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Abstract: Spectral imaging is a promising technique for detecting the quality of rice seeds. However,
the high cost of the system has limited it to more practical applications. The study was aimed to
develop a low-cost narrow band multispectral imaging system for detecting rice false smut (RFS) in
rice seeds. Two different cultivars of rice seeds were artificially inoculated with RFS. Results have
demonstrated that spectral features at 460, 520, 660, 740, 850, and 940 nm were well linked to the RFS.
It achieved an overall accuracy of 98.7% with a false negative rate of 3.2% for Zheliang, and 91.4%
with 6.7% for Xiushui, respectively, using the least squares-support vector machine. Moreover,
the robustness of the model was validated through transferring the model of Zheliang to Xiushui with
the overall accuracy of 90.3% and false negative rate of 7.8%. These results demonstrate the feasibility
of the developed system for RFS identification with a low detecting cost.

Keywords: rice seed; rice false smut (RFS); multispectral imaging; least squares-support vector
machine (LS-SVM); narrow band

1. Introduction

Rice false smut (RFS), also called as pseudo-smut, is caused by a pathogenic ascomycete fungus
named Ustilaginoidea virens (U. virens) Takah (teleomorph Villosiclava virens), which can attack the
stamen filaments of rice at the booting stage [1,2]. Apart from rice, maize, Digitaria marginata,
Imperata cylindrica, and Panicum trypheron are also alternative hosts of U. virens [3]. It can produce
both asexual (chlamydospores) and sexual (ascospores) stages during its life cycle [4]. It has spread to
many rice-growing countries and become one of the most severe grain diseases, resulting in significant
yield loss and contamination of grains and straws with ustiloxins [5,6]. Consequently, there is a
need for rice false smut diagnosis methods that are accurate, rapid, and inexpensive. Currently,
the initial screening is performed according to experienced experts, but it is a subjective assessment.
The molecular identification based on polymerase chain reaction (PCR) is the most commonly used
method for U. virens detection with high sensitivity and accuracy [7]. However, it is time-consuming,
labor-intensive and expensive with highly professional skills required.
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Developing a rapid and non-destructive technique for the quality evaluation of agricultural plant
seeds has attracted a great interest in different research backgrounds such as variety identification
in maize seeds [8,9]; germination determination in tomato (Solanum lycopersicum L.) seeds [10];
and storage age discrimination in paddy seeds [11]. The reported study illuminated that short wave
infrared hyperspectral imaging combined with chemometrics presented the potential for the rapid
assessment of corn seed viability with up to 100% classification accuracy using the support vector
machine (SVM) model [12]. The investigation on viability and vigor in muskmelon seeds was also
carried out using near infrared hyperspectral imaging with the overall accuracy of 94.6% based on partial
least-squares discriminant analysis [13]. Spectral bands related to green mottle mosaic virus infection
in watermelon seeds were also investigated [14]. It was observed that the reflectance at 1411, 1456, 1792,
and 1867 nm could be considered to detect virus-infected watermelon seeds with the overall detection
accuracy of 83.3%. The research was also carried out to detect ochratoxin A (OTA) contaminated
stored wheat in a stored period using line-scan near-infrared hyperspectral imaging with more than
98% classification accuracy using the reflectance at 1280, 1300, 1350, and 1480 nm [15]. Wu et al. 2020
proposed an effective method to detect rice false smut based on near-infrared hyperspectral imaging
(NIR-HIS) combined with multivariate quantitative analysis models. It was found that the extreme
learning machine could achieve good detecting performances with the overall accuracies of 99.20% and
89.38% for the laboratory-inoculated and field-infected samples, respectively [16]. Despite reasonable
classification results by applying hyperspectral imaging for analyzing and detecting the quality and
safety of crop seeds, it is still challenging to apply these laboratory-based techniques to the more
practical applications due to the high cost of the system. Therefore, a low-cost imaging system that
can obtain spectral signatures at some key wavelengths and feasible discriminant model are deeply
needed to monitor agricultural plant seed quality.

