3
15 412 5.9 × 10−8 5.6 ± 0.2
17 419 1.9 × 10−6 4.9 ± 0.1

Bi3+
12 439 2.2 × 10−7 4.9 ± 0.3
15 483 4.6 × 10−6 5.0 ± 0.1
17 438 2.0 × 10−7 4.8 ± 0.1

1 LODs were calculated using the slope of the calibration curve recorded at the peak wavelength of the corresponding complexes according
to the standard method detailed in Section 4.2.

The results also showed that there were no significant differences among the recogni-
tion abilities of macrocycles (12, 15 and 17) toward the investigated metal ions. The stability
constants were above 4.7 in all cases, which indicate the formation of stable complexes
among crown derivatives. However, these stability constants are not too high to inhibit
the reversible operation of the sensor molecules, thus they are suitable candidates for
optochemical sensing.

Reversibility and regenerability are important features for the practical application of
the chemosensors. Therefore, studies on complexation were carried out several times after
removing the solvents and extracting the dichloromethane solutions of the host molecules
with distilled water. After regeneration, an identical enhancement of the emission intensity
could be observed upon addition of 10 molar equivalents of metal salts (except in the case
of macrocycle 17 due to its partial water-solubility), indicating that the new macrocycles
show a reversible complexation. The regeneration could be carried out effectively by using
only distilled water for extraction. No additional chelating agents, like EDTA were required
for decomplexation, which makes the new sensor molecules easy to regenerate.

2.4. Acid–Base Properties

In order to determine the limits of application, it is very important to study the
proton association ability of the new macrocycles and the effects of protonation on spectral
properties. It is known that acridine is a weak base [61] with a pKa (conjugate acid at



Molecules 2021, 26, 4043 9 of 20

20 ◦C) of 5.58 in water. Consequently, different ionization states are present upon acidifying
the aqueous medium, which strongly influence molecular recognition. The pKa values of
the protonated aliphatic amine units of the macrocycle are 9.0 ± 0.5 in water (predicted
by ChemAxon), which suggest that these nitrogens are mostly protonated in a neutral
aqueous medium. The pKa of the N-protonated heteroaromatic unit of macrocycle 15 was
also determined in acetonitrile due to its poor solubility in water. Nitric acid dissolved in
acetonitrile was gradually added to the solution of macrocycle 15. The series of fluorescence
emission spectra are shown in Figure 6.
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Figure 6. Series of emission spectra for fluorescence titration of macrocycle 15 (cmacrocycle = 1 µM,
λexcitation = 249 nm, filter = 350 nm cut-off, slit width = 5 nm) with nitric acid dissolved in acetonitrile.

A molar proportional increase in fluorescence intensity was observed during the
titration. A large bathochromic shift of the emission maximum indicated the appearance
of a new molecular form. The pKa was calculated according to the mathematical method
detailed in Section 4.2. The applied globally fitted nonlinear regression curve is shown in
Figure 7.

Molecules 2021, 26, x 9 of 21 
 

 

EDTA were required for decomplexation, which makes the new sensor molecules easy to 
regenerate. 

2.4. Acid–Base Properties 
In order to determine the limits of application, it is very important to study the proton 

association ability of the new macrocycles and the effects of protonation on spectral 
properties. It is known that acridine is a weak base [61] with a pKa (conjugate acid at 20 
°C) of 5.58 in water. Consequently, different ionization states are present upon acidifying 
the aqueous medium, which strongly influence molecular recognition. The pKa values of 
the protonated aliphatic amine units of the macrocycle are 9.0 ± 0.5 in water (predicted by 
ChemAxon), which suggest that these nitrogens are mostly protonated in a neutral 
aqueous medium. The pKa of the N-protonated heteroaromatic unit of macrocycle 15 was 
also determined in acetonitrile due to its poor solubility in water. Nitric acid dissolved in 
acetonitrile was gradually added to the solution of macrocycle 15. The series of 
fluorescence emission spectra are shown in Figure 6. 

 
Figure 6. Series of emission spectra for fluorescence titration of macrocycle 15 (cmacrocycle = 1 μM, 
λexcitation = 249 nm, filter = 350 nm cut-off, slit width = 5 nm) with nitric acid dissolved in acetonitrile. 

