
sensors

Article

Advanced Computation Capacity Modeling for
Delay-Constrained Placement of IoT Services

Balázs Németh * and Balázs Sonkoly

MTA-BME Network Softwarization Research Group, Budapest University of Technology and Economics,
1111 Budapest, Hungary; sonkoly@tmit.bme.hu
* Correspondence: balazs.nemeth@tmit.bme.hu

Received: 22 June 2020; Accepted: 6 July 2020; Published: 9 July 2020
����������
�������

Abstract: A vast range of sensors gather data about our environment, industries and homes.
The great profit hidden in this data can only be exploited if it is integrated with relevant services for
analysis and usage. A core concept of the Internet of Things targets this business opportunity through
various applications. The virtualized and software-controlled 5G networks are expected to achieve
the scale and dynamicity of communication networks required by Internet of Things (IoT). As the
computation and communication infrastructure rapidly evolves, the corresponding substrate models
of service placement algorithms lag behind, failing to appropriately describe resource abstraction
and dynamic features. Our paper provides an extension to existing IoT service placement algorithms
to enable them to keep up with the latest infrastructure evolution, while maintaining their existing
attributes, such as end-to-end delay constraints and the cost minimization objective. We complement
our recent work on 5G service placement algorithms by theoretical foundation for resource abstraction,
elasticity and delay constraint. We propose efficient solutions for the problems of aggregating
computation resource capacities and behavior prediction of dynamic Kubernetes infrastructure in
a delay-constrained service embedding framework. Our results are supported by mathematical
theorems whose proofs are presented in detail.

Keywords: network abstraction; virtual network embedding; 5G infrastructure; IoT services;
Kubernetes

1. Introduction

Digital applications relying on information gathered by sensors and transmitted by
infocommunication networks are becoming pervasive across industries. Data are continuously
collected from production lines in mass-producing factories, while warehousing robots, delivery
drones and driverless vehicles are ensuring the autonomous, cost efficient logistics of getting products
to the end-customers. Agricultural sensors are providing unprecedented insight into the efficiency
of industrial-scale food and crops production. A wide range of smart city sensors and actuators for
traffic control, parking optimization, public transportation and sharing economy based urban mobility
solutions make metropolitan lives more convenient and environment friendly. Autonomous video
surveillance, consumer intelligence based advertisements, smart home appliances and smart phones
make our lives safer, comfortable and filled with personalized user experience. Enormous amount of
information and optimization opportunities lurk in this massive, hyper-connected system. The value
of this huge amount of data can only be exploited if it is collected, analyzed, understood and acted
upon. That is the core process to monetize information collected by various types of sensors, and that
is the essence of the Internet of Things (IoT).

The high service quality requirements driven by consumer demands of the information society,
pushes communication technology innovation and development forward. New applications built

Sensors 2020, 20, 3830; doi:10.3390/s20143830 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5298-4043
https://orcid.org/0000-0002-4640-388X
http://dx.doi.org/10.3390/s20143830
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/14/3830?type=check_update&version=4

Sensors 2020, 20, 3830 2 of 34

on top of the vast amount of process intelligence are coming out rapidly, and innovation is ongoing
with a never-seen-before pace. These demands of the current world characterize the use-cases of 5G
networks and their functional requirements, such as massive Machine Type Communication (mMTC),
Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) [1].
A recent surge of 5G prototype architectures and the ongoing competition for commercial 5G network
deployments are academia’s and industry’s response to these challenging requirements. 5G systems
utilize the paradigms of Network Function Virtualization (NFV) and Software-Defined Networking
(SDN) to decouple the services’ business logic from the hardware, and realize an efficient management
of computation and communication resources [2].

A central optimization problem in realizing IoT applications using the enabling 5G technology,
is allocating service components to resources, which is formalized in multiple NP-hard variants
of the service placement problem. Service placement is one of the most difficult problems, as no
solution exists which is scalable (i.e., do not rely on directly solving integer programs), provably meets
all constraints and provides performance guarantees [3,4]. Due to the immediate relevance of the
service placement problem, a wide range of practical heuristic algorithms have emerged, which are
easy-to-deploy, highly extensible and possible to be continuously developed in an actual 5G software
architecture [5].

In parallel to algorithmic research on the service placement problem, the computation
infrastructure is also evolving, becoming more dynamic and heterogeneous to contribute to meeting
the challenging, service-level user requirements. In contrast, the infrastructure model of placement
algorithms mostly consider only fixed substrate capacities and rarely goes beyond different capacity
volumes to model heterogeneity. In addition to tackling heterogeneity and dynamicity, infrastructure
modeling is an essential tool to handle the difficulty of the VNE problem by devising higher abstraction
resource views for better algorithmic scalabilty.

In this paper, we contribute to 5G-enabled IoT service placement systems by proposing
theoretically founded infrastructure abstractions for aggregating capacities and modeling elastic
resources. We propose a service component placement heuristic algorithm design schema for meeting
constraints on service path delay requirements. We show how these results can be integrated
into proven prototype architectures. The focus of our paper is modeling the modern capabilities
of distributed computing infrastructures, where services are deployed with respecting end-to-end
requirements. More specifically, our contribution is threefold:

• We propose a method to design the step-by-step delay bounds of a greedy service placement
algorithm to meet end-to-end delay requirements.