To our knowledge, few studies have been carried out to detect rice false smut (RFS) in rice seed
using a low-cost imaging system. Therefore, the main objective of this research was to develop a
low-cost narrow band multispectral imaging system and establish a feasible classification model for
detecting rice false smut (RFS). To achieve this goal, the specific objectives were to (1) develop a
low-cost multispectral imaging system with six narrow bands distributed in the visible/near infrared
(Vis/NIR) region; (2) acquire the multispectral images of healthy and RFS infected samples of two
different cultivars of rice seeds; and (3) establish a feasible classification model for rice false smut
(RFS) discrimination.

2. Materials and Methods

2.1. Rice Seeds and Pathogen Inoculation

Two genotypes of rice plants including Zheliang and Xiushui that are susceptible to rice false
smut (RFS) were used in this study. The rice plants and Ustilaginoidea virens strain were provided
by the College of Biosystems Engineering and Food Science, Zhejiang University. In this study,
the plants were inoculated with conidial suspensions according to previous research [17,18]. Briefly,
the Ustilaginoidea virens strain was cultivated with potato sucrose broth (PS) in an incubator shaker
for five days at 150 rpm. at 28 ◦C. For spore inoculation experiments, about 1.5 mL of the conidial
suspension (2 × 105 conidia mL−1) was injected into a single panicle using a syringe in the late afternoon
at the booting stage, while the control plants were infected with double distilled water (ddH2O)
according to previous study [18]. After inoculation, the rice plants were kept at 90% relative humidity
and 25 ◦C for 48 h, subsequently at 98% relative humidity for an additional five days, and finally all
plants (control and infected) were transferred to a green house. The rice seeds were collected 25 days
later after inoculation, and were stored in textile bags in a storage room with a relative humidity of
65% and average temperature of 15 ◦C before image acquisition. Different disease severities were
selected to produce enough infected stages of seeds with the aim of establishing a reliable classification
model. Finally, 473 healthy, 349 slight, and 95 severe seeds of Zheliang and 392 healthy, 430 slight,
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and 186 severe seeds of Xiushui were selected for analysis (Figure 1). A significant difference could
be observed between the healthy and severe infected rice seeds, while it did not present distinct
differences between the healthy and slightly infected samples. It was hard to identify RFS in rice seed
in the early phase only using information from the RGB images.
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Figure 1. Two genotypes of rice seeds Zheliang (a) and Xiushui (b) with different infected degrees of
rice false smut (RFS).

2.2. Multispectral Imaging System Design, Images Acquisition, and Processing

In order to collect multispectral images of rice seeds from visible to the near-infrared region
for rice false smut (RFS) detection, a multispectral imaging system was developed in this study
(Figure S1a,b). Some key components can significantly affect the outperformance of the system include
the quantum efficiency (QE) of charge coupled device (CCD), spectrum peak of light-emitting diode
(LED), and distribution of illumination so were taken into consideration. To obtain a high quality
of spectral images in the near-infrared region, the QE of CCD in the near-infrared region should be
enhanced. In this case, a monochrome CCD sensor (MT9V032, ON Semiconductor, Phoenix, AZ, USA),
where the QE in near-infrared region was about 45% at 750 nm and 30% of QE at 850 nm, respectively,
was selected. The focal length of the camera lens was 8 mm with a standard view (M0814-MP2,
Tsukishima, Chao-ku, Tokyo, Japan). In order to collect spectral images at different wavelengths,
six commercial narrow-band LEDs with central spectrum peaks at 460, 520, 660, 740, 850, and 940 nm
with full width at half maximum of 25 nm, respectively, were selected to provide light sources in the
range of the visible and near-infrared region (Epileds Technologies, Inc., Taiwan, China), which were
easily bought from a website. The power of each LED was 3 W, which can provide enough lighting
intensity for image collection. Two LEDs of each wavelength were symmetrically arrayed around
the lens, and a total of 12 LEDs with an angle of 30◦ to each other were installed at the top of this
system (Figure S1c). Twelve LED drivers (U7375, Xinhuakai Optoelectronics Co. Ltd., Shenzhen,
China) were used to power the LEDs. Additionally, four mirrors were installed at four sides of the
dark box to ensure that the light distribution was as homogeneous as possible. The total cost of
the system hardware was less than 350 $. The multispectral images collected by CCD camera were
controlled by a software developed by our group using the C++ programming language based on the
platform Visual Studio 2018 (Microsoft, Redmond, WA, USA). During the process of multispectral
image acquisition, rice seed samples were placed on the sample holder, and the distance between the
lens and rice seeds was 18 cm. The exposure time of the CCD camera was 30 ms. The multispectral
image preprocessing was first conducted on the original multispectral images for the correction using
a flat-field (MFB99-50-17, Institute of Optics and Precision Machinery of Chinese Academy of Sciences,
Anhui, China) based on the following equation:
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R = (Iraw − Idark)/(Iref − Idark) (1)