A molar proportional increase in fluorescence intensity was observed during the 
titration. A large bathochromic shift of the emission maximum indicated the appearance 
of a new molecular form. The pKa was calculated according to the mathematical method 
detailed in Section 4.2. The applied globally fitted nonlinear regression curve is shown in 
Figure 7. 

 
Figure 7. The applied global nonlinear regression curve to determine the pKa of the N-protonated 
heteroaromatic unit of macrocycle 15. 

The calculated pKa of the N-protonated acridine unit of macrocycle 15 in acetonitrile 
was 9.6 ± 0.1. Compared to the aqueous medium, the pKa showed an expected increase. 

Figure 7. The applied global nonlinear regression curve to determine the pKa of the N-protonated
heteroaromatic unit of macrocycle 15.

The calculated pKa of the N-protonated acridine unit of macrocycle 15 in acetonitrile
was 9.6 ± 0.1. Compared to the aqueous medium, the pKa showed an expected increase.

Regarding structural analogy of the new macrocycles, further studies on protonation
and complexation were carried out only in the case of macrocycle 15. Since the basicity of
the complex of crown compounds differs from that of the free host, the pKa of the proto-
nated complex was also determined by acidic titration after adding 10 molar equivalents of
Zn2+ to the macrocycle in acetonitrile (Figure 8).
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fluorescence emission spectra for acid titration of the 15-Zn2+ complex, (B) Globally fitted nonlinear regression curve for
determination of pKa.

The pKa of the conjugate acid of the complex was 8.7 ± 0.1, which is a decrease of
about one unit compared to the proton dissociation constant of the N-protonated acridine
unit of the uncomplexed ligand, thus protonation equilibrium is suppressed by complex
formation. In the complex form, no proton-induced change in emission took place in
the pH range of 5.5–7.5 in acetonitrile-water mixtures, allowing the selective metal ion
detection in a wide range of the biologically most relevant pH values.

It was found that the presence of protonated aliphatic amine units of the crown com-
pound did not affect the stable coordination of cations; however, the double-positively
charged parts carry potential for complexing anions. In order to study the interference of
different counterions used in metal ion-selectivity studies, solutions of tetrabutylammo-
nium salts of the corresponding anions (tetrabutylammonium cations cannot be complexed)
were added to macrocycle 15 in acetonitrile.

2.5. Coordination Ability toward Anions

Various tetrabutylammonium salts (H2PO4
−, NO3

−, HSO4
−, CH3COO−, F−, Cl−,

Br−, I− in 50 mM solutions) in distilled water were added to macrocycle 15 in 10 molar
equivalent amounts with regard to the host molecule. No significant spectral change was
observed in any of the cases (Figure 9). Thus, the double-positively charged macrocycle in
a neutral water-acetonitrile medium did not coordinate the studied anions.
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The reported macrocycles are weak organic bases, thus they are able to accept protons
in acidic medium. Not only the double-positively charged macrocycles, but also the triple-
positively charged ones can have molecular recognition abilities different from those of the
corresponding neutral forms, thus studies on anion-complexation were also carried out
after acidifying macrocycle 15.

A solution of nitric acid in acetonitrile was added to macrocycle 15 in an amount
corresponding to the end point of its acid titration (800 eq. H+). Then, 50 mM solutions of
tetrabutylammonium salts with a 10-fold excess in distilled water, were similarly added to
a solution of the macrocycle 15 protonated at all nitrogens (Figure 10).
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Figure 10. Study on the anion coordinating ability of macrocycle 15 protonated at all nitrogen atoms
(cmacrocycle = 1 µM, λexcitation = 249 nm, filter = 350 nm cut-off, slit width = 15 nm) in acetonitrile-
water medium.

No spectral change was observed in this case either, thus the new macrocycle does
not form complexes with anions even in the fully-protonated state.