• We define capacity aggregation to efficiently abstract the network resources, targeting scalability
and information hiding. We propose an approximation algorithm to create the aggregate
infrastructure view with the desired abstraction level.

• We propose an elastic resource model and admission control for the Kubernetes container
management system’s Horizontal Pod Autoscaler feature [6,7], and show how it can be integrated
with service placement algorithms.

All of our results are complemented with rigorous mathematical proofs, shown in the
Appendixes A–C .

The paper is structured as follows. Section 2 puts our work in the context of a concrete IoT
service deployment, and reviews related work on network abstraction and service placement. Section 3
explains the base system model, and introduces the service placement problem variant solved by
our earlier works. Section 4 presents our results on end-to-end delay constraints and integrates it into
our service placement framework. Our theoretical results on infrastructure modeling are presented
in Sections 5 and 6, which incrementally extend our base system model with capacity aggregation
capability and resource elasticity modeling. Integration of our resource models to 5G-enabeld IoT
orchestration systems is presented in Section 7. Finally, Section 8 concludes the paper.

Sensors 2020, 20, 3830 3 of 34

2. Background and Related Work

2.1. Background

Meeting the Internet of Things communication requirements such as connectivity of vast number
of devices with high mobility, low latency and high reliability bring grand challenges to communication
networks. These are addressed by the 5G mobile technology, which enables the monetization of various
sensor-aided IoT services. The enabling relationship between 5G and IoT is examined in [1], where the
state-of-the-art is extensively surveyed, gaps and research challenges are identified. The survey studies
Mobile Edge Computing (MEC), data center performance optimization, edge cloud and virtualization
technologies to identify their role in realizing 5G-enabled IoT applications, such as cloud robotics,
industrial cyber physical systems, smart vehicles and tactile internet. Facilitating the interactions
between various entities of the networking ecosystem is required to realize end-to-end IoT services.
Authors of [8] present their prototype for a functional 5G architecture for optimizing end-to-end IoT
network slices, which is integrated with the Kubernetes-based Google Compute Engine.

In the following we present a remote security camera analytics and alerts use case, where the
computation intensive and delay sensitive IoT services are deployed across big geographic distances
by an Over-the-Top Service Provider (OTT SP). Figure 1 shows a wide area network from the Internet
Topology Zoo [9], where a Communication Service Provider (CSP) gives network connection for an
OTT SP between its service sites. The location of the security cameras is to the west (loi_w), while the
end-user location (sape) is to the east. Service Access Points (SAPs) are the user locations where the
service is to be consumed, possibly by another service or a person. Location of Interests (LOIs) represent
location-bound points, where the sensors (i.e., security cameras) are located. These should be used as
service delay reference points, because the service quality is primarily experienced here. All auxiliary
functions realize the service needs to be allocated on a network path between the reference points
with meeting the strict delay requirement. The CSP provides communication capabilities between
the distributed cloud of a Cloud Provider (CP) having its computation nodes apart with significant
geographic distance. The OTT SP is in a business relationship with a CP, reaching its data center
through the CSP’s network, while also owning a private cloud proximate to site loi_w.

Figure 1. Demonstration of a wide area network with heterogeneous computation components with
multiple stakeholders: Communication Service Provider (CSP) and Cloud Provider (CP) selling
infrastructure to Over-the-Top Service Provider (OTT SP), who provide remote security camera analytics
and alerts Internet of Things (IoT) services to its tenants.

If the OTT SP wishes to provide high quality IoT service over the rented infrastructure, it needs to
know information about the CSPs network in significant detail to make informed decision about the
IoT service component placements. On the other hand, the CSP may want to hide information from
its tenants as they might be valuable or sensitive [10], where appropriate network and computation
resource abstractions are essential. In addition, the CSP might want to optimize the running services’
resource allocation to achieve higher computation resource efficiency, which should not be perceived

Sensors 2020, 20, 3830 4 of 34

by the OTT SP on its rented infrastructure view. The OTT SP’s orchestration system needs to work
on an appropriate infrastructure view which resolves the mentioned conflicts. Aggregating servers
into higher abstraction nodes (as shown in CSP Aggregate node of Figure 1) also helps the embedding
algorithm to scale up to carrier-grade network sizes. Finally, the Cloud Provider should also be able to
give a descriptive view of its Kubernetes-based, optimized, dynamic data center resources.