where R, Iraw, Idark, and Iref were the corrected images, original images, dark current, and reference
images, respectively. Mean reflectance spectra from the whole rice seed area (region of interest, ROI)
was finally derived for further analysis.

2.3. Principal Component Analysis (PCA)

In this study, the spectrum at different wavelengths was collected using a multispectral imaging
system, and the individual reflectance can reflect the interaction between photons at specific wavelengths
and plant materials. In order to ascertain the sensitivity of each wavelength to RFS, the principal
component analysis (PCA) that used an orthogonal transformation was carried out by projecting the
raw data into a new coordinate where the first component can describe the greatest variable of the
original data on the first coordinate, the second greatest variance on the second coordinate, and so
on [19]. After the application of PCA, the principal components were linearly uncorrelated, and the
loadings (or coefficients) of each principal component was then used to qualitatively identify the
importance of each wavelength that was related to rice false smut (RFS) infection.

2.4. Development and Validation of Classification Models for Rice False Smut (RFS) Detection

In order to develop an optical classification model for discriminating rice false smut (RFS) infected
rice seeds from the healthy ones, three commonly used classification models were introduced to classify
spectral features extracted from spectral images at six wavelengths. The best model was finally selected
according to the best classification performance. Least squares-support vector machine (LS-SVM) has
been proven capable of addressing not only linear, but also nonlinear multivariate analysis problems
with a relatively fast way of mapping the original data space to a hyper-plane space using a kernel
function [20,21]. LS-SVM was modified from the standard SVM by employing a least squares linear
cost function instead of quadratic programming to obtain the support vectors [22]. The LS-SVM also
embodied a structural risk minimization principle to avoid overfitting. Before the application of
LS-SVM for rice false smut (RFS) detection, two key parameters including regularization parameter (γ)
and bandwidth (δ2) need to be optimized. The γ determined the tradeoff between minimizing the
training error and model complexity, while the δ2 was the bandwidth of the kernel function. In this
study, the radial basis function (RBF) was selected, and the grid searching technique was introduced
for optimizing the bandwidth (δ2) and regularization parameter (γ). Linear discriminant analysis
(LDA) described a categorical variable by linearly combining a set of features that could interpret two
or more classes of objects [23], which was also widely applied to the detection of diseased or damaged
plant materials such as broken kernels identification in bulk wheat [24], chilling injury detection in
jujube [25], and pathogen infestation detection in soybean [26]. In this study, LDA was also carried
out to discriminate RFS infected rice seeds from normal ones in two different genotypes. Moreover,
the K-nearest neighbor algorithm (KNN) was also used to detect RFS infected rice seeds. KNN is a
non-parametric discriminant model through training k neighbors from the training set with a distance
function. It classifies features into a specific class based on the largest voting rules [27]. In this study,
four neighbors and Manhattan distance were decided to develop the KNN model. During the process
of classification, the RFS infected and healthy rice seeds were labeled as “1” and “2”, respectively.
Additionally, the Kennard–Stone (KS) algorithm was carried out to divide the whole data of each
genotype into two groups with two thirds of the whole data for the training set and one third of whole
data for the validation set [28]. The classification performances of the three different models were
finally assessed based on the overall classification accuracy, false negative (FN), true negative (TN),
true positive (TP), and false positive (FP) derived from the confusion matrix. With the aim to further
validate the robustness of the RFS classification model developed from one cultivar to identify RFS in
different rice cultivars, the strategy of model updating was implemented to rebuild the classification
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model by adding some representative samples into the original training dataset [29]. Data analysis
in this study was implemented on the platform of MATLAB R2014a (MathWorks, Inc., Natick, MA,
USA) and Excel 2011 (Microsoft, Redmond, WA, USA). The detailed procedure of RFS detection using
multispectral imaging is shown in Figure 2.
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Figure 2. Schematic overview of the analytical procedure for rice false smut (RFS) disease detection.