3. Conclusions

The parent fluorescent macrocycle (17) with easily functionalizable secondary amine
units and its two analogues (12 and 15) were reported, covering the synthetic chemical
background of these new hosts. The benzylated derivative (12) is preferred for physical
immobilization, while the allyl analogue (15) is suitable for covalent attachment. Moreover,
the improved water solubility of the parent macrocycle (17) can make selective imag-
ing in living organisms possible. The new sensor molecules showed favorable spectral
features—i.e., large Stokes shifts of 171–184 nm and a weak fluorescence background signal
of Φ < 3 × 10−3 in absence of the preferred ions—for optical detection. Complexation stud-
ies were carried out with 23 metal ions. The sensor molecules showed turn-on fluorescence
responses in the presence of Zn2+, Al3+ and Bi3+, which generally do not occur as contami-
nants of each other. The limits of detection were from 59 nM to micromoles for each crown
derivatives. Studies on complexation showed a 1:1 complex stoichiometry and large stabil-
ity constants of logK > 4.7 for each preferred metal ion in an acetonitrile-water medium.
Reversibility and regenerability were proved by the simple and effective decomplexation
and metal ion removal by extraction with distilled water. Studies showed a weak influence
of the N-substituents on complexation, basicity and signaling. The new chemosensors did
not tend to coordinate various types of anions even in their protonated forms. The pKa of
fluoroionophore 15 protonated on its acridine nitrogen atom was 9.6 in acetonitrile, which
decreased about one unit upon metal ion complexation and allowed pH-independent
chemosensing in the range of 5.5–7.5 in an acetonitrile-water medium. The reported new
macrocycles have promising signaling properties and enable both diverse immobilization
techniques and several post-synthetic modifications for future development, especially for
optical sensor applications.
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4. Experimental Methods
4.1. Chemicals, Apparatus and Measurements

Starting materials and reagents were purchased from Sigma-Aldrich Corporation
(USA, owned by Merck, Darmstadt, Germany) and used without further purification
unless otherwise noted. Solvents were dried and purified according to well established
methods [62]. Silica Gel 60 F254 (Merck, Germany) and aluminum oxide 60 F254 neutral
type E (Merck, Germany) plates were used for thin-layer chromatography (TLC). All
reactions were monitored by TLC and visualized by UV-lamp. Aluminum oxide (neutral,
activated, Brockman I) and Silica Gel 60 (70–230 mesh, Merck) were used for column
chromatography. Purifications by preparative thin-layer chromatography (PTLC) were
carried out using Silica gel 60 F254 (Merck, Germany) plates of 2 mm layer thickness
(art No.: 1.05744) or aluminum oxide 60 F254 neutral type E (Merck, Germany) plates of
0.25 mm layer thickness (art No.: 1.05727). Ratios of solvents for the eluents are given
in volumes (mL/mL). Evaporations were carried out under reduced pressure unless
otherwise stated.

The new compounds were characterized by their physical constants such as melting
point, thin-layer chromatography retention factor (Rf), infrared, 1H-NMR and 13C-NMR
spectroscopies and HRMS spectrometry. Melting points were taken on a Boetius micro-
melting point apparatus and are uncorrected. Infrared spectra were recorded on a Bruker
Alpha-T FT-IR spectrometer (Bruker Corporation, Billerica, MA, USA) using KBr pastilles.
NMR spectra were recorded on a Bruker 300 Avance spectrometer (Bruker Corporation,
USA; at 300 MHz for 1H and at 75.5 MHz for 13C spectra). HRMS analyses were carried out
on a Thermo Velos Pro Orbitrap Elite (Thermo Fisher Scientific, Dreieich, Germany) system.
The ionization method was ESI and was operated in positive ion mode. The protonated
molecular ion peaks were fragmented by CID at a normalized collision energy of 35–45%.
The samples were dissolved in methanol. Data acquisition and analysis were accomplished
with Xcalibur software version 2.2 (Thermo Fisher Scientific, Germany).

UV/Vis spectra were recorded on a UNICAM UV4-100 spectrophotometer controlled
by VIZION 3.4 software (ATI UNICAM, Hatley Saint George, UK). Fluorescence emission
spectra were recorded on a Perkin-Elmer LS 50B luminescent spectrometer (PerkinElmer
Inc., Waltham, MA, USA) and were corrected by FL Winlab 3.0 spectrometer software
(PerkinElmer Inc., USA). Quartz cuvettes with a path length of 1 cm were used in all
cases. Spectroscopic measurements were carried out at room temperature (25 ± 1 ◦C).
During spectrophotometric titrations, the solutions were added with a Hamilton syringe
to the acetonitrile solutions of the ligands. As macrocycles (except 17) showed poor
water solubility, their acetonitrile solutions were used for spectrophotometric studies in
all cases. The reported spectra were corrected in each case with the background signal of
the added solutions and concentration values were also corrected corresponding to the
caused dilution.

4.2. Evaluation of the Results

OriginPro 8.6 (OriginLab Corp., Northampton, MA, USA) software was used for
evaluation and visualization of the spectroscopic results.

