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Abstract

Motivation: Genome-wide transcriptome sequencing applied to single cells (scRNA-seq) is rapidly

becoming an assay of choice across many fields of biological and biomedical research. Scientific

objectives often revolve around discovery or characterization of types or sub-types of cells, and

therefore, obtaining accurate cell–cell similarities from scRNA-seq data is a critical step in many

studies. While rapid advances are being made in the development of tools for scRNA-seq data ana-

lysis, few approaches exist that explicitly address this task. Furthermore, abundance and type of

noise present in scRNA-seq datasets suggest that application of generic methods, or of methods

developed for bulk RNA-seq data, is likely suboptimal.

Results: Here, we present RAFSIL, a random forest based approach to learn cell–cell similarities

from scRNA-seq data. RAFSIL implements a two-step procedure, where feature construction

geared towards scRNA-seq data is followed by similarity learning. It is designed to be adaptable

and expandable, and RAFSIL similarities can be used for typical exploratory data analysis tasks like

dimension reduction, visualization and clustering. We show that our approach compares favorably

with current methods across a diverse collection of datasets, and that it can be used to detect and

highlight unwanted technical variation in scRNA-seq datasets in situations where other methods

fail. Overall, RAFSIL implements a flexible approach yielding a useful tool that improves the ana-

lysis of scRNA-seq data.

Availability and implementation: The RAFSIL R package is available at

www.kostkalab.net/software.html

Contact: kostka@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequencing transcriptomes of single cells (scRNA-seq) is becoming

increasingly common, as technology evolves and costs decline.

Studying gene expression genome-wide at single cell resolution

overcomes intrinsic limitations of bulk RNA sequencing, where ex-

pression levels are averaged over thousands or millions of cells.

scRNA-seq enables researchers to more rigorously address questions

about the cellular composition of tissues, the transcriptional hetero-

geneity and structure of ‘cell types’, and how this may change, for

instance during development or in disease (Kumar et al., 2017; Patel

et al., 2014). Identifying group structure is therefore a crucially

important step in most scRNA-seq data analyses, and it has yielded

exciting discoveries of novel cell types and revealed previously

un-appreciated sub-populations and heterogeneity of known types

of cells (Kumar et al., 2017).

Identifying group structure in scRNA-seq data is, however, not

without challenges. Even for bulk RNA sequencing no gold standard

has emerged in the field (Conesa et al., 2016), and for single cell

RNA sequencing several factors further complicate the task. These

include additional biological heterogeneity induced by the inherent

stochasticity of gene expression in single cells, and technical noise

rooted in cell processing, cell lysis and library preparation from ex-

tremely low amounts of ‘input’ messenger RNA (Adam et al., 2017).

The latter, for example, leads to dropout events, where no RNA is

measured for a gene actually expressed in a cell. It is estimated that

50–95% of a cell’s mRNA are not measured by current technologies

(Adam et al., 2017; Svensson et al., 2017). While the relative magni-

tude of such factors will depend on the specific technology used, it is

fair to assume they play a role in most, if not all, scRNA-seq studies.

Therefore, there is a need for computational approaches that take
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the specific nature of scRNA-seq data into account and enable

researchers to accurately and reliably identify, visualize and explore

group (or population) structure of single cells. To address that need

we developed RAFSIL, a random forest (RF) based method for

learning similarities between cells from single cell RNA sequencing

experiments.

Related work includes clustering methods, which implicitly or

explicitly rely on a similarity concept and are commonly used to

group objects. Examples of approaches developed specifically for

scRNA-seq data include the combination of Pearson correlation

with robust k-means clustering (Grün et al., 2015), and the use of

consensus clustering (Strehl and Ghosh, 2002) to obtain stable cell

groupings by Kiselev et al. (2017b). �Zurauskien _e and Yau (2016)

combine agglomerative clustering with principal component analysis

(PCA), while Lin et al. (2017) explore the use of neural networks

(NNs) (Hagan et al., 1996) for clustering and dimension reduction.

More closely related to our work is SIMLR (Wang et al., 2017b), an

approach based on multiple kernel learning (Lanckriet et al., 2004)

that directly learns similarities between single cells. However,

SIMLR is built around a clustering paradigm, and the user is asked

to provide the algorithm with a specific cluster number to guide

similarity learning.

In contrast, RAFSIL similarities are based on random forests

(RFs) (Breiman, 2001), and our approach requires no prior informa-

tion about group structure. We show RAFSIL learns similarities that

faithfully represent group structure in scRNA-seq data; when used

for dimension reduction and clustering they provide an accurate

visualization of datasets and enable exploratory analyses for cell

type identification and discovery. Importantly, RAFSIL compares fa-

vorably with the current state-of-the-art showing high accuracy and

robustness, and we demonstrate how it enables the identification of

technical variation that remains hidden with other approaches.

2 Methods

We assume normalized gene expression data on log-scale of n cells

for p genes is available, organized into a p�n expression matrix

X ¼ x1; x2; . . . ; xnð Þ, where xi indicates the expression of p genes in

cell i xi ¼ xi1; xi2; . . . ; xip

� �0
.

2.1 Gene filtering
We consider three types of gene filters for the scRNA-seq data ma-

trix X:

All genes (ALL): All genes in X are considered that have non-

zero expression in at least one cell in the dataset. This is the most in-

clusive set of genes.

Frequency filtering (FRQ): Here, we consider only genes that are

expressed in a certain fraction of cells. Specifically, we choose 6%,

as reported by Kiselev et al. (2017b) for our analyses.

Highly expressed genes (HiE): The subset of frequency-filtered

genes is further narrowed down to consider genes with ‘high’ expres-

sion across cells. In each cell, expressed genes are sorted in decreas-

ing order of expression and the top 10% are marked as highly

expressed. To focus on genes that are frequently highly expressed

across cells, we discard half of the genes that are highly expressed in

the fewest cells. This approach yields a set of genes that are highly

expressed across cells, but still allows for variability in gene

expression.

In the following, we describe our approach for random

forest based similarity learning (RAFSIL) from scRNA-seq data.

We developed two methods, RAFSIL1 and RAFSIL2, which are

both two-step procedures. They share a feature-construction step

and then apply different types of RF based similarity learning.