3. Results and Discussion

3.1. System Performance Assessment

In order to understand the outperformance of CCD at six wavelengths, the linearities at 460, 520,
660, 740, 850, and 940 nm at a working distance of 18 cm were tested using a standard diffuse reference
plate (MFB99-50-17, Institute of Optics and Precision Machinery of Chinese Academy of Sciences,
Anhui, China), respectively, as shown in Figure 3a. It was found that there were good linearities with
R2 of 1.0000, 1.0000, 0.9996, 1.000, and 0.9999 for 460, 520, 660, 740, and 850 nm, respectively. Compared
with linearities from these five wavelengths, it was relatively poor at 940 nm with a linearity of 0.9469.
A good linearity of CCD can enable us to capture images using different exposure times of a CCD
camera for the reference and samples with the aim of obtaining an optimal signal to noise (SNR).

Although original multispectral images can be corrected using a flat-field to eliminate the bias
caused by the uneven distribution of light, it still needed to understand the illuminance distribution
at every wavelength due to light from 12 LEDs emitting from different spatial positions (they were
arrayed around the lens, Figure S1c). Figure 3b shows the illuminance distribution at 460, 520, 660,
740, 850, and 940 nm, respectively, at a working distance of 18 cm. It was noted that the illuminance
distribution in the center was more uniform than that in the corner. The illuminance uniformity was
defined as the standard deviation divided by the average illuminance, also named as the variable
coefficient (CV). Therefore, the illuminance uniformity of the wavelength was 2.39%, 2.36%, 2.57%,
2.75%, 4.74%, and 3.18% for 460, 520, 660, 740, 850, and 940 nm, respectively. The CV values of
the illuminance distribution at six wavelengths were all lower than 5%, indicting a uniform light
distribution of this system.
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3.2. Reflectance Spectra of Healthy and Rice False Smut (RFS) Infected Rice Seeds of Zheliang and Xiushui

Figure 4 shows the mean reflectance spectra at six wavelengths of healthy and rice false smut
(RFS) infected rice seeds of Zheliang (Figure 4a) and Xiushui (Figure 4b) collected by the multispectral
imaging system. A general reflectance pattern of rice seeds in the spectral region of 460–940 nm was
observed from two cultivars with a higher reflectance in the NIR region than that in the visible range,
which was similar with the previous research [30]. It could be observed that the pathogen decreased
the reflectance both in the visible and near-infrared regions, and was reduced to a further extent
with disease development. It presented a difference of reflectance between healthy and diseased rice
seeds at 460, 520, and 660 nm, where it carried mostly the external features (i.e., color and/or surface
defects) due to the fact that the pathogen can induce powdery dark green chlamydospore balls in the
spikelets during the late phase of infection [18]. Compared with healthy rice seeds, reflectance changes
of unhealthy rice seeds over the NIR range were mainly due to the changes in the internal chemical
composition and tissue structure after pathogen infection. These different patterns of the reflectance
spectra between healthy and diseased samples presented a possibility of identifying RFS infected rice
seeds from healthy ones using this multispectral imaging system.
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and severely infected rice seeds of Zheliang (c) and Xiushui (d).