Relative quantum yields were determined in acetonitrile according to a literature
method [59] based on a comparison with acridine as a standard [60]. The excitation and
emission spectra were recorded in the same conditions and instrument settings as in the
case of the standard. The following equation was used for calculations:

Φi
Φr

=
n2

i
n2

r
·
∫ ∞

0 Ii(λex, λem)dλem∫ ∞
0 Ir(λex, λem)dλem

·1− 10−Ar(λex)

1− 10−Ai(λex)
(1)

where subscript i refers to the sample of the initial investigated compound, while subscript
r refers to the reference. The Φ is the quantum yield, n is the respective refractive index
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of the solvents, I is the fluorescence intensity, λex is the excitation wavelength, λem is the
emission wavelength and A is the absorbance.

The stability constants of the complexes were determined by global non-linear regres-
sion analysis. For determination of the complex stability constant based on the observed
fluorescence enhancement upon complexation, the following equation was used [63]:

F = I0Φεb[X] = kX[X] (2)

where F is the measured fluorescence intensity, I0 is the intensity of the emission, Φ is
the fluorescence quantum yield, ε is the molar absorption coefficient, b is the optical path
length, [X] is the molar concentration of the X species and kX is a constant referring to the
optical properties of the X species.

In the case of complexes with 1:1 stoichiometry, the association constant can be
calculated by the following equation:

F
F0

=

kH
k0

H
+

(
kHG
k0

H

)
K[G]

1 + K[G]
(3)

where the ratios of k parameters and K were left as floating parameters during the fitting
method. Parameters F and F0 are wavelength-dependent variables and [G] was set as
a variable, too. F0 refers to the initial fluorescence intensity of the free host molecule,
kH is a constant referring to the optical properties of the free host molecule, k0

H is a
constant referring to the optical properties of the free host in the presence of preferred
guest molecules, constant kHG describes the photophysical features of the complex, K is
the association constant and [G] is the concentration of the initial guest molecules.

Global non-linear fitting was carried out similarly in the case of complexes with 1:2
(host:guest) stoichiometry based on the following equation:

∆Fobs =
k∆HG[H]0K1[G]+k∆HG2 [H]0K1K2[G]2

1 + K1[G] + K1K2[G]2
(4)

where ∆Fobs is the change in fluorescence during titration steps, k∆HG = kHG − kH, [H]0 is
the initial concentration of the host, K1 is the association constant of the first step of the
complex formation equilibrium, while K2 is the association constant of the second step of
the complexation.

The described method for the complexes with a 2:1 (host:guest) stoichiometry was
carried out based on the following mathematical formula:

∆Fobs =
k∆HG[G]0K1[H] + k∆HG2

[G]0K1K2[H]2

1 + K1[H] + K1K2[H]2
(5)

where [G]0 is the initial concentration of the guest molecule and [H] is the concentration
of the free hosts. Standard errors were calculated analytically from the regression and
indicated as uncertainties of the logK determination.

The investigations of the complex stoichiometries were also carried out by applying
the described global non-linear fitting methods. These results were compared in terms
of the quality of fit indicators. The choice of the model was made by a statistical F-probe,
which aimed to test the sum of squares from each model fitting. In the cases of formulas for
1:1 stoichiometry, the observed F-values supported the null hypothesis that the fitted model
described an appropriate relationship for characterizing the population of experimental
data at a confidence level of 95%. In contrast, in the cases of models for other stoichiometries,
the test implies that the applied models did not fit the experimental data. (Job plot was not
used for stoichiometry estimations as reported mathematical algorithms can solve these
nonlinear polynomials by exactly expressing the photophysical changes during titration
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experiments. Studies on every crown analogue confirm the determined 1:1 stoichiometry
of complexes since the one macrocycle ring is the only coordination sphere of the hosts.)

Titration experiments were carried out with careful consideration of the relevant
recommendations [64].

Limits of detection were also calculated based on the data of fluorescence titrations.
To determine the signal-to-noise ratio, the fluorescence intensity of the sensor molecule
was measured nine times and the standard deviation of these blank measurements was
determined. Three separate measurements were carried out in the presence of the metal
ions and a linear regression on the average of the measured intensities was fitted as a
function of concentration of the initial metal ions to determine the slope. The limit of
detection was calculated using the following equation [65]:

LOD =
3d
s

(6)

where d is the standard deviation of the optical signal of the free host and s is the slope of
the emission intensities as a function of the concentration of the guest.