2.2 RAFSIL: feature construction
2.2.1 RAFSIL gene filtering and clustering

For the RAFSIL methods, we apply the frequency filter described

above, and then derive gene clusters as follows: first, PCA is applied

to the gene-filtered expression matrix X (treating genes as observa-

tions and cells as features), and we keep the most informative princi-

pal components as selected by the ‘elbow method’ (Thorndike,

1953). Next, we apply k-means clustering (kmeansþþ; Arthur and

Vassilvitskii, 2007; Mouselimis, 2017) to this reduced representa-

tion of genes and derive gene clusters, where we determine the num-

ber of clusters by finding the elbow point of the sum of squared

errors as a function of increasing cluster numbers. This yields a par-

tition of frequency-selected genes into k disjoint clusters.

2.2.2 RAFSIL Spearman feature space construction

Gene clustering decomposes the column space of X into orthogonal

sub-spaces, and we characterize each cell based on its similarities

with all other cells in each sub-space. Specifically, we calculate n�n

cell–cell similarity matrices fC1; . . . ;Ckg using Spearman rank cor-

relation and genes restricted to the respective clusters derived before-

hand. Spearman rank correlation is used rather than Pearson

correlation because of its robustness to outliers (Gentleman et al.,

2005). For each similarity matrix Ci we then perform PCA, and

again keep mi informative principal components identified by the

elbow method. This yields k matrices fFi 2 Rn�migk
i¼1 based on

genes in cluster i, where each cell is embedded by its principal com-

ponents derived from local similarities (i.e., similarities calculated

using only genes in a gene cluster). We then construct a final feature

matrix F by juxtaposing matrices from individual gene clusters:

F ¼ F1 ; F2 ; . . . ; Fkð Þ (1)

The number of columns in F (i.e. the number of features
~p ¼

Pk
i¼1 mi) is data-dependent, and each cell j is now described by

a feature vector f j 2 R
~p (the j-th row of F). In the following, we use

these features for RF based similarity learning.

2.3 RAFSIL: RAndom Forest based SImilarity Learning
RFs are an established classification method based on ensembles of

decision trees (Breiman, 2001). However, they can also be used in

an unsupervised setting to infer similarities between objects

(Breiman and Cutler, 2003; Shi and Horvath, 2006). Here, we pre-

sent two variations of this general strategy.

2.3.1 RAFSIL1

Here, we describe an approach for RF based similarity learning

(Breiman and Cutler, 2003; Shi and Horvath, 2006) that has been

applied to various types of biomedical data (Seligson et al., 2005;

Ramirez et al., 2018) and is implemented in the randomForest

package for the R programming language (Liaw and Wiener, 2017).

In Pouyan and Nourani (2017), the RAFSIL1 approach (without the

feature construction step) was applied to Cytometry by Time of

Flight (CyTOF) data, where protein expression of several marker

genes (typically less than 50) is assessed.

Next, we briefly summarize RF based similarity learning: To cast

the unsupervised similarity learning problem into a problem suitable

for RFs, a ‘synthetic’ dataset is generated, for instance by randomly
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shuffling the values of each feature independently; then, an RF

classifier is trained to distinguish the shuffled data from the un-

shuffled data (F in our notation). Let f i denote the i-th row of F.

If we assume the RF classifier contains N trees and define ntðf i; f jÞ
as the number of trees that classify cells f i and f j via the same

leaf, then the RF based n�n similarity matrix S is defined via

Sij ¼ ntðf i; f jÞ=N. A corresponding dissimilarity matrix D can then

be obtained via Dij ¼ 1� Sij. In the following, we use the term

similarity and dissimilarity interchangeably, referring to S and D,

respectively. Repeating this procedure B times allows us to

aggregate individual similarity matrices Si into a final matrix

S ¼
PB

i Si=B and corresponding D. We used B¼50 for our

experiments.

2.3.2 RAFSIL2

We now describe how we use the RF classifier to construct (dis)simi-

larity matrices without the need for synthetically generated datasets.

The general idea, as in the above method, is to exploit feature de-

pendence. However, we proceed as follows: After selecting a single

feature j (the j-th column of the feature matrix F) we quantize its val-

ues to derive class labels fcign
i¼1 for all cells. We use partitioning

around medoids as implemented by the pamk function provided by

the R package fpc (Hennig, 2018), which also estimates the optimal

number of clusters. Then, we remove the j-th column from F and

use the RF classifier to learn the obtained class labels with this

reduced dataset. The resulting RF then yields a similarity between

cells as described above. Repeating this procedure for all features

yields ~p RF classifiers with corresponding similarity measures Si,

and averaging as described for RAFSIL1 above results in a final pair

of similarity and dissimilarity matrices S and D, respectively. As be-

fore, we use the randomForest package for R (Liaw and Wiener,

2017) with its default forest size of 500 trees.

2.4 Performance evaluation
To evaluate our approach, we apply RAFSIL1/2 to ten scRNA-seq

datasets that have pre-annotated cell populations, and we compare

results with current state of the art approaches. We distinguish three

different scenarios, namely similarity learning, dimension reduction

and clustering. All of these play critical roles in exploring, visualiz-

ing and interpreting scRNA-seq data, but they have different objec-

tives and we evaluate them accordingly.

2.4.1 Similarity learning

For similarity learning, we compare our method with SIMLR (Wang

et al., 2017b), the only scRNA-seq method that advertises similarity

learning. In addition, we explored common similarity/dissimilarity

measures: Euclidean distance, Pearson and Spearman correlation,

applied to the full (ALL), frequency-filtered (FRQ) and highly-

expressed (HiE) sets of genes (see Section 2.1 for details on the gene

sets). Following Wang et al. (2017b) the metric we choose to evalu-

ate similarity learning is the nearest neighbor error (NNE) (van der

Maaten et al., 2009). The NNE is calculated by using a nearest

neighbor classifier based on the target similarity to be evaluated: for

a given set of labeled cells, an unlabeled cell is classified with the

same label as its most similar labeled neighbor. Predictions for each

cell are obtained via 10-fold cross-validation (CV), and the NNE

then reports the fraction of mis-classified cells. Because in the

10-fold CV procedure data are randomly split into 10 folds (9 for

training, 1 for validation) we report averages over 20 runs. The

NNE is a direct reflection of how well the learned dissimilarity

measure captures the pre-annotated class labels. For SIMLR we used

the SIMLR R package (Wang et al., 2017a), provided it with all

genes (ALL) and evaluated the similarity matrix returned by the

SIMLR function with default options. For SIMLR we needed to

provide the option normalize¼TRUE for the Treutlein dataset,

otherwise the program would abort. We have indicated this by put-

ting the respective values in parentheses in the relevant result tables.