Ustilaginoidea virens caused changes in the quality of rice seeds that were reflected in the
modification of the reflectance spectra at six wavelengths (Figure 4a,b). In order to figure out which
wavelength was the most sensitive to pathogen infection, the principal component analysis (PCA)
was then carried out by projecting reflectance at six wavelengths into a new coordinate where the
first several components can express the most contribution of original data according to their impact
on the total response of rice seeds to rice false smut disease. It can be observed that the first three
components described about 98.6% of the total information in rice seeds of Zheliang with 86.2%, 11.2%,
and 1.2% for component 1, component 2, and component 3, respectively (Figure 4c). For Xiushui,
the first three components contributed to about 97.8% of total information with 86.7%, 9.7%, and 1.4%
for component 1, component 2, and component 3, respectively (Figure 4d). Through the analysis from
the 3D vector graphs (Figure 4c,d), a pattern was found where the samples were generally grouped
into three groups in both cultivars depending on different degrees of disease, though some overlaps
were found between the healthy and slightly infected samples. The overlaps between healthy and
some slightly infected samples might be due to the fact that the surface features or inside the chemical
component of the slightly infected seeds did not change too much. Additionally, the diseased samples
were almost clustered in the left corner of the plane in comparison with the healthy ones. Compared
with healthy rice seeds, it could be observed that the distribution of the diseased samples on the plane
of vector graphs mainly resulted from the decreased value of component 1. Considering the difference
in the value of component 2 among the healthy, slightly, and severely infected rice seeds, it did not
present as significant as component 1 without obvious changes together with rice false smut (RFS)
disease development.



Sensors 2020, 20, 1209 8 of 12

The direction of each wavelength in the vector graph indicted the effect on component value,
while magnitude could serve as the impact of rice false smut (RFS) disease on reflectance. Table 1 shows
the sensitivity and contribution to the component value of each wavelength responding to false smut
(RFS) disease infection in two cultivars. For principal component 1, the six wavelengths all contributed
to increase its value in both two cultivars, which was in line with the results from Figure 3a,b, where
Ustilaginoidea virens reduced the reflectance. Comparing the magnitudes among the six wavelengths,
it could be observed that the reflectance at 740 nm was the most sensitive to Ustilaginoidea virens
infection with the contribution coefficient of 0.431 and 0.433 for Zheliang and Xiushui, respectively.
The sensitivity of each wavelength to false smut (RFS) disease for the two cultivars were similar with
a descending order of 740, 660, 520, 850, 460, and 940 nm for Zheliang and 740, 660, 850, 520, 460,
and 940 nm for Xiushui, respectively. The value of principal component 2 was mainly determined by
740, 850, and 940 nm with positive values and 460, 520, and 660 with negative values.

Table 1. Contribution of changes in the reflectance at six wavelengths into total variation of principal
components in rice seeds of Zheliang and Xiushui.

Wavelengths (nm)
Zheliang Xiushui

Component 1 Component 2 Component 1 Component 2

460 nm 0.400 −0.456 0.397 −0.473
520 nm 0.419 −0.353 0.419 −0.357
660 nm 0.431 −0.157 0.427 −0.134
740 nm 0.433 0.028 0.431 0.043
850 nm 0.417 0.322 0.421 0.275
940 nm 0.343 0.734 0.349 0.744