Determination of pKa in a nonaqueous medium was carried out based on the following
equation [66]:

F =
Fmax

[
H+
]n

+ FminKacid

Kacid +
[
H+
]n (7)

where F is the measured fluorescence intensity, Fmax is the fluorescence intensity at the
starting point of acid titration, [H+] refers to the proton concentration, n shows the number
of associated protons/molecules, Fmin is the fluorescence intensity at the end point of acid
titration, Kacid is the acid dissociation constant of the investigated compound. During the
fitting method, the n and the Kacid were defined as floating parameters in the equation.
The value of n proved to be close to 1, thus it was set as a constant. Based on the known
values of variable [H+] and wavelength-dependent variables F, Fmax, Fmin, parameter Kacid
can be determined.

In the absence of water, the spectral change is in a direct relationship with the protona-
tion of the sensor molecule in acetonitrile, thus Equation (7) contains the concentration of
H+ as a variable instead of the pH. During the calculation it was considered that the proton
dissociation of nitric acid is strongly reduced in acetonitrile compared to the estimated total
dissociation of protons in water. The pKa for nitric acid in acetonitrile is 10.6 [67]. The [H+]
values in Equation (7) were corrected with the degree of dissociation (α) corresponding to
the concentration of nitric acid using the Ostwald’s dilution law:

KS =
c·α2

1− α
(8)

where c is the corresponding molar concentration of nitric acid and Ks is the dissociation
constant of the acid derived from its pKa determined in acetonitrile.

4.3. Synthesis of the New Compounds
4.3.1. Optimized Synthesis of 4,5-Bis(bromomethyl)acridine (5)

A mixture of acridine (1) (1.00 g, 5.58 mmol) and concentrated H2SO4 (98%, 12.5 mL)
was stirred under argon at room temperature and BMME (4) (3.04 g, 22.32 mmol) was
added to it in one portion. The temperature of the mixture was raised to 65 ◦C, when
intense formation of reddish-brown gas was observed. The mixture was maintained at
this temperature for 48 h, then it was poured onto 300 g of crushed ice and stirred slowly
for 1 h. The precipitate was filtered off and dissolved in chloroform. The organic phase
was dried over MgSO4, filtered and the solvent was removed. The resulting yellow solid
was purified by chromatography on silica gel, using a hexane/chloroform (2:1) mixture as
eluent to give 5 (1.12 g, 55%) as a bright yellow powder.
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When the crude product was first triturated with propan-2-ol and then recrystallized
twice from methanol, the purification by chromatography was unnecessary and the yield
increased to 79% (1.60 g).

Rf = 0.47 (SiO2 TLC, hexane/chloroform 2:1). All other physical and spectroscopic
data of 5 concurred with those reported in the literature [55].

4.3.2. Preparation of N,N′-(Acridine-4,5-diylbis(methylene))bis(2-methylpropan-2-amine) (7)

Freshly distilled tert-butyl amine (29 mL, 274 mmol) was added dropwise to 4,5-
bis(bromomethyl)acridine 5 (500 mg, 1.37 mmol) under an argon atmosphere at −75 ◦C
using an acetone-dry ice cooling bath. The reaction mixture was stirred at this temper-
ature for 1 h, then the temperature was gradually increased by 30 ◦C per hour while
the reaction was continuously monitored by TLC. After reaching room temperature, the
reaction mixture was stirred for an additional 1 h to reach complete conversion. The
excess of amine was removed by distillation and the crude product was purified without
any work-up procedure by column chromatography on neutral aluminum oxide using a
methanol/dichloromethane (1:20) mixture as an eluent. The product was further purified
by PTLC on aluminum oxide using dichloromethane as an eluent to give 7 (244 mg, 51%)
as yellow crystals.

Rf = 0.28 (Al2O3 TLC, methanol/dichloromethane 1:20). M.p. = 123 ◦C. 1H-NMR
(CD3OD): δ [ppm]: 1.49 (s, 18H); 4.84 (s, 4H); 7.67 (t, J = 8.2 Hz, 2H); 8.04 (d, J = 6.8 Hz, 2 H);
8.18 (d, J = 8.7 Hz, 2 H); 9.10 (s, 1 H).13C-NMR (CD3OD): δ [ppm]: 26.3; 41.7; 54.5; 125.5;
126.9; 129.0; 131.3; 133.6; 137.8; 146.4. IR: νmax [cm−1]: 3237, 2964, 2765, 2629, 1620, 1583,
1536, 1443, 1402, 1377, 1211, 1077, 981, 895, 753. HRMS: m/z = [MH+]: 350.2520 (Calcd for
C23H31N3, 349.2518).