2.2. Network Abstraction

Network infrastructure abstraction has always been important in modern network management
to address the various application needs serving on top of the increasingly complex communication
substrate. In a simple case, when only throughput requirements between endpoints need to be satisfied,
the hose model has been proposed to describe Virtual Private Networks (VPNs) over a common
substrate. The hose model has proved to be useful to efficiently provision the VPNs using a convenient
tree structure [11]. In addition to meeting the bandwidth requirements, routing costs must be
considered in practical cases. Such a system has been described by an abstracted network map [12],
where the significant nodes are connected by cheapest, i.e., shortest in terms of cost metric, and highest
bandwidth capacity paths, i.e., widest paths in terms of throughput. As virtual networks are the most
valuable when they connect geographically distant locations, the underlying network infrastructure
is likely to be managed by multiple providers. Virtual Network Embedding (VNE) is studied across
multiple administrative domains in [10], where the authors devise a distributed algorithm, segmenting
the virtual networks and embedding their routes in individual steps. The presented model lacks
admission control capabilities on the domain capacity resources, which is one of the main contribution
of our work.

As Software Defined Networking (SDN) enabled the network-wide control from a logically
centralized controller, end-to-end network management based on high abstraction policies is
convenient. SDN control architecture proves to be indispensable to implement IoT networks,
furthermore, their appropriate performance requires distributed SDN controller placement [13],
where abstracting the low-level management of individual devices is important. Network infrastructure
abstraction is a key component to make the SDN concepts reach their full potential as studied in
an SDN scalability survey [14]. Addressing these issues, the Big Switch model has been proposed
to describe a network by its transport characteristics between the endpoints [15], which can be used
to provision user traffic on top of the network, without studying its low-level details. Thanks to
Network Function Virtualization (NFV), network services are decoupled from specialized hardware,
packaged using virtualization technologies (such as containers and micro-services) and freely moved
across computation locations [16]. Our recent works have generalized the Big Switch model to include
computation capabilities of a network and keep up infrastructure modeling with the increasingly
interleaving computation and communication resources. We have defined the Big Switch-Big
Software (BiS-BiS) model [17], which has been used to build a multi-domain SDN/NFV-aware
orchestration system [18,19]. These earlier versions of the BiS-BiS model naively sum the computation
capacities and aggregate the functional capabilities of the hidden infrastructure, which ignores
essential bottlenecks and lacks configuration options for the abstraction-performance trade-off.
Emerging deployments of the NFV/SDN-enabled technologies in Mobile Edge Computing (MEC),
Fog Computing, Industry 4.0, Internet of Things (IoT) and 5G make the networks increasingly
heterogeneous. Thus, the naive BiS-BiS model’s shortcomings are crucial in real deployments.
Our current work addresses mathematically founded description of abstract, highly distributed,
dynamic compute and network infrastructures.

2.3. Service Placement

The central problem in SDN and NFV-based computation network architectures is the service
component placement problem, which has been well-studied by both industry and academia,
stated in many forms. The general problem of service placement benefits from multiple areas

Sensors 2020, 20, 3830 5 of 34

of network management research, such as the Virtual Network Embedding (VNE) problem [20],
Virtual Network Function (VNF) placement or Service Function Chain (SFC) resource allocation
problem. Relations between these problem variants, and mutually useful results have been studied
by survey papers [21]. The core of the service component placement problem addresses how to
place the service-composing VNFs and how to route their connections with various constraints on
the communication and computation characteristics. The problem is notoriously NP-hard and very
difficult to approximate [3]. Moreover, modeling dynamic infrastructure capabilities such as reactive,
automatic scale out of service components managed by modern container management systems
is challenging. These behaviors cannot be formalized using linear constraints for integer programs,
making solver-based optimization approaches hopeless [22]. A wide range of heuristic approaches
have been proposed to solve many variants of the service placement problem, which are much more
promising to meet high quality service requirements scaling to the immense size of IoT networks.
We target complementing heuristic placement algorithms by providing theoretically founded
generalizations of the infrastructure models to describe elasticity and abstraction. Indicating the
hardness of the service placement related problems, no scalable solutions have been proposed so far
which have performance guarantees and provably do not violate capacity constraints [4].

The surveys in [20,21] extensively study and categorize the earlier and more recent papers of
VNE, defining a general optimization model, and proposing a taxonomy on the solutions based
on their modeled features, algorithmic approaches and considered constraints. Focusing more on
the technological aspects of VNE related problems, taking into account the modern developments in
virtualization technologies, such as containerization, the survey in [5] presents a novel classification.

Concluding from the above state-of-the-art studies, many heuristics use a greedy approach to
target easy prototypization and extension capabilities. Guarantees on the deployed service’s delay
are important as many emerging applications are delay sensitive. Yet, besides some exceptions [23],
delay guarantees are not well-studied in the current state-of-the-art. Other solutions propose
a delay-aware model [24], but the presented greedy heuristic does not rigorously address the delay
guarantee, as the service delay is the optimization objective. Minimizing the service delay often
disregards other important optimization goals, such as deployment cost. Authors of [25] study
the trade-off between load balancing the compute infrastructure and minimizing the end-to-end
service delay, but the solution lacks delay guarantees, as the SFC delay is not considered as
an optimization constraint. The state-of-the-art in service placement related problems lacks heuristic
solutions, where delay is taken as a constraint to meet the QoS requirements, and minimize for
independent objectives.