2.4.2 Dimension reduction

To evaluate the results of dimension reduction, we use the same

NNE metric as for evaluating similarity (see above), but in this case

applied to the reduced-dimensional projection. That is, we first per-

form similarity learning. Then we use the resulting similarity matrix

as input for a dimension reduction algorithm, which sees each cell as

a vector of its’ similarities. Finally we calculate the NNE based on

Euclidean distance in the reduced-dimensional space.

For all methods, we choose two as the number of dimensions to

project down to, and we compared the following approaches for

dimensionality reduction: t stochastic neighbor embedding (tSNE;

van der Maaten and Hinton, 2008), PCA and probabilistic PCA

(pPCA; Tipping and Bishop, 1999). We also skip the similarity

learning step and directly apply dimension reduction to cells charac-

terized by their highly expressed genes (Data-HiE in Table 3). For

pPCA we used the implementation provided by the pcaMethods

R package (Stacklies et al., 2007; Kiselev et al., 2017a) and for tSNE

the Rtsne R package (Krijthe, 2015). We used tSNE with default

values for all datasets except Treutlein, where we set the perplexity

to 20.

2.4.3 Clustering

We also evaluate the performance of RAFSIL1/2 in the context of

clustering; that is, we ask how well group structure inferred based

on RAFSIL1/2 similarities agrees with pre-annotated cell popula-

tions. This allows us to expand the methods we compare RAFSIL

with, because in addition to the approaches we compared with for

similarity learning and dimension reduction, we can now add algo-

rithms that have no explicit similarity learning step. Specifically, we

add SC3 (Kiselev et al., 2017b), pcaReduce (�Zurauskien_e and Yau,

2016, 2015) and SINCERA (Guo, 2017; Guo et al., 2015) to our

comparisons. These methods, and SIMLR, are geared towards

scRNA-seq clustering, and we provide each method with the num-

ber of pre-annotated populations for each dataset and the expression

profiles comprising the complete set of expressed genes (ALL).

Clustering methods. For RAFSIL1/2 and Spearman correlation

we implemented two clustering strategies. First, using similarities as

a vector embedding for each cell, we run k-means clustering (KM)

to infer group labels. Second, we perform hierarchical clustering

with average linkage (HC) using learned dissimilarities (1� q for

Spearman correlation). For k-means clustering we use kmeansþþ
as provided by the R package pracma (Borchers, 2017), while for

hierarchical clustering we use the base functionality provided within

R through the stats package (R Core Team, 2017). Like for the

other methods, we set the number of clusters to the known number

of different cell labels (Kiselev et al., 2017b).

Evaluation metric. To evaluate clustering results, we calculate

two performance metrics: the adjusted Rand index (ARI) and nor-

malized mutual information (NMI). Both of them are popular met-

rics to evaluate clustering results in the context of a known labeling

in single cell data (Hubert and Arabie, 1985; Kiselev et al., 2017b;

Vinh et al., 2010; Wang et al., 2017b). The ARI is defined as fol-

lows: assume, we cluster n cells into k clusters. Let fuign
i¼1 denote

Single cell similarities with random forests (RAFSIL) i81



the inferred cluster labels, and fvign
i¼1 the pre-annotated labeling.

Then
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where l and s enumerate the k clusters, and nl ¼
Pn

i I ui ¼ lð Þ; ns ¼Pn
i I vi ¼ sð Þ and nls ¼

P
i;j I ui ¼ lð ÞI vj ¼ s

� �
with I x¼ yð Þ the indica-

tor function that is one for x¼y and zero otherwise. The ARI is one

if the inferred labels correspond perfectly to the known labels, and it

decreases with increasing disagreement.

For the NMI, let pl ¼ nl=n and qs ¼ ns=n and zls ¼ nls=n. Then

h uð Þ ¼ �
P

l pl log plð Þ and h vð Þ ¼ �
P

s qs log qsð Þ are the respective

entropies of the two clusterings, and i u; vð Þ ¼
P

l;s zls log zls=pl=qsð Þ
is their mutual information. The NMI is then defined as

NMI ¼ i u; vð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h uð Þh vð Þ

p
. Like the ARI the NMI is one for perfect-

ly overlapping clusterings, and it decreases with increasing disagree-

ment. It is bounded by zero from below. For ARI and NMI we

report median values over 20 clustering runs in our clustering

evaluation.

Clustering in reduced dimensions. We also evaluate clustering

results after dimension reduction. To do so, we build on the results

from evaluating dimension reduction with the NNE (see Section

2.4.2). For each similarity learning approach we assess the corre-

sponding dimension reduction method with the smallest NNE and

then perform standard k-means and hierarchical clustering in

reduced dimensions. Results are then evaluated as described above.

However, here, we use Pearson correlation and not Spearman cor-

relation as a representative for generic similarity learning, because it

performs slightly better (see Table 3).

2.5 Data used and software availability
Datasets used in the majority of our analyses are summarized

in Table 1. Patel, Pollen, Goolam and Treutlein datasets were

downloaded from https://hemberg-lab.github.io/scRNA.seq.data

sets/; Usoskin, Buettner and Kolod datasets were downloaded

from https://github.com/BatzoglouLabSU/SIMLR. The Engel and

Lin datasets can be found in the supporting material of Lin et al.

(2017) and were downloaded from http://128.2.210.230:8080/; the

label ‘Lin’ in our result tables refers to the combination of three pri-

mary datasets described in the Section 2 there. Finally, the Leng

dataset was obtained from https://bioinfo.uth.edu/scrnaseqdb/.

For our analysis underlying Figure 1, the Usoskin and Kolod

datasets were re-downloaded to obtain normalized expression val-

ues without batch corrections. For Usoskin, data were downloaded

this information from the ‘External resource Table 1’, available at

http://linnarssonlab.org/drg/; for Kolod, data were downloaded

from https://www.ebi.ac.uk/teichmann-srv/espresso/.

The RAFSIL R package is available at www.kostkalab.net/soft

ware.html.