4.3.3. Preparation of 1,1′-(Acridine-4,5-diyl)bis(N-benzylmethanamine) (11)

Freshly distilled benzyl amine (30 mL, 274 mmol) was added dropwise to 4,5-bis-
(bromomethyl)acridine 5 (500 mg, 1.37 mmol) under an argon atmosphere at −75 ◦C
using an acetone-dry ice cooling bath. The reaction mixture was stirred at this temper-
ature for 1 h, then the temperature was gradually increased by 30 ◦C per hour while
the reaction was continuously monitored by TLC. After reaching room temperature, the
reaction mixture was stirred for an additional 1 h to reach complete conversion. The
excess of amine was removed by distillation and the crude product was purified without
any work-up procedure by column chromatography on neutral aluminum oxide using a
methanol/dichloromethane (1:20) mixture as an eluent. The product was further purified
by PTLC on aluminum oxide using dichloromethane as an eluent to give 11 (520 mg, 91%)
as a brown viscous oil.

Rf = 0.68 (Al2O3 TLC, methanol/dichloromethane 1:10). 1H-NMR (CDCl3): δ [ppm]:
3.89 (s, 4H); 4.54 (s, 4H); 7.26 (t, J = 7.2 Hz, 2H); 7.33 (t, J = 7.5 Hz, 4H); 7.40 (d, J = 7.1 Hz, 4H);
7.52 (t, J = 8.2 Hz, 2H); 7.76 (d, J = 6.8 Hz, 2H); 7.95 (d, J = 8.7 Hz, 2H); 8.80 (s, 1H).13C-NMR
(CDCl3): δ [ppm]: 51.0; 53.4; 125.6; 126.6; 126.9; 127.5; 128.3; 128.4; 129.6; 136.7; 140.3; 146.9;
154.0. IR: νmax [cm−1]: 3304, 3059, 3025, 2919, 2850, 1617, 1533, 1494, 1452, 1361, 1115, 1028,
899, 754, 697. HRMS: m/z = [MH+]: 418.2212 (Calcd for C29H27N3, 417.2205).

4.3.4. Preparation of N,N′-(Acridine-4,5-diylbis(methylene))bis(prop-2-en-1-amine) (14)

Freshly distilled allylamine (21 mL, 274 mmol) was added dropwise to 4,5-bis-
(bromomethyl)acridine 5 (500 mg, 1.37 mmol) under an argon atmosphere at −75 ◦C
using an acetone-dry ice cooling bath. The reaction mixture was stirred at this temper-
ature for 1 h, then the temperature was gradually increased by 30 ◦C per hour while
the reaction was continuously monitored by TLC. After reaching room temperature, the
reaction mixture was stirred for an additional 1 h to reach complete conversion. The
excess of amine was removed by distillation and the crude product was purified without
any work-up procedure by column chromatography on neutral aluminum oxide using a
methanol/dichloromethane (1:50) mixture as an eluent. The product was further purified
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by PTLC on aluminum oxide using the same eluent to give 14 (343 mg, 79%) as a dark
yellow viscous oil.

Rf = 0.52 (Al2O3 TLC, methanol/dichloromethane 1:20). 1H-NMR (CDCl3): δ [ppm]:
3.40 (d, J = 6.1 Hz, 4H); 4.53 (s, 4H); 5.16 (d, J = 10.4 Hz, 2H); 5.25 (d, J = 17.4 Hz, 2H);
5.99–6.07 (m, 2H); 7.51 (t, J = 8.2 Hz, 2H); 7.75 (d, J = 6.8 Hz, 2H); 7.95 (d, J = 8.7 Hz, 2H);
8.79 (s, 1H).13C-NMR (CDCl3): δ [ppm]: 50.8; 51.7; 116.6; 125.6; 126.7; 127.7; 130.0; 136.4;
136.8; 146.9; 153.0. IR: νmax [cm−1]: 3300, 3072, 2963, 2901, 2816, 1670, 1641, 1534, 1449,
1260, 1093, 1017, 916, 798, 757, 707. HRMS: m/z = [MH+]: 318.1890 (Calcd for C21H23N3,
317.1892).

