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Abstract

Summary: The genetic architecture of complex traits can be influenced by both many common regulatory variants
with small effect sizes and rare deleterious variants in coding regions with larger effect sizes. However, the two kinds
of genetic contributions are typically analyzed independently. Here, we present GenRisk, a python package for the
computation and the integration of gene scores based on the burden of rare deleterious variants and common-
variants-based polygenic risk scores. The derived scores can be analyzed within GenRisk to perform association
tests or to derive phenotype prediction models by testing multiple classification and regression approaches.
GenRisk is compatible with VCF input file formats.

Availability and implementation: GenRisk is an open source publicly available python package that can be down-
loaded or installed from Github (https://github.com/AldisiRana/GenRisk).

Contact: s0raaldi@uni-bonn.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the past decade, genome-wide association studies (GWAS) have
been used extensively to investigate the genetic architecture of com-
plex traits and diseases (Uffelmann et al., 2021). However, despite
the identification of many disease-associated common variants
which also led to the development of several accurate polygenic risk
score (PRS) models, a substantial part of the genetic architecture of
common traits remains unknown (Lee et al., 2014). This is known
as missing heritability, which is the difference between the heritabil-
ity observed in twins studies and the measured heritability explained
by common variants (G�enin, 2020).

Different studies suggested that the missing heritability is mainly
attributable to rare variants (Young, 2019). In line with this hypoth-
esis, many studies have observed that rare variants play a role in
complex phenotypes, such as hypertension (Russo et al., 2018),
schizophrenia (John et al., 2019) and autism (Havdahl et al., 2021).
Burden tests are among the most applied methods to investigate rare
variant effects starting from sequencing data. These methods typic-
ally collapse rare variants in a genetic region (e.g. gene) into a single
burden variable and then regress the phenotype on the burden vari-
able to test for the cumulative effects of rare variants (Bomba et al.,

2017). On the other hand, the genetic contribution of common var-
iants is typically analyzed by mean of PRS, which is usually com-
puted as the weighted sum of risk alleles with respect to a
phenotype, where the risk alleles and the corresponding weights are
derived from a reference GWAS (Choi et al., 2020).

Generally, gene-based burden tests are applied on exome/target
sequencing data while GWAS is performed on post-imputed chip-
array data for the genotyping of high-frequent variants. In the light
of the increasing availability of whole genome sequencing data,
there is a need of bioinformatics solutions integrating different
methodological approaches into a unique framework. With this aim
in mind, we developed GenRisk, a python package that seamlessly
combines different tools and libraries to analyze genotype–pheno-
type associations by considering both polygenic effects and the en-
richment of rare deleterious variants at gene-based level.

2 Implementation

The GenRisk pipeline contains multiple modules, which can be run
using a commandline interface or within a python environment. The
modules can be run sequentially, so that the input of a module is the
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output of the previous module. In addition, each module can also be
used independently with data provided by the user to increase flexi-
bility of the tool for custom-analyses. Starting from a VCF, GenRisk
computes gene scores based on variant annotations. Given a pheno-
type and potential covariates (possibly including PRS), the individ-
ual gene scores can be used to perform association analyses and to
build phenotype prediction models. Furthermore, an interactive
command implements PRS computation, the PRS model can be ei-
ther provided by the user or available in pgscatalog (https://www.
pgscatalog.org/).

The workflow of the pipeline is summarized in Figure 1. In the
following sections the main features of GenRisk are described.

2.1 Gene-based scoring system
The gene scores are derived by the weighted sum of the variants in a
gene. Each allele count is weighted according to the product of a del-
eteriousness score and a coefficient based on the allele frequency.
Namely, a weighting function is applied to the variant frequency to
potentially up-weight the biological importance of rare variants.
Two weighting functions are implemented, –log10 as already applied
in another gene-based score tool (Mossotto et al., 2019) and the
beta density function, which contains two parameters a and b that
can be adjusted for more flexible weight calculation as implemented
in the sequence kernel association test (Lee et al., 2012). An adjust-
able threshold parameter for the minor allele frequency (MAF) can
be also considered to filter only for rare variants.

2.2 Genetic risk scores analysis
According to the distribution of the scores, different statistical tests
can be applied to analyze gene–phenotype associations starting from
the derived individual-based gene scores. The association analysis
results are generated as summary statistics and can be visualized via
QQ-plots and Manhattan plots.

Prediction models are computed using the open-source Pycaret, a
machine learning python library (Ali, 2020). The models can be gen-
erated for both quantitative and binary traits. The gene-based
scores, as well as PRS and covariates, such as sex and age, can be
used as features. The data given by the user can be divided into

training and testing sets (with flexible size). Cross-validation is
applied on different models and the best performing model is
selected, tuned and finalized. The model is then saved and can be

further evaluated with external testing sets. Model evaluation
reports and testing set labels are exported. Graphs like, feature im-
portance, confusion matrix and prediction error, are also generated

to visualize the model performance.

3 Usage case

We applied the pipeline on � 160 000 samples from UK Biobank (ap-
plication number 81202), the gene-based scores were calculated by

applying the beta weighting function (a¼1, b¼25) to up-weight rare
variants while the CADD (Rentzsch et al., 2019) raw scores were used
as deleteriousness weight and only variants with MAF < 1% were

included. The derived scores were used for association test and predic-
tion model with respect to alkaline phosphatase measurements (Field

30610) including also the first four genotyping principle components,
sex, BMI and age as covariates. The association analysis based on a lin-
ear regression model detected significance in ALPL, GPLD1 and

ASGR1 genes, all of which have been previously associated with alka-
line phosphatase (Nioi et al., 2016; Yuan et al., 2008). In addition, a
stochastic gradient boosted decision tree algorithm was identified as

the best prediction model once both gene scores and PRS (from
Sinnott-Armstrong et al., 2021) are taken into account and it showed

an improved prediction performance compared with PRS-only model.
Detailed results, as well as comparisons with other methods, can

be found in Supplementary Material.

4 Conclusion

GenRisk is a python package that processes input VCF files to gener-
ate both gene-based burden scores and PRS for association tests and
development of prediction models. GenRisk provides a framework

to model the effects of rare functional variants while considering the
polygenic background. Thus, it is suitable for the analysis of pheno-
types characterized by a complex genetic architecture.

Fig. 1. GenRisk pipeline workflow. A VCF file with functional annotations and frequencies can be used to calculate gene-based scores, alternatively a VCF can be used to ex-

tract and calculate PRS. The scores can then be used with phenotypic data for association analysis or to develop prediction models
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