3.3. Spectral Features for Rice False Smut (RFS) Detection in Rice Seeds

The performance of the three classification models using six reflectances at 460, 520, 660, 740,
850, and 940 nm collected from a multispectral imaging system as model inputs was evaluated. Rice
false smut (RFS) detecting results from LDA, KNN, and LS-SVM are summarized in Table 2. It was
found that the classification results varied using different classification models, indicating that it was
of importance to select an optimal model for false smut (RFS) detection in rice seeds. For Zheliang,
LDA and KNN achieved the same overall accuracy of 94.8%. Further analyzing the detection result of
infected seeds from LDA and KNN, 85.4% of infected samples were correctly detected with the fact that
12 out of 82 infected samples were misclassified into the healthy class with a false negative rate of 14.6%
for LDA, while 96.7% of infected samples were correctly detected with a false negative rate of 3.2% for
KNN. Although the overall classification accuracy was the same between LDA and KNN, the KNN
model achieved a relatively low false negative rate of the RFS detection, which is critical in finding
as many infected samples as possible to prevent further infection. Compared with LDA and KNN,
the classification accuracies for infected and healthy seeds of the LS-SVM model were in general better,
as presented in Table 2. The classification accuracies for infected and healthy rice seeds were 97.6%
and 99.1%, respectively. This achieved a 98.7% overall classification with the false negative rate of
3.2%. Considering the detection performance of RFS in Xiushui, the overall classification accuracies for
LDA, KNN, and LS-SVM were in general poorer than those in Zheliang, which was reasonable because
the disease in Xiushui was less severe, as shown in Figure 4b. The LS-SVM classifier also obtained the
best result for Xiushui in comparison with the LDA and KNN with the overall classification accuracy
of 91.4% and false negative rate of 6.7%, respectively. These results imply that the LS-SVM was feasible
for rice false smut (RFS) disease detection in rice seeds and the spectral resolution at these six narrow
bands was enough to collect different information between healthy and RFS infected rice seed. It also
needs to be mentioned that the classification accuracies for two different cultivars achieved in this study
prove the feasibility of this multispectral imaging system for rice false smut (RFS) disease detection.
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Table 2. Classification accuracies of rice seeds of Zheliang and Xiushui based on the spectral features
from different classification models.

Cultivars Zheliang Xiushui

Models Predicted
Class

Actual Class

Infected Healthy Accuracy (%) Infected Healthy Accuracy (%)

LDA
infected 70 12 85.4 150 28 84.3
healthy 4 221 98.2 8 150 94.9

Overall accuracy (%) 94.8 89.3

KNN
infected 80 2 97.6 170 8 95.5
healthy 14 211 93.8 36 122 77.2

Overall accuracies (%) 94.8 86.9

LS-SVM *
infected 80 2 97.6 166 12 93.3
healthy 2 223 99.1 17 141 89.2

Overall accuracy (%) 98.7 91.4

* Regularization parameter (γ) and bandwidth (σ2) of LS-SVM was 456894.20 and 0.46 for Zheliang, and 5911.85 and
4.15 for Xiushui.

3.4. Validation of the Classification Model Using Model Transfer

In this study, the feasibility of detecting rice false smut (RFS) using multispectral imaging in
two cultivars of Zheliang and Xiushui based on the LS-SVM model with the corresponding training
dataset was proven, as shown in Table 2. Generally, it is a robust model for RFS detection that is
meant to be applicable for different cultivars of rice seed. An alternative is to apply the chemometrics
technique of model updating to correct the differences caused by cultivar variation, thereby making
the classification model transferable, avoiding the substantial cost and time to rebuild a new model.
As shown in Table 2, the LS-SVM achieved a better detection performance of RFS in Zheliang than
that in Xiushui. Therefore, we used data from Zheliang to train the LS-SVM model to identify RFS in
Xiushui. In this study, the LS-SVM model from Zheliang was updated by adding a few samples from
Xiushui. Figure 5 displays the overall accuracies and false negative rates of rice false smut (RFS) disease
detection in Xiushui, based on the model established from Zheliang, with the addition of different
new samples from Xiushui selected by the Kennard–Stone (KS) algorithm. There was an increasing
pattern of overall accuracies when the added samples increased from 1 to 3, and became relatively
stable in the range of 4–8, indicating that the combination of two thirds of the whole Zheliang data with
eight samples from Xiushui could provide enough variance about Xiushui in the new model. In this
circumstance, the LS-SVM model with the values of γ and σ2 of 7748.7 and 0.04, respectively, was
considered practically for RFS detection that could span both Zheliang and Xiushui. It obtained an
overall accuracy of 90.3% with a false negative rate of 7.8% during the process of RFS detection in
Xiushui, which was comparable to those from the model using its own data as the training set, as shown
in Table 2 (the overall accuracy and false negative rate was 91.4% and 6.7%, respectively). These results
not only underline the robustness of the LS-SVM model established from Zheliang for RFS detection in
different cultivars of rice seed, but also demonstrate that the availability of the developed multispectral
imaging system only using six wavebands still achieved a good classification performance of RFS
detection in two cultivars of rice seeds.