3 Results

3.1 A random forest based approach for single cell

similarity learning
Here we present RAFSIL, a RF based approach for learning similar-

ities from single cell RNA-sequencing data. RF based similarity

learning (Shi and Horvath, 2006) is a way to apply RFs (Breiman,

2001) to unsupervised learning and derive similarities between

objects (Breiman and Cutler, 2003; Shi and Horvath, 2006).

In particular, RF based similarity learning is robust to outliers and

has built-in feature selection, which is appealing for analyzing high-

dimensional and noisy data, like single cell RNA sequencing pro-

files. We also note that this approach is fundamentally different

from ensemble approaches working with multiple clusterings of a

dataset, see (Yan et al., 2013, Section 3). To apply RF based similar-

ity learning to single cell RNA sequencing (scRNA-seq) data, we

implemented an approach we call RAFSIL. It is a two-step proced-

ure, where in the first step we pre-process scRNA-seq expression

data (feature construction step) and in a second step then perform

RF-based similarity learning (similarity learning step).

The feature construction step is a heuristic approach designed to

deal with the noise and sparsity typically present in scRNA-seq data

(Yuan et al., 2017). Briefly, we first find an orthogonal sub-space

decomposition of the input space of cells, and then we describe each

cell by its ‘local’ similarities to other cells in each sub-space separate-

ly, which we then aggregate to a final feature set. Details on the fea-

ture construction step are in Section 2.2.

For the RF-based similarity learning step we explore two differ-

ent approaches: RAFSIL1 and RAFSIL2. RAFSIL1 is a straight for-

ward application of the methodology of Shi and Horvath (2006) to

learn similarities between single cells described by the features

recovered in our feature construction step. The general idea is to use

RF to discriminate between the real and a synthetic dataset, where

the latter is derived from the real data by applying perturbations

that destroy feature correlations. Similarity between cells is then

quantified by co-classification of pairs of cells via the same leaf

across trees in the RF. For RAFSIL2, we apply RFs to unsupervised

learning in a different way. For each feature, we quantize its values

to derive class labels for cells, and then use the other features to pre-

dict these labels using a RF. Similarity is then quantified in the same

way as described before. Details about RAFSIL1 and RAFSIL2 are

in Sections 2.3.1 and 2.3.2.

In the following, we show that RAFSIL1/2 compare favorably

with current approaches across a variety of scenarios. We also show

how the method enables identification of unwanted technical vari-

ation in scRNA-seq datasets.

3.2 Similarities learned by random forests accurately

characterize single cell RNA sequencing data
We applied RAFSIL1 and RAFSIL2 to a diverse collection of single

cell RNA sequencing datasets (Table 1) and compared their per-

formance with state-of-the-art approaches. In our analyses, we dis-

tinguish three scenarios: similarity learning, dimension reduction

and clustering. For similarity learning, we evaluate how well

inferred pairwise similarities characterize pre-annotated cell popula-

tions (i.e. class labels for cells). For dimension reduction, we use the

inferred similarities as features and project each cell into two dimen-

sions. We then evaluate how well the resulting euclidean distances

between projected cells characterize pre-annotated cell populations.

Finally, we also evaluate how accurately inferred similarities allow

clustering algorithms to reproduce available class labels; we apply

clustering algorithms to two settings: the originally inferred similar-

ities, and similarities in reduced-dimensional projections inferred by

dimension reduction approaches.

3.2.1 Similarity learning

Random forest based similarities accurately capture cell population

structure in scRNA-seq data. We applied our RAFSIL algorithms to

ten datasets (see Table 1), where labels for cell populations have

been pre-annotated. We assess the learned similarities in terms of
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the NNE, which is the mis-classification rate of a nearest neighbor

classifier (see Section 2.4.1 for details). We compare RAFSIL1/2 to

SIMLR (Wang et al., 2017b), which performs similarity learning

specifically for scRNA-seq data, and to (dis)similarities as assessed

by Euclidean distance, Spearman and Pearson correlation. For the

latter three we assess three gene selection strategies: ALL, FRQ and

only HiE; see Section 2.4 for a more detailed description.

Results are summarized in Table 2. We see that RAFSIL1/2

and SIMLR learn similarities that accurately characterize

annotated cell populations (i.e. they have low NNE). We also

find that RAFSIL and SIMLR substantially outperform Euclidean

distance and the two correlation-based similarities, and that

RAFSIL2 shows the best overall performance. For the Euclidean

distance and the correlation-based approaches we also observe

that focusing on highly expressed genes improves performance for

all of them.

3.2.2 Dimension reduction

Dimension reduction improves similarity learning. We performed

dimension reduction on the learned similarities obtained from

RAFSIL1/2, and compared results with the same methods used in

the previous section: SIMLR and Euclidean distance, as well as

Spearman and Pearson correlation. We again use the NNE as a qual-

ity metric (on Euclidean distances in the reduced-dimensional space,

for all methods), and results are summarized in Table 3. As a base-

line approach we also included dimension reduction directly on the

expression data (Data in Table 3); this is different from the other

methods, where we apply dimension reduction to cells described by

their similarities with other cells (see Section 2.4.2).

We observe that dimension reductions obtained using tSNE (van

der Maaten and Hinton, 2008) perform better (on average) than

those obtained with PCA or pPCA. Interestingly, we find that (dis)-

similarities in the reduced-dimensional space perform almost always

better than in the original (dis)similarities (see Table 3). The main

exception is RAFSIL2, which performs better using original similar-

ities. We again see that approaches designed for scRNA-seq typically

outperform more generic methods, and RAFSIL1 and RAFSIL2 have

lower NNE compared with SIMLR. We note that Spearman correl-

ation on highly-expressed genes, followed by tSNE, has good aver-

age performance comparable with RAFSIL1/2 and SIMLR.

We also visualize results from similarity learning and dimension

reduction in Supplementary Figure S1. We find clear differences in

the inferred similarities between methods for some datasets (espe-

cially for Leng and Usoskin, but also for Buettner), and this is

reflected in the respective two-dimensional projections. Overall,

RAFSIL and SIMLR are able to more clearly separate cell popula-

tions compared with Euclidean distance and Spearman correlation.

Also, we note that the good performance of RAFSIL2 (in terms of

NNE, see Table 3) is clearly reflected, probably most pronounced

for the Leng dataset. Overall, this shows that RAFSIL2 can improve

the visualization (and therefore discovery) of group/population

structure in scRNA-seq data.