Our recent work on service placement took the approach of including delay as an optimization
constraint with configurable objective function, and implementing it in an extensible heuristic
algorithm framework. In our model, delay has been considered as a path-delay, i.e., end-to-end
delay, constraint in the service graph. An earlier version focuses on tackling general service graph
structures in the greedy VNF placement and routing algorithm [26]. The algorithm framework has been
applied to data-plane component orchestration, where the input structures are translated to the general
service graph structure, and the heuristic is tuned to the domain-specific needs [27]. Addressing the
network operation scenarios, where service requests continuously arrive beyond 0-day deployments,
we have extended our framework with hybrid online-offline optimization capability [28]. Most recently,
the algorithm has been integrated with our multi-operator 5G proof-of-concept architecture [19], and its
advanced features, such as path anti-affinity, has been studied by complexity theory methodologies.
Our proof-of-concept implementation is conceptually similar to the previously referred IoT slice
orchestration system in [8]. In this paper, our contribution is the extension of our well-established
heuristic framework with mathematically founded guarantees for the end-to-end delay constraints.
Our results on end-to-end delay and infrastructure abstraction could be applied and integrated with
any heuristic algorithm which uses step-by-step placement of the individual service components.

Sensors 2020, 20, 3830 6 of 34

3. Base System Model and Optimization Problem

To model a wide range of the previously mentioned dynamic and heterogeneous computation
resource types, we introduce four types of substrate nodes arranged in two dimensions. One dimension
is the nature of the node’s capacity in terms of flexibility. Substrate nodes with fixed capacity model
physical servers, legacy hardware for hosting PNFs and static virtual computation capacities, etc.,
while elastic substrate nodes model modern pay-as-you-use cloud platforms and auto-scaling capable
Virtual Infrastructure Managers (VIMs) such as a Kubernetes host.

The other dimension of infrastructure capability modeling is the level of abstraction represented
by the node. A single computation node is represented by the single types, where the placed
VNF is directly instantiated, e.g., a single server or a VIM managing a few VMs running on the
same or proximate server racks. Finally, aggregate node types hide information of the underlying
computation capabilities and show only an abstract view of multiple (possibly distant) VNF hosting
possibilities. Except the aggregate elastic category, each infrastructure type is modeled in this paper
and our contributions to the domain of infrastructure modeling are summarized by the considered
resource types’ abbreviations in Table 1. The resource types are introduced one-by-one incrementally
generalizing the system model, while their challenges are studied in detail. In this section we introduce
the basic system model only using the single fixed, denoted by (s. f .), as this is the only type generally
considered by most of the related VNE, service placement and SFC embedding literature.

Table 1. The modeled substrate node types in the dimensions of flexibility and abstraction,
summarizing our contribution to the state-of-the-art (StoA) and the studied substrate node type
abbreviations.

Fixed Elastic

single (s. f .) (s.e.)
Considered in majority of SotA Our contribution based on M/M/c results

aggregate (a. f .) (a.e.)
Our contribution based on BiS-BiS model Briefly discussed

3.1. System Model and Problem Formulation

We model the substrate network as an undirected, connected graph S = (VS, ES), where substrate
nodes VS represent the compute resources of any type, their interconnections are the edge set
ES ⊆ VR ×VR. Notations of the problem formulation and for the rest of the paper are summarized
in Table 2. The VNF repository is represented by R(vn f s), which contains all VNFs supported by
any parts of the system, used for building services. Keeping aligned with our primary motivation of
modeling the characteristics of the infrastructure, we keep the service model simple. We formulate
the problem only for the online variant of the service placement problem, restricted to path request
graphs. We introduce a general capacity function cS, which decides whether a set of VNFs can be placed
to a substrate node due to capacity constraints. This function is incrementally extended as we introduce
our proposed model for the heterogeneous substrate nodes. For now, the optimization problem is stated
with only single fixed (s. f .) substrate nodes, whose capacity is described by the capacity function c(s. f .)

S ,
while the VNF demand mapped to these substrate nodes is described with the corresponding demand
function d(s. f .)

R . The service deployment’s lifetime TR is considered at the time of component placement
decision, as it might affect the incurring costs and the substrate network’s behavior. The placement
cost of a VNF is specified by function pVR , taking the hosting time length and the mapping as input.
Similarly, the routing cost of a request link is specified by pER . If not stated otherwise, the costs pVR and
pER are regarded as input parameters. The node and link mapping functions, V and E, respectively,
describe the request graph embedding solution. Link throughput capacities and requirements are not
modeled in this paper as we focus on node resource abstraction. Such placement problem variants can
be found in our previous work [19,26–28] and the literature [20,21].

Sensors 2020, 20, 3830 7 of 34

Table 2. Notations used in embedding algorithm description.