Sensors 2020, 20, 1209 10 of 12

10 
 

 
Figure 5. The overall accuracies and false negative rates from the least squares-support vector 
machine (LS-SVM) for rice false smut (RFS) disease detection in Xiushui based on the model 
established from Zheliang. 

4. Conclusions 

In this study, we demonstrated the feasibility of a low-cost multispectral imaging system 
combined with chemometrics for rice false smut (RFS) detection in two different cultivars. 
Multispectral images at 460, 520, 660, 740, 850, and 940 nm yielded a significant difference between 
the healthy and RFS infected rice seeds. The LS-SVM model established from six reflectances could 
be used for discriminating RFS infected rice seeds from healthy ones with the overall classification 
and the false negative rate of 98.7% and 3.2% for Zheliang, respectively, and 91.4% and 6.7% for 
Xiushui, respectively, Additionally, the RFS discriminant model developed by Zheliang was 
successfully transferred to Xiushui with an overall accuracy of 90.3% and false negative rate of 7.8%. 
Overall, the multispectral imaging system developed in this study, combined with the LS-SVM 
model, can be implemented for fast, on-line RFS detection in rice seeds. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1. The 
multispectral imaging system (MSI) developed in this study. (a) and (b) were the overview and details of MSI. 
(c) was the upward view of 12 narrow-band LEDs arrayed around the camera lens. 

Author Contributions: H.W., Y.T., and N.W. designed the experiment and performed the experiment. X.L., B.Y. 
and Y.H. provided instrumentation and technical support for the project. H.W. and Y.T. wrote the manuscript, 
and D.Y. and R.W. provided suggestions on the experimental design and discussion sections.  

Funding: This work was supported by the Fujian Province Department of Science and Technology of the P.R. 
China (2018NZ0003-1).  

Conflicts of interest: The authors declare no conflicts of interest. 

References 

1. Tanaka, E.; Ashizawa, T.; Sonoda, R.; Tanaka, C. Villosiclava virens gen. nov., comb. nov., teleomorph of 
Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 2008, 106, 491–501. 

2. Tang, Y.X.; Jin, J.; Hu, D.W.; Yong, M.L.; Xu, Y.; He, L.P. Elucidation of the infection process of 
Ustilaginoidea virens (teleomorph: Villosiclava virens) rice spikelets. Plant Pathol. 2013, 62, 1–8. 

3. Guo, X.; Li, Y.; Fan, J.; Li, L.; Huang, F.; Wan, W. Progress in the study of false smut disease in rice. J. Agric. 
Sci. Technol. 2012, 2, 1211–1217. 

4. Fu, R.; Ding, L.; Zhu, J.; Li, P.; Zheng, A.P. Morphological structure of propagules and electrophoretic 
karyotype analysis of false smut Villosiclava virens in rice. J. Microbiol. 2012, 50, 263–269. 

Figure 5. The overall accuracies and false negative rates from the least squares-support vector machine
(LS-SVM) for rice false smut (RFS) disease detection in Xiushui based on the model established
from Zheliang.