Table 1. List of datasets analyzed and their attributes

Dataset Number of cells Number of genes Number of populations Sparsity (in %) Units References

Patel 430 5948 5 0 TPM Patel et al. (2014)

Buettener 182 9573 3 37 FPKM Buettner et al. (2015)

Engel 203 21 690 4 80 TPM Engel et al. (2016)

Kolod 704 13 473 3 10 CPM Kolodziejczyk et al. (2015)

Goolam 124 41 480 5 69 CPM Goolam et al. (2016)

Usoskin 622 17 772 4 78 RPM Usoskin et al. (2015)

Treutlein 80 23 271 5 90 FPKM Treutlein et al. (2014)

Leng 460 19 084 4 47 TPM Leng and Kendziorski (2015)

Pollen 301 9966 11 67 TPM Pollen et al. (2014)

Lin 402 9437 16 43 TPM Lin et al. (2017)

RAFSIL2 | biological RAFSIL2 | technical SIMLR | technicalSIMLR | biological
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Fig. 1. RAFSIL2 discovers unwanted variation. This figure shows tSNE plots for two datasets: data from Usoskin et al. (2015) in the first row, and from

Kolodziejczyk et al. (2015) in the second row. Cells are colored according to biologically meaningful annotations in panels one and three, and according to tech-

nical covariates in panels two and four. In both datasets biological annotations are different cell types. Technical covariates are different picking sessions (first

row) and different sequencing chips (second row). In the first row, we see that sub-structure in biologically meaningful groupings can be explained through tech-

nical variables for both methods. In the second row, this still holds true for RAFSIL2, but SIMLR does not highlight the unwanted technical variation present in the

data (for more details see Section 3.2.2).
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RAFSIL can discover unwanted variation in scRNA-seq data.

In practice, dimension reduction is typically used for exploratory

data analysis, for instance to find group structure in the data that

might correspond to novel (sub)populations of cells. However, it

can also be a valuable tool for data quality control, for instance

when color coding additional information about cells (covariates) in

a two-dimensional projection of the data. Figure 1 demonstrates this

approach. The first row depicts tSNE plots for the Usoskin dataset,

with RAFSIL2 projections in the first two panels and SIMLR projec-

tions in panels three and four. Color coding each cell with biological

labels (four principal neuronal types) we see a clear separation with

both approaches (panels one and three), but with substantial struc-

ture inside each neuronal cell type. Panels two and three reveal that

this structure is likely a technical artifact. In these panels, we color

the cells according to a technical variable (different cell picking ses-

sions). For both approaches, RAFSIL and SIMLR, we clearly see

that the perceived sub-structure in different neuronal types can

largely be explained by the picking session. For clarity, we have

annotated one cell type (tyrosine hydroxylase containing neurons) in

panels one and three with the colors of the technical annotation in

the adjacent plot that correlate with prominent sub-clusters.

The second row in Figure 1 is set up in the same way, just this

time using the data of Kolodziejczyk et al. (2015). Here, the bio-

logical color coding corresponds to different culturing conditions of

mouse embryonic stem cells, while the technical variable denotes

different sequencing chips. In the RAFSIL representation (panels one

and two), we again see sub-structure in the biological annotation

that perfectly corresponds to technical annotation (different

sequencing chips). For this dataset SIMLR also recapitulates the bio-

logical group structure (panel three), but does not pick up the pres-

ence of confounding technical variation (panel four).

In summary, Figure 1 shows that RAFSIL can detect unwanted

technical variation in scRNA-seq data, also in cases where other

methods do not. We note that in both publications the authors cor-

rected for batch effects, and we have used the uncorrected data for

these analyses. In practice, this type of approach is mainly useful to

assess if corrections for known technical factors are successful, or to

rule out that discovered group structure corresponds to known cova-

riates. Also, we note that the choice of dimension reduction tech-

nique plays a role in these analyses; for instance, when using PCA

instead of tSNE things become considerably less clear (data not

shown). However, this is not unexpected given the good perform-

ance of tSNE as a dimension reduction method (see Table 3).

3.2.3 Clustering

Random forest based similarities accurately recapitulate annotated

cell populations. Next, we explored the performance of RAFSIL1/2 in

terms of cell clustering, which is commonly used to discover popula-

tion/group structure in scRNA-seq data and constitutes an essential

step for most analyses in this field. To do so, we used the dissimilarities

learned by RAFSIL1/2 in two ways: (i) to perform hierarchical cluster-

ing of cells (HC) and (ii) as input for k-means clustering (KM), taking

each cell as a vector of its similarities with all cells in the dataset. We

use the ARI and NMI as quality measures (see Section 2.4.3 for details),

and results are summarized in Table 4. As before, we compared

RAFSIL1/2 to SIMLR and Spearman correlation, and added the direct

application of HC and KM to the expression data (Data in Table 4).

Because there are more methods for clustering scRNA-seq data than for

similarity learning, we added additional comparisons with SC3,

SINCERA and pcaReduce that do not implement similarity learning

but perform clustering.

We see that domain-specific methods for scRNA-seq clustering per-

form well, and that RAFSIL2 (using hierarchical clustering) has the best

average performance, with SC3 and RAFSIL1-KM performing better

for some datasets (Buettner, Patel and Leng). Interestingly, k-means

clustering appears to perform better when directly applied to the data

or in the context of Spearman correlation, while hierarchical clustering

works better for RF derived distances.