Notation Description

S = (VS, ES) Substrate graph structure for hosting the request R

R(vn f s) Base set of all VNFs used to build any type of service

R = (VR, ER), VR ⊆ R(vn f s) Request path graph of n VNFs connecting s0, t ∈ VS

P(Q) Power set, i.e., all possible subsets, of set Q

LR : VR 7→ P(VS) VNF placement constraints

PR(ei) ⊆ P(ES), ei ∈ ER Set of feasible paths for request edge ei

cS : P(R(vn f s))×VS 7→ {0, 1} General capacity function deciding hosting capabilities

TS : VS 7→ {(s. f .), (s.e.), (a. f .), (a.e.)} Substrate node type of a substrate node

c(s. f .)
S : VS 7→ Z+ Capacity function of single fixed substrate node types

d(s. f .)
R : R(vn f s) 7→ Z+ Demand of a VNF if mapped to a single fixed substrate node type

TR ∈ R+ Number of time units the service is expected to run

pVR : R+ ×R(vn f s) ×VS 7→ R+ Mapping cost of a VNF to a substrate node for a time interval

pER : R+ × ER ×P(ES) 7→ R+ Mapping cost of a request edge to a substrate path for a time interval

V : VR 7→ VS Hosting substrate node of request node (VNF)

E : ER 7→ P(ES) Hosting substrate path of request edge

ei, vi ∈ ES ×VS = ΨR Leg, the unit orchestration step

Formulation 1 shows the service placement optimization problem, where the request graph may
only be a path graph, with both ends fixed to substrate nodes from VS as shown in (3). A demonstrative
solution for Formulation 1 and some examples for the notations of Table 2 are shown in Figure 2.
Constraints (1) and (2) ensure that all elements of the service are mapped. The location function
LR describes placement requirements for each VNF, which might come from operational policies,
privacy restrictions, Service Access Point (SAP) matching rules or VNF functionality constraints. The set
of feasible paths of a request edge PR(ei) represents not detailed path constraints like, link capacity
and routing constraints. A basic graph embedding requirement is described by (4), which ensures
that the source and termination of a request link’s hosting path goes between the hosts of its ends.
The general capacity function cS defines for a set of VNFs whether a substrate node has enough
capacity to run all functions. Prevention of overloading any substrate node (considering all resource
types for extensions) is described by (5). The general capacity function is specified in (6) for single fixed
(s. f .) substrate node types, where the demands are integers, simply summed and upper bounded by
the integer capacity. This constraint is later extended as we introduce and study the details of other
substrate node types. Finally, the objective is to minimize the overall deployment cost which is the
total sum of all VNF hosting cost and all routing costs, as shown in (7).

Figure 2. Demonstration of placing a path request graph, meeting the constraints of Formulation 1.

Sensors 2020, 20, 3830 8 of 34

The example on Figure 2 shows concrete values for some parameters. The service chains starting
and ending nodes, v0 and v4, respectively, have fixed locations (not subject to optimization) in the
substrate graph s0 and s4. VNF v2 can only be located on substrate nodes s5 and s3, and its cost on the
latter location is 1$ for the whole service lifetime TR.

Formulation 1 Variation of the service placement problem studied in this paper.

Input: (VS, ES), (VR, ER), cS, c(s. f .)
S , d(s. f .)

R , LR, TR
Output: V,E

∀vi ∈ VR : ∃V(vi) ∈ LR(vi) ⊆ VS (1)

∀ei ∈ ER : ∃E(ei) ∈ PR(ei) ⊆ P(ES) (2)

v0, vn+1 ∈ VR : V(v0) = s0, and V(vn+1) = sn+1 = t (3)

∀(vi, vj) ∈ ER : V(vi) = E(vi, vj).src_node and V(vj) = E(vi, vj).dst_node (4)

∀si ∈ VS : cS({∀vj|V(vj) = si, vj ∈ VR}, si) = 1 (5)

∀si ∈ VS, r ⊆ VR : cS(r, si) =

{
1, if ∑v∈r d(s. f .)

R (v) ≤ c(s. f .)
S (si) and TS(si) = (s. f .)

0, otherwise
(6)

subject to minimizeV,E ∑
v∈VR

∑
e∈ER

pVR(TR, v,V(v)) + pER(TR, e,E(e)) (7)

3.2. Heuristic Greedy Backtrack Approach

This section briefs our greedy backtracking algorithm framework for solving service placement
for various constraints in our earlier works. Here we state only the general outline of the algorithm to
give sufficient background, and a previously solved service placement peculiarities are listed.

Algorithm 1 takes as input the service and substrate graph structures R = (VR, ER) and
S = (VS, ES), and returns a complete mapping structure of VNFs and their connections V and E,
if any feasible is found. An ordered list of unit orchestration steps, i.e., legs (ei, vi), a pair of VNF
and adjacent request link, is stored in list ΨR and generated by function ORDERLEGSFORMAPPING(VR,
ER). In the current case the ordering is simple, as the request graph R = (VR, ER) is a path
graph between a source and a destination. In more complicated applications this function returns
the legs in an order so that their source is always placed by the MAPONENF(ei, vi) function,
before their own placement decisions. We note that our results on the substrate graph model are
general and independent of the service graph structure. Previously published and applied versions
of the greedy backtrack approach are capable of handling general service structures [19,26–28].
The MAPONENF(ei, vi) function generates hosting candidates and filters them according to the
constraints, as shown in Formulation 1. In case such a greedy step is not successful, the functions
GETBACKTRACKOPTION(ei, vi) and UNDOGREEDYMAPPING(ei, vi) are responsible to explore other
greedy mapping directions and to maintain the resource reservations, constraint states and mapping
structures. When a complete mapping structure solving Formulation 1 is found, Algorithm 1 returns
the solution. Our earlier work also studies tackling the runtime complexity of such a greedy mapping
approach for the NP-hard service placement problem [19,27], these examinations are out of the scope
of this paper.