4.3.5. Preparation of 7,19-Dibenzyl-10,13,16-trioxa-7,19,27-triazatetracyclo
[23.3.1.05,28.021,26]nonacosa-1,3,5(28),21,23,25(29),26-heptaene (12)

A mixture of acridine derivative 11 (500 mg, 1.20 mmol), tetraethylene glycol diio-
dide 8 (596 mg, 1.44 mmol), finely powdered anhydrous potassium carbonate (1.66 g,
12.00 mmol) and dry and pure DMF (100 mL) was stirred vigorously under an argon atmo-
sphere at room temperature for 15 min, then the temperature of the mixture was raised to
50 ◦C and kept at this temperature for 1 week. The solvent was removed and the residue
was taken up in a mixture of dichloromethane (200 mL) and water (200 mL). The phases
were shaken well and separated. The aqueous phase was extracted with dichloromethane
(5 × 100 mL). The combined organic phase was shaken with saturated aqueous sodium
chloride solution (1 × 100 mL). The organic phase was dried over MgSO4, filtered and the
solvent was evaporated. The crude product was purified by column chromatography on
neutral aluminum oxide, using dichloromethane as an eluent. The product was further
purified by PTLC on aluminum oxide with methanol/dichloromethane (1:100) as an eluent
to gain 12 (77 mg, 11%) as a brown viscous oil.

Rf = 0.23 (Al2O3 TLC, dichloromethane). 1H-NMR (CDCl3): δ [ppm]: 2.99 (t, J = 6.0 Hz,
4H); 3.67–3.70 (m, 4H); 3.71–3.79 (m, 8H); 3.90 (s, 4H); 4.75 (s, 4H); 7.35 (t, J = 7.4 Hz, 6H);
7.50–7.56 (m, 8H); 7.88 (d, J = 8.7 Hz, 2H); 8.72 (s, 1H). 13C-NMR (CDCl3): δ [ppm]: 53.3;
53.3; 59.3; 70.0; 70.7; 70.7; 125.7; 126.4; 126.7; 126.9; 128.4; 128.9; 136.1; 138.4; 140.5; 147.1;
162.6. IR: νmax [cm−1]: 3060, 3026, 2864, 1676, 1452, 1385, 1297, 1242, 1113, 1028, 910, 760,
735, 698, 659. HRMS: m/z = [MH+]: 576.3151 (Calcd for C37H41N3O3, 575.3148).

4.3.6. Preparation of 7,19-Bis(prop-2-en-1-yl)-10,13,16-trioxa-7,19,27-triazatetracyclo-
[2 3.3.1.05,28.021,26]nonacosa-1,3,5(28),21,23,25(29),26-heptaene (15)

A mixture of acridine derivative 14 (500 mg, 1.58 mmol), tetraethylene glycol diio-
dide 8 (787 mg, 1.90 mmol), finely powdered anhydrous potassium carbonate (2.18 g,
15.80 mmol) and dry and pure DMF (100 mL) was stirred vigorously under an argon
atmosphere at room temperature for 15 min, then the temperature of the mixture was
raised to 50 ◦C and kept at this temperature for 1 week. The solvent was removed and
the residue was taken up in dichloromethane (200 mL) and water (200 mL). The phases
were shaken well and separated. The aqueous phase was extracted with dichloromethane
(5 × 100 mL). The combined organic phase was shaken with saturated aqueous sodium
chloride solution (1 × 100 mL). The organic phase was dried over MgSO4, filtered and
the solvent was evaporated. The crude product was purified by column chromatography
on neutral aluminum oxide, using methanol/dichloromethane (1:100) as an eluent. The
product was further purified by PTLC on aluminum oxide with dioxane/propan-2-ol (5:1)
as an eluent to gain 15 (105 mg, 14%) as light brown crystals.