Dimension reduction improves clustering. Motivated by our

previous result of decreased NNE for reduced-dimension embed-

dings obtainable by tSNE, we applied clustering after dimension

reduction for the methods we studied before (clustering-only

approaches do not allow for dimension reduction). Results are sum-

marized in Table 5, please see Section 2.4.3 for details on the

Methods. Like before, we observe an overall better performance of

clustering when using data with reduced dimensionality, again with

the exception of RAFSIL2, which performs better in high dimen-

sions. Also, comparing clustering results with similarity learning

results, we find that using the original dissimilarity matrix RAFSIL2

had the smallest NNE and also the best clustering performance; for

reduced dimensions, RAFSIL1 has the smallest NNE and also shows

the best clustering performance. We finally note that the fact that

RAFSIL2 performs worse than RAFSIL1 in this scenario is driven by

its poor performance on the Kolod dataset. This relates to our previ-

ous discussion of Figure 1: batch effect removal may not have been

successful for this dataset, and RAFSIL2’s clustering performance

Table 2. Nearest neighbor error values for similarity learning (in percent, lower is better)

Method Patel Buttener Engel Kolod Goolam Usoskin Treutlein Leng Pollen Lin Average

RAFSIL1 1.6 3.8 1.0 0.0 2.4 2.6 10.0 5.0 3.7 4.7 3.5

RAFSIL2 1.4 3.8 0.0 0.0 3.2 0.8 6.2 4.1 4.3 5.2 2.9

SIMLR 2.4 1.6 3.4 0.0 4 3.1 (25)a 14.8 3 6.2 6.0

Pearson-ALL 1.9 57.7 38.9 9.7 3.2 10.5 20.0 49.6 12.3 14.4 21.8

Pearson-FRQ 2.1 58.2 42.4 10.4 2.4 7.2 12.5 42.8 10.3 14.7 20.3

Pearson-HiE 3.5 33.5 15.3 9.8 1.6 4.7 11.2 48.5 6.3 10.4 14.5

Spearman-ALL 2.8 57.7 12.8 0.9 0.8 15.1 28.8 58.7 2.0 13.7 19.3

Spearman-FRQ 1.9 57.7 10.3 0.9 0.8 10.1 8.8 44.6 1.7 13.2 15.0

Spearman-HiE 14.4 43.4 9.9 1.8 2.4 7.4 10.0 29.1 5.3 8.5 13.2

Euclidean-ALL 30.0 51.6 48.3 24.7 2.4 14.5 21.2 44.6 6.0 22.4 26.6

Euclidean-FRQ 2.1 57.7 39.9 10.5 2.4 7.4 12.5 45.9 9.3 13.7 20.1

Euclidean-HiE 4.0 33.5 13.8 8.8 1.6 3.7 12.5 47.4 7.0 10.7 14.3

ALL, all expressed genes; FRQ, frequency-filtered genes; HiE, highly-expressed genes.

The best-performing method in each column is in boldface.
aParentheses indicate that SIMLR was run with different parameters for this dataset.
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reflects the situation depicted in the first panel of the second row,

where cell groupings induced by cell picking session dominate bio-

logical variation.

RAFSIL approaches yield robust clustering solutions. To

assess the robustness of clustering solutions, we randomly excluded

10% of cells from each dataset and re-ran each clustering approach

20 times. Figure 2 summarizes the results. We see substantial vari-

ability in the ARI for most datasets and most methods across re-

sampling runs; in terms of performance as measured by ARI aver-

aged across datasets, RAFSIL2 (with hierarchical clustering) per-

forms best with SC3 coming in second. This is consistent with our

previous results obtained with the full data (see Table 4). Next, we

looked at variability and calculated the interquartile range (IQR)

across res-sampling runs for each method analyzing each dataset,

and then averaged across datasets (aIQR). SC3 exhibits the most sta-

ble clustering solutions (5% aIQR); RAFSIL2-HC is a bit worse

with 7% aIQR, but a bit better than SIMLR, which has 8% aIQR.

The method pcaReduce performs worst in terms of stability with an

aIQR of 14%. Overall, we find that RAFSIL produces relatively sta-

ble clustering solutions with good ARI.

RAFSIL can estimate the number of populations in a scRNA-

seq dataset. Here, we ask whether RAFSIL can estimate the number

of populations present in a scRNA-seq dataset. Briefly, we apply

RAFSIL1/2 followed by hierarchical clustering (RAFSIL1/2-HC)

and retrieve the corresponding series of cell partitions with increas-

ing cluster numbers. To those we apply the Calinski–Harabasz

criterion (Calinski and Harabasz, 1974), where each cell is

described by its corresponding row in the scaled feature matrix F

Table 4. ARI and NMI values for clustering methods across ten datasets (in percent, higher is better)

Patel Buettner Engel Kolod Goolam Usoskin Treutlein Leng Pollen Lin Average

Method ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

RAFSIL1-KM 89.6 88.4 93.5 90.5 27.7 47.0 100.0 100.0 54.4 73.5 76.9 77.8 34.8 59.2 49.7 63.2 84.4 92.0 51.9 73.6 66.3 76.5

RAFSIL1-HC 95.8 94.3 90.4 87.1 34.6 46.3 100.0 100.0 91.4 90.6 75.0 73.0 54.3 68.9 43.4 58.4 85.1 93.6 53.1 76.7 72.3 78.9

RAFSIL2-KM 88.5 87.5 81.6 76.6 75.8 76.8 100.0 100.0 54.4 73.5 64.7 75.4 55.3 72.4 39.1 50.1 82.6 91.8 49.2 72.5 69.1 77.7

RAFSIL2-HC 97.0 95.5 84.3 80.6 93.4 92.6 100.0 100.0 91.4 90.6 92.6 90.0 88.9 82.4 36.7 53.0 91.6 95.5 54.7 81.2 83.1 86.1

SIMLR 80.9 84.9 88.8 88.8 10.6 25.7 100.0 100.0 47.1 65.5 66.0 72.8 (23.8)a (45.6) 24.0 34.4 84.4 92.2 42.2 74.2 56.8 68.4

SC3 98.9 98.4 88.7 86.1 46.0 64.2 100.0 100.0 54.4 73.5 84.5 81.6 54.3 63.1 32.8 55.5 95.8 95.3 58.8 82.1 71.4 80.0

pcaReduce 47.8 60.3 39.8 45.9 17.4 18.2 96.1 94.2 45.9 62.2 54.7 60.4 37.6 38.6 21.7 25.5 89.1 93.1 51.3 74.4 50.1 57.3

SINCERA 91.3 89.8 50.7 47.6 23.0 31.1 99.6 99.2 39.3 58.0 52.4 61.7 27.8 50.5 8.7 12.3 85.5 93.4 45.5 69.4 52.4 61.3

Spearman-HiE-KM 35.0 46.2 25.4 33.3 67.7 63.6 45.7 51.2 64.7 80.3 28.4 35.4 62.2 74.7 5.6 10.0 80.4 89.2 46.4 71.7 46.1 55.6

Spearman-HiE-HC 20.2 44.8 0.1 2.1 47.0 53.0 0.1 0.6 59.1 76.1 0.3 1.3 64.1 71.2 0.3 2.7 9.5 38.3 25.8 68.8 22.7 35.9

Data-HiE-KM 78.1 75.6 38.5 42.2 15.1 17.9 63.1 75.3 42.3 48.0 28.9 37.0 18.9 33.4 3.4 13.9 71.2 84.9 51.8 76.5 41.1 50.5

Data-HiE-HC 20.4 36.9 4.5 17.1 10.4 11.8 0.2 0.8 33.5 41.3 5.0 9.4 32.8 37.7 �0.6 0.8 7.9 35.9 8.9 42.4 12.3 23.4

KM, k-means; HC, hierarchical clustering.