In our earlier work we used this greedy heuristic service placement algorithm framework
in various different settings, including general service topology structure [26], data plane resource
orchestration [27], hybrid online-offline operational setting [28], and integrated it into a 5G network
architecture supporting advanced resource (anti)-affinity constraints [19]. Our greedy heuristic
framework has served as basis for several patents submitted by Ericsson, patenting VNF decomposition

Sensors 2020, 20, 3830 9 of 34

option selection, elastic substrate capacity management and VNF interconnection constraints
(Patents pending).

The versatility of the greedy backtracking approach allows it to be applied in various service
graph embedding scenarios, including 5G-enabled IoT prototype architectures independent of our
recent work [8]. Our algorithm framework can be easily extended, ideal for early deployment,
prototype architecture integration and continuous development.

In this paper, we propose theoretical foundations to the greedy approach by providing guarantee
on the embedding result’s end-to-end delay requirement. Subsequently, we present our mathematical
analysis on node capacity allocation in a heterogeneous distributed computing environment by refining
the substrate graph model.

Algorithm 1 Overview of the Greedy Backtrack Metaheuristic for VNE

Returns a set of complete mapping structures of service graph S to resource graph R.
1: procedure MAP(S, R)→ V,E
2: ΨR ← ORDERLEGSFORMAPPING(VR, ER) . Lists all VNFs and links to be mapped
3: while ∃ei, vi ∈ ΨR where @V(vi) or @E(ei) do
4: while MAPONENF(ei, vi) not successful do
5: ei′ , vi′ ← GETBACKTRACKOPTION(ei, vi)
6: UNDOGREEDYMAPPING(ei′ , vi′)
7: ei, vi ← ei′ , vi′ . Try remapping another leg
8: end while
9: end while

10: return V,E
11: end procedure

4. Result on Path Delay Constraint

This section extends our system and optimization model with latency values, formalizes path
delay constraint and we present our result on how to design the step-by-step delay heuristics
to approximate end-to-end delay requirements. The notations related to the delay model are shown
in Table 3.

Table 3. Notations for the end-to-end latency results.

Notation Description

dsisj , si, sj ∈ VS Delay distance of two substrate nodes

d(f p)
sisj , si, sj ∈ VS Delay of a feasible path between two substrate nodes.

V(v0) = s0,V(vn+1) = sn+1 = t Source and target of the path request graph.

D(req), D(used)
n+1 Required and used path delay on VNF path VR = {v0, . . . vn, vn+1}.

d(E)
vj vj+1 = d(f p)

V(vj)V(vj+1)
Delay of the hosting substrate path between V(vj) and V(vj+1)

D(V(vi)) = D(req) −∑i−1
j=0 d(E)

vj vj+1 Remaining delay budget while all VNFs until vi are mapped.

We annotate each substrate graph connection by communication delays, and calculate
the distances of each substrate node pairs ∀si, sj ∈ VS, denoted by delay distance dsisj . In our
general greedy framework of Algorithm 1, the MAPONENF(ei, vi) function can allocate any path E(ei)

for hosting the request edge ei ∈ ER, which is aligned with path constraints (see PR(ei)). The delay
of such feasible path is denoted by d(f p)

sisj . This substrate graph path delay for hosting a request

graph edge is alternatively denoted by d(E)
vj vj+1 , to eliminate the indirection of the node mapping

function V from the notation. Having the VNFs indexed in their order on the path request R as

Sensors 2020, 20, 3830 10 of 34

VR = {v0, . . . vn, vn+1}, ER = {(v0, v1), . . . (vn, vn+1)}, we extend the original problem definition of
Formulation 1 by a path delay requirement.

D(used)
n+1 = ∑

(vi ,vi+1)∈ER

d(E)
vj vj+1 ≤ D(req) (8)

where D(req) denotes the maximal allowed path delay of the used route from the beginning to the end
of the service graph path.

Assume that the function ORDERLEGSFORMAPPING(VR, ER) returns the edges of the path
request graph in order, starting from the fix substrate node s0 = V(v0), where the chain starts
from. The algorithm updates the remaining delay budget D(Vvi) by subtracting the used path delay
d(f p)
V(vi−1)V(vi)

after the greedy mapping of a leg leading to VNF vi. The termination of the request path
graph R is in substrate node V(vn+1) = sn+1, which is alternatively referred to as t. We state our result
on delay guarantee in the following theorem.

Theorem 1 (End-to-end delay constraint guarantee). A greedy heuristic maps a VNF in each step ∀vi ∈
{v1, . . . vn}, where all VNFs until index i are greedily placed, i.e., ∃V(vi), and the hosting substrate node and
path of leg (ei+1, vi+1) are being selected.