4. Conclusions

In this study, we demonstrated the feasibility of a low-cost multispectral imaging system combined
with chemometrics for rice false smut (RFS) detection in two different cultivars. Multispectral images at
460, 520, 660, 740, 850, and 940 nm yielded a significant difference between the healthy and RFS infected
rice seeds. The LS-SVM model established from six reflectances could be used for discriminating RFS
infected rice seeds from healthy ones with the overall classification and the false negative rate of 98.7%
and 3.2% for Zheliang, respectively, and 91.4% and 6.7% for Xiushui, respectively, Additionally, the RFS
discriminant model developed by Zheliang was successfully transferred to Xiushui with an overall
accuracy of 90.3% and false negative rate of 7.8%. Overall, the multispectral imaging system developed
in this study, combined with the LS-SVM model, can be implemented for fast, on-line RFS detection in
rice seeds.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/4/1209/s1,
Figure S1. The multispectral imaging system (MSI) developed in this study. (a) and (b) were the overview and
details of MSI. (c) was the upward view of 12 narrow-band LEDs arrayed around the camera lens.

Author Contributions: H.W., Y.T., and N.W. designed the experiment and performed the experiment. X.L., B.Y.
and Y.H. provided instrumentation and technical support for the project. H.W. and Y.T. wrote the manuscript, and
D.Y. and R.W. provided suggestions on the experimental design and discussion sections. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Fujian Province Department of Science and Technology of the P.R.
China (2018NZ0003-1).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Tanaka, E.; Ashizawa, T.; Sonoda, R.; Tanaka, C. Villosiclava virens gen. nov., comb. nov., teleomorph of
Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 2008, 106, 491–501.

2. Tang, Y.X.; Jin, J.; Hu, D.W.; Yong, M.L.; Xu, Y.; He, L.P. Elucidation of the infection process of Ustilaginoidea
virens (teleomorph: Villosiclava virens) rice spikelets. Plant Pathol. 2013, 62, 1–8. [CrossRef]

3. Guo, X.; Li, Y.; Fan, J.; Li, L.; Huang, F.; Wan, W. Progress in the study of false smut disease in rice. J. Agric.
Sci. Technol. 2012, 2, 1211–1217.

4. Fu, R.; Ding, L.; Zhu, J.; Li, P.; Zheng, A.P. Morphological structure of propagules and electrophoretic
karyotype analysis of false smut Villosiclava virens in rice. J. Microbiol. 2012, 50, 263–269. [CrossRef]
[PubMed]

http://www.mdpi.com/1424-8220/20/4/1209/s1
http://dx.doi.org/10.1111/j.1365-3059.2012.02629.x
http://dx.doi.org/10.1007/s12275-012-1456-3
http://www.ncbi.nlm.nih.gov/pubmed/22538655


Sensors 2020, 20, 1209 11 of 12

5. Nakamura, K.I.; Izumiyama, N.; Ohtsubo, K.I.; Koiso, Y.; Iwasaki, S.; Sonoda, R.; Fujita, Y.; Yaegashi, H.; Sato, Z.
“Lupinosis”-like lesions in mice caused by ustiloxin, produced by Ustilaginoieda virens: A morphological
study. Nat. Toxins. 1994, 2, 22–28. [CrossRef]

6. Yong, M.; Deng, Q.; Fan, L.; Miao, J.; Lai, C.; Chen, H.; Yang, X.; Wang, S.; Chen, F.; Jin, L.; et al. The role of
Ustilaginoidea virens sclerotia in increasing incidence of rice false smut disease in the subtropical zone in
China. European. J. Plant Pathol. 2017, 150, 669–677. [CrossRef]

7. Wang, Y.Q.; Fan, R.H.; Liu, B.; Li, S.H.; Zheng, D.W.; Zhang, J.Z.; Hu, D.W. Preliminary analysis of rDNA-IGS
of Ustilaginoidea virens isolates from different geographical regions in China. Acta Phytopathol. Sin. 2010, 40,
214–216.

8. Jia, S.; An, D.; Liu, Z.; Gu, J.; Li, S.; Zhang, X.; Zhu, D.; Guo, T.; Yan, Y. Variety identification method of coated
maize seeds based on near-infrared spectroscopy and chemometrics. J. Cereal Sci. 2015, 63, 21–26. [CrossRef]

9. Williams, P.J.; Kucheryavskiy, S. Classification of maize kernels using NIR hyperspectral imaging. Food Chem.
2016, 209, 131–138. [CrossRef]
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