The best-performing method in each column is in boldface.
aParentheses indicate that SIMLR was run with different parameters for this dataset.

Table 3. Nearest neighbor error values for dimension reduction (in percent, lower is better)

Method Patel Buttener Engel Kolod Goolam Usoskin Treutlein Leng Pollen Lin Average

RAFSIL1-tSNE 1.9 3.8 0.5 0.0 4.0 1.0 7.5 4.1 2.7 5.5 3.1

RAFSIL1-PCA 8.1 4.4 11.3 0.0 9.7 21.5 12.5 26.5 12.6 24.9 13.2

RAFSIL1-pPCA 7.7 4.4 11.3 0.0 9.7 22.5 15.0 25.4 12.3 24.4 13.3

RAFSIL2-tSNE 1.9 2.7 0.0 0.0 4.8 0.6 6.2 4.6 4.0 9.2 3.4

RAFSIL2-PCA 10.2 6.6 5.9 0.0 4.8 5.6 12.5 25.9 16.3 33.1 12.1

RAFSIL2-pPCA 9.8 7.1 4.9 0.0 4.0 5.3 11.2 26.3 14.3 30.6 11.4

SIMLR-tSNE 3.7 3.3 4.4 0.0 4.8 5.5 (26.2)a 19.8 3.0 15.7 8.6

SIMLR-PCA 6.7 2.2 27.1 0.1 11.3 6.4 (43.8) 36.3 22.9 51.0 20.8

SIMLR-pPCA 7.4 2.2 27.6 0.1 9.7 5.9 (45) 37.0 22.3 53.2 21.0

Data-HiE-tSNE 7.4 12.1 14.3 0.3 1.6 3.7 15.0 37.0 3.3 10.7 10.5

Data-HiE-PCA 40.7 25.8 13.3 1.4 4.8 34.1 31.2 56.1 16.3 40.5 26.4

Data-HiE-pPCA 40.5 28.6 14.3 1.4 7.3 33.3 32.5 57.4 17.3 41.5 27.4

Euclidean-HiE-tSNE 4.4 4.4 3.9 0.4 6.5 8.2 23.8 39.1 5.3 21.1 11.7

Euclidean-HiE-PCA 36.5 7.7 35.0 7.0 25.8 58.7 32.5 52.8 19.9 39.1 31.5

Euclidean-HiE-pPCA 36.0 8.8 39.4 6.8 28.2 57.7 32.5 53.0 20.3 38.8 32.2

Pearson-HiE-tSNE 2.8 9.3 3.0 0.0 1.6 2.1 17.5 24.1 2.3 20.1 8.3

Pearson-HiE-PCA 25.1 23.1 16.3 0.1 2.4 27.8 12.5 49.1 10.6 27.9 19.5

Pearson-HiE-pPCA 24.0 23.1 17.2 0.3 2.4 27.5 15.0 47.6 11.3 28.1 19.7

Spearman-HiE-tSNE 3.3 11.0 1.0 0.0 0.8 3.2 5.0 15.4 3.0 18.4 6.1

Spearman-HiE-PCA 37.2 26.9 9.4 0.3 0.8 33.4 5.0 61.7 13.0 32.3 22.0

Spearman-HiE-pPCA 36.3 27.5 12.8 0.3 3.2 32.5 6.2 59.1 12.6 30.6 22.1

tSNE, t stochastic neighbor embedding; PCA, principal component analysis; pPCA, probabilistic PCA.

The best-performing method in each column is in boldface.
aParentheses indicate that SIMLR was run with different parameters for this dataset.
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(see Section 2.2). We compared RAFSIL with SC3 and SINCERA

in Supplementary Table S1. We find that RAFSIL1/2 perform

well (RAFSIL2-HC is amongst the most accurate methods for the

most datasets), but overall there is little difference between the

approaches.

Additional analyses. In addition to the analyses described above,

we also compared our method to the neural network based ap-

proach of Lin et al. (2017). Lin et al. provide the data they used to

assess their method, so we calculated performance metrics for

RAFSIL1/2 and SC3 (without any gene filtering, to be consistent

with the authors) and compared them to Table 2 from Lin et al.

(2017). Results are shown in Supplementary Table S2, where every-

thing except the RAFSIL1/2 and SC3 lines has been taken from their

publication. We see that the RAFSIL approaches (especially

RAFSIL2) are competitive with the NN based approach, even

though we do not make use of a supervised training phase.

We also studied the clustering performance of RAFSIL1/2 per-

forming only the feature construction step, and only the similarity

learning step, respectively. Results are summarized in Supplementary

Table S3. We see that RAFSIL1/2 outperform these ‘reduced’

approaches, highlighting the value of both of these steps in our ap-

proach. Nevertheless, feature construction alone followed by k-means

clustering also performs well overall.

4 Discussion and conclusion

We have presented RAFSIL, a two-step approach for learning

similarities between single cells based on whole transcriptome

sequencing data. Accurately inferring such similarities is an im-

portant step in single cell RNA sequencing studies, because they

form the basis for identification, visualization and interpretation

of group structure. And reliable and accurate inference of group

structure is necessary for discovery of new (sub)types of cells,

for improved characterization and understanding of existing types

of cells, for decoding the cellular composition healthy (and abnor-

mal) tissue types, and more. We analyzed a diverse collection

of datasets and show that RAFSIL performs well in similarity

learning, on average outperforming SIMLR (to our knowledge

the only other similarity learning approach geared specifically

towards the scRNA-seq domain) as well as several generic

approaches. In addition, the SIMLR algorithm requires a known

(or pre-determined) number of clusters to calculate similarities,

but reasonable estimates are not always available in practice.