Rf = 0.89 (Al2O3 TLC, methanol/dichloromethane 1:10). M.p. = 74 ◦C. 1H-NMR
(CDCl3): δ [ppm]: 2.93–2.99 (m, 4H); 3.35–3.40 (m, 12H); 3.60 (d, J = 6.6 Hz, 4H); 4.67 (s, 4H);
5.22 (d, J = 9.3 Hz, 2H); 5.30 (d, J = 7.5 Hz, 2H); 5.99–6.04 (m, 2H); 7.49 (t, J = 8.2 Hz, 2H);
7.88 (d, J = 8.7 Hz, 2H); 7.94 (d, J = 6.8 Hz, 2H); 8.72 (s, 1H). 13C-NMR (CDCl3): δ [ppm]:
53.0; 53.7; 57.6; 68.5; 70.2; 70.4; 115.7; 125.4; 126.4; 127.8; 132.3; 136.8; 136.9; 146.8; 153.0. IR:
νmax [cm−1]: 3073, 2920, 2858, 1671, 1617, 1532, 1449, 1352, 1292, 1249, 1116, 994, 918, 760.
HRMS: m/z = [MH+]: 476.2900 (Calcd for C29H37N3O3, 475.2835).
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4.3.7. Preparation of 10,13,16-Trioxa-7,19,27-triazatetracyclo[2 3.3.1.05,28.021,26]nonacosa-
1,3,5(28),21,23,25(29),26-heptaene (17) by the debenzylation of (12)

A solution of 12 (300 mg, 0.52 mmol) in ethanol (50 mL) was hydrogenated in the
presence of Pd/C catalyst (90 mg, palladium/charcoal; activated, 10% Pd) at 70 ◦C. After
3 h the reaction was completed. The catalyst was filtered off and washed with ethanol
(2 × 10 mL). The filtrate and washings were evaporated to give crude 16 as a brown
amorphous product, which was used for the next step without purification.

Crude macrocycle 16 was dissolved in a mixture of ethanol (10 mL) and acetic acid
(30 mL) and stirred under O2 at 70 ◦C for 2 h. The solvents were evaporated and the
residue was triturated with water (50 mL), then the precipitate was filtered and taken up
in water (50 mL) and dichloromethane (50 mL). The aqueous phase was extracted with
dichloromethane (3 × 50 mL). The combined organic phase was dried over MgSO4, filtered
and the solvent was removed. The crude product was purified by PTLC on aluminum
oxide with dichloromethane/methanol (20:1) as an eluent, then recrystallized from ethanol
to give macrocycle 17 (82 mg, 40%) as a brown solid.

Rf = 0.15 (Al2O3 TLC, methanol/dichloromethane 1:20). M.p. = 90 ◦C. 1H-NMR
(CDCl3): δ [ppm]: 3.02–3.10 (m, 4H); 3.56–3.61 (m, 8H); 3.75–3.82 (m, 4H); 4.71 (s, 4H); 7.54
(t, J = 8.2 Hz, 2H); 7.80 (d, J = 6.8 Hz, 2H); 8.05 (d, J = 8.7 Hz, 2H); 8.84 (s, 1H). 13C-NMR
(CDCl3): δ [ppm]: 49.8; 54.7; 69.4; 69.8; 72.1; 126.3; 126.5; 126.5; 129.9; 135.2; 150.8; 156.0. IR:
νmax [cm−1]: 3400, 2957, 2917, 2850, 1686, 1536, 1452, 1376, 1262, 1095, 909, 801, 786. HRMS:
m/z = [MH+]: 396.2212 (Calcd for C23H29N3O3, 395.2209).

4.3.8. Preparation of 10,13,16-Trioxa-7,19,27-triazatetracyclo[2 3.3.1.05,28.021,26]nonacosa-
1,3,5(28),21,23,25(29),26-heptaene (17) starting from (15)

A solution of macrocycle 15 (300 mg, 0.63 mmol) in dry degassed dichloromethane
(20 mL) was added with a syringe through a rubber septum cap to the stirred solu-
tion of the tetrakis(triphenylphosphine)palladium(0) catalyst (22 mg, 0.02 mmol) and
1,3-dimethylbarbituric acid (590 mg, 3.78 mmol) in dichloromethane (30 mL) under an
argon atmosphere. The resulting solution was stirred at reflux temperature for 2 days.
After cooling, the solvent was removed and replaced by ether. The ethereal solution was
extracted twice with small volumes of saturated aqueous sodium carbonate to remove the
unreacted barbituric acid and its mono-C-allyl derivative. The organic phase was dried
over MgSO4, filtered and the solvent was removed. The crude product was purified by
column chromatography on neutral aluminum oxide using methanol/dichloromethane
(1:20) as an eluent to give macrocycle 17 (130 mg, 52%) as a brown solid.

Macrocycle 17 prepared this way was identical in every aspect to that reported in
Section 4.3.7.
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