During the greedy mapping of a service graph, if for choosing the host of all VNFs vi+1 ∈ {v1, . . . vn},

• used delay is a fraction of the path delay requirement: d(E)
vj vj+1 ≤ αD(req), 1+ε

n+1 < α ≤ 1,

• the used substrate node’s distance is bounded: dV(vi)V(vi+1)
+ dV(vi+1)t > B(dist), and dV(vi+1)t ≤ ds0t

• and the remaining delay requirement is bounded: D(V(vi)) > B(req),

then the used total path delay (1 + ε) approximates the path delay requirement:

D(used)
n+1 ≤ (1 + ε)D(req), ε ∈ R+,

where

0 < B(dist) <
n + α

n + 1
D(req), (9)

0 < B(req) < αD(req) + ds0t, (10)

B(dist)B(req) ≥ n + α− ε

n + 1
(αD(req) + ds0t)D(req). (11)

The proof of the Theorem 1 is presented in Appendix A.
Theorem 1 helps designing a heuristic algorithm’s step-by-step bounds on the latency values

to guarantee the (1 + ε)-approximation of the end-to-end path delay constraint. It is important to note
that the algorithm does not need to minimize for delay to comply with the constraint, i.e., shortest
path calculation for each request edge might be done for the cost metric, while keeping the theorem’s
bounds on the delay. The corresponding subproblem is the restricted shortest path problem, for which
efficient algorithms have been proposed [29].

Furthermore, the presented result does not utilize the previously well-studied backtracking
capability of the proposed embedding framework. If substrate elements with the desired bounds can
not be found, or the (1 + ε)-violation of the delay constraint needs to be mitigated, undoing some
earlier greedy placement steps may solve the issue. Relation between the (1 + ε) approximation ratio
and the required search space for the backtracking might be studied to design a fully polynomial-time
approximation scheme (FPTAS) for the problem. A numerical example for applying Theorem 1
is shown in Section 7.

Sensors 2020, 20, 3830 11 of 34

Having demonstrated how advanced constraints, such as end-to-end delay, can be supported by
the greedy backtrack framework, now we turn to refining the substrate graph model which provides
powerful benefits for the embedding algorithm.

5. Result on Resource Aggregation

5.1. Revisit the BiS-BiS Model

Network abstractions of various types have proved useful in the past, such as network
abstraction map [12], hose model for VPN design [11] and more recently the Big Switch abstraction
in SDN [15]. The Big Switch model describes network segments with their end-to-end transport
characteristics. As computation and networking are increasingly interleaving thanks to softwarization
and virtualization, the Big Switch approach was extended to describe both by the Big Switch-Big
Software (BiS-BiS) abstraction [17,18]. Our work refines the BiS-BiS abstraction and provides theoretic
foundation to it.

To describe an abstract view of distributed computation sites and to supply valuable information
for latency sensitive applications, we propose adding internal aggregate nodes to the BiS-BiS model
which describe transport and/or computation resources. Figure 3 shows an abstract view of the lower
level infrastructure view of Figure 1. In this example, the CSP chooses to show its network aggregated
into two BiS-BiS domains, describing the west and east segments of its infrastructure by CSP BiSBiS1
and CSP BiSBiS2, respectively. The CSP’s three computing locations, Server2, Server3 and Server4
of Figure 1 are aggregated into the CSP Aggr. node of Figure 3. The other non-aggregated nodes,
Server1, DataCenter1 and Cluster1 of Figure 1 are represented by CSP Single, DC and OTT Priv
nodes, respectively. To simplify the networking structure and to hide some lower level topological
information, forwarding nodes of the infrastructure are also aggregated. For instance, the two abstract
forwarding nodes of CSP BiSBiS2 in Figure 3 represent the eastern side of the forwarding topology
in Figure 1. The edges connecting the internal nodes of a BiS-BiS are annotated by delay values,
describing the transport characteristics. Our embedding algorithm proposed in Section 3 is able to
operate on a substrate graph, which has such BiS-BiS domains, and is able to map service graphs
with end-to-end delay constraints as described in Section 4. The extensions required for the capacity
constraints (6) to model the aggregate capacity are presented in this section.

Figure 3. Demonstration of modeling an abstract view of the heterogeneous computation and network
infrastructure (rented from the CSP and CP) of Figure 1. This figure shows the topological
information which is used by the OTT SP’s orchestration logic to deploy services across the abstract
multi-domain view.

We assume that defining the set of substrate nodes to be aggregated is out-of-scope of
the underlying optimization problem, as the clustering might be more influenced by the CSP’s
operational policies than rigorous mathematical measures. An extensive survey on clustering

Sensors 2020, 20, 3830 12 of 34

algorithms in sensor networks can be found in the literature [30], while general graph clustering
is studied in [31].

As it was shown in previous experiments on abstract infrastructure views [19], communicating
the bottlenecks is in the interest of both the OTT SP and the CSP to avoid overbooking and
under-utilization. To facilitate the effective communication of the bottlenecks, the aggregation must
hold an essential property shown in Remark 1.