RAFSIL has no such requirement. We also show that RAFSIL

similarities improve dimension reduction and data visualization,

and that they can be used to discover unwanted technical vari-

ation in single cell RNA sequencing datasets. Finally, comparing

Table 5. ARI and NMI values for clustering methods across ten datasets after dimension reduction (in percent, higher is better)

Patel Buettner Engel Kolod Goolam Usoskin Treutlein Leng Pollen Lin Average

Method ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

RAFSIL1-tSNE-KM 96.8 95.7 93.5 90.5 44.7 55.9 100.0 100.0 54.4 73.5 61.7 71.5 33.8 58.2 46.4 61.1 89.0 94.9 48.6 74.1 66.9 77.5

RAFSIL1-tSNE-HC 93.4 91.8 93.5 90.5 26.6 46.3 100.0 100.0 54.4 73.5 64.6 75.8 54.8 70.9 46.6 62.4 89.2 94.9 50.1 76.3 67.7 78.2

RAFSIL2-tSNE-KM 97.5 96.3 87.3 83.1 26.6 46.3 34.9 41.7 54.4 73.5 65.5 77.1 55.0 72.4 48.7 60.0 88.0 93.3 42.1 71.2 60.0 71.5

RAFSIL2-tSNE-HC 97.5 96.3 87.5 85.0 24.8 45.1 30.9 38.9 54.4 73.5 65.9 78.5 55.8 72.5 30.9 46.2 87.5 93.3 48.8 73.6 58.4 70.3

SIMLR-tSNE-KM 90.8 89.6 88.8 88.8 10.6 25.7 100.0 100.0 47.1 65.5 66.0 73.4 (27.3)a (30.0) 47.1 65.5 82.4 90.5 41.3 71.8 60.1 70.1

SIMLR-tSNE-HC 80.9 84.9 88.8 88.8 10.6 25.7 100.0 100.0 47.1 65.5 66.0 73.4 (40.7) (41.7) 47.7 65.5 72.5 88.4 42.1 74.2 59.6 70.7

Data-tSNE-KM 71.5 72.2 33.4 33.0 18.0 18.9 92.6 90.0 35.8 52.6 84.9 80.2 31.6 55.1 16.7 26.4 82.3 88.8 54.4 78.5 52.1 59.6

Data-tSNE-HC 66.4 67.3 25.6 29.7 24.1 29.3 59.2 63.4 45.9 62.7 80.4 74.5 40.5 52.7 1.8 9.5 94.3 93.4 55.0 77.5 49.3 56.0

Pearson-tSNE-KM 88.5 86.2 29.2 33.6 28.9 35.4 100.0 100.0 58.2 74.0 64.9 66.6 40.2 62.0 6.9 10.9 78.6 91.1 48.1 73.0 54.4 63.3

Pearson-tSNE-HC 87.5 85.3 27.3 35.6 33.5 51.1 100.0 100.0 48.5 71.2 63.6 66.0 53.3 65.2 14.7 17.2 84.3 92.8 42.9 72.7 55.5 65.7

The best-performing method in each column is in boldface.
aParentheses indicate that SIMLR was run with different parameters for this dataset.

Fig. 2. RAFSIL2 yields accurate and robust clustering solutions. Panels are box plots of the ARI for ten datastes, across 20 instances of randomly sampling 90% of

available cells. The panel labeled ‘Average’ represents the mean performance across all ten datasets. We see that RAFSIL2 followed by hierarchical clustering

has the best performance, followed by SC3 and then the other RAFSIL-type methods. In terms of robustness SC3 performs best, while pcaReduce shows the

highest variability (see Section 3.2.3 for a more detailed discussion). KM, k-means; HC, hierarchical clustering; HiE, highly expressed genes.
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clustering solutions obtained with RAFSIL similarities with

state-of-the-art methods, we show that RAFSIL2 followed by

hierarchical clustering is highly competitive, outperforming all

other methods on average, and also individually on most datasets

we studied.

RAFSIL implements a two-step procedure, first feature construc-

tion, and then similarity learning using random forests (RFs); it is flex-

ible and easy to modify, expand and optimize. Our current feature

construction step is a heuristic that reflects what we found to work

well with scRNA-seq data we studied, but it is meant to be adapted as

technology (and methodology) develops. For instance, including prior

information about groups of genes (for example based on functional

annotation databases) may improve performance. Likewise, we pre-

sented two strategies to apply RFs to unsupervised similarity learning

(RAFSIL1 and RAFSIL2), but different approaches, perhaps more

principled ones, can be imagined. Currently, the running time of

RAFSIL algorithms is comparable to methods like SC3 and SIMLR,

and datasets with on the order of thousand cells can be analyzed with-

out any problems. However, a truly large scale implementation for

datasets with hundreds of thousands of cells (or more) would be desir-

able and is one of our future research directions.

Some limitations of our study include that, while we compared

RAFSIL extensively, our work is not exhaustive and results are

restricted to the data we analyzed. However, we cover a variety of

scRNA-seq technologies and computational approaches, and ex-

haustive comparisons considering all combinations of reasonable

choices for gene filtering, dimension reduction, and clustering across

many datasets quickly become infeasible. Along the same lines, we

report that dimension reduction improves similarity learning and

clustering, but only study projection into two-dimensional spaces

(k¼2). While exploring larger choices for k might in principle be

worthwhile for some methods, the fact that tSNE performed clearly

best in our analysis might argue against it. The reason is that tSNE

is known to perform well for projection into two to three dimen-

sions, but runs into problems for higher k (van der Maaten and

Hinton, 2008). Further on, we (and others) compare methods based

on performance metrics like averages over adjusted Rand indexes

(aARI) or average NMI. However, our re-sampling experiment

assessing robustness of clustering solutions (by repeatedly leaving

out 10% of cells in a given dataset randomly) yields inter quartile

ranges of the aARI between 5% and 14% (depending on the cluster-

ing method used). This implies that small performance differences

are typically not robust to changing a small amount of cells in a

dataset. While these values might be affected by the relatively small

number of re-sampling runs (20), we believe it highlights the need

for this type of analysis in the context of performance comparisons

for single cell RNA-seq data methodology in general.

To summarize, we presented RAFSIL, a random forest based ap-

proach for similarity learning from single cell RNA sequencing data.

We show that it performs well on a variety of datasets and believe it

will be a useful tool for bioinformatics researchers working in this

domain.
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