Remark 1 (Essential property of substrate abstraction). If a set of VNFs composing the service graph
R seems to be hostable on an aggregate substrate node, then the VNF set must be able to be mapped to the
underlying hidden network segment.

Given the clustering of the underlying substrate nodes which are to be aggregated, the central
problem in creating the BiS-BiS view is the aggregation of the hidden nodes’ capacities into a single
abstract node’s capacity. The aggregating BiS-BiS view must comply with Remark 1 and maximize
the shown capabilities of the hidden network segment. In the next section we formulate this central
problem as the resource contraction problem, and propose an effective solution to it.

5.2. Resource Contraction Problem

To formulate the resource abstraction problem as an optimization we first restate and generalize
the capacity allocation subproblem of Formulation 1, characterized by (1), (5) and (6).

First, the capacity allocation problem should be independent of the request graph instance
R = (VR, ER), as the aggregation view should be applicable to any service supported by the system.
So we introduce a multiset of the base VNF set (R(vn f s), mR) including not only any set of VNFs but
also their repetitions mR. VNFs in an IoT service might appear multiple times, e.g., data processing
and noise filtering might need to be done in multiple distributed locations, close to the sensors or
end-users. Notations corresponding to this chapter are shown in Table 4. The set of substrate nodes to
be aggregated is denoted by V′S ⊆ VS. Formulation 2 shows the capacity allocation problem generalized
to multisets of the possible VNFs and arbitrary subsets of the substrate graph. The equations are
formalized for a listing of the request multiset (R(vn f s), mR), where elements with higher multiplicity
are repeated accordingly. All repetitions of all VNF vi must be placed somewhere, as expressed by (13).
The problem only checks whether an allocation is possible, solving a subproblem of Formulation 1
with (13) and (14) relating to (1) and (5), (6) respectively.

Table 4. Notations for modeling the Big Switch-Big Software (BiS-BiS) nodes.

Notation Description

(Q, mQ), mQ : Q 7→ N∪ {0} Multiset of set Q, with multiplicity function mQ

size((Q, mQ)) = ∑q∈Q mQ(q) Size of a multiset, i.e., including item multiplicity

V′S ⊆ VS Subset of the substrate nodes for allocation/aggregation

CAP(VS’, (Q, mQ), c(s. f .)
S , d(s. f .)

R) Shorthand of solving the problem of Formulation 2

cap_sum(V′S) = ∑si∈V ′S
c(s. f .)

S (si) Sum of capacities of a substrate node set VS’

dem_sum((V′R, mR′)) = ∑vi∈V ′R
d(s. f .)

R (vi)mR′ (vi) Sum of demands of VNF multiset (VR
′, mR′)

c(a. f .)
S : VS 7→ Z+ Capacity function of aggregate fixed type substrate nodes

Sensors 2020, 20, 3830 13 of 34

Formulation 2 Capacity Allocation Problem (CAP)

Input: V′S, (R(vn f s), mR), c(s. f .)
S , d(s. f .)

R
Output: True if ∃ V, False otherwise

N := size((R(vn f s), mR)) (12)

∀vi ∈ {v1, v2, . . . vN} : ∃V(vi) ∈ V′S (13)

∀si ∈ V′S : ∑
vj |V(vj)=si ,vj∈{v1,...vN}

d(s. f .)
R (vj) ≤ c(s. f .)

S (si) (14)

The resource contraction problem shown in Formulation 3 builds on the capacity allocation
problem. It takes as input a subset of the substrate nodes V′S ⊆ VS to be aggregated, and returns
an aggregate fixed substrate node s with resource type TS(s) = (a. f .) and aggregate capacity
c(a. f .)

S (s) = A. Such an example is shown in Figure 3, where the CSP decides to aggregate its single
fixed type servers in Figure 1 into a single aggregate substrate node. This is contained in the BiS-BiS
created for the western part of the CSP’s infrastructure and is connected to the other parts of the
substrate graph through aggregate forwarding nodes shown in Figure 3. The essential property
of substrate abstraction of Remark 1 is formalized in (16). For all VNF sets with any multiplicity,
if it seems to be placeable on the aggregate node s using the Capacity Allocation Problem (CAP),
then it must be possible to allocate it to the hidden nodes. The capacity of the aggregate node shall
be maximized to show as accurate view as possible, which is formalized by the objective in (17).
The capacity of the aggregate node should never exceed the sum of the hidden nodes’ capacities,
formalized in (15). Note that for evaluating the condition of (16), the Equation (14) simplifies to
dem_sum((VR

′, mR′)) ≤ c(s. f .)
S (s) = c(a. f .)

S (s) = A.

Formulation 3 Resource contraction problem (RCP)

Input: V′S,R(vn f s), c(s. f .)
S , d(s. f .)

R

Output: A, s, c(a. f .)
S : {s} 7→ {A}, TS(s) = (a. f .)

A ∈ Z+ : A ≤ ∑
si∈V′S

c(s. f .)
S (si) (15)

∀V′R ⊆ R(vn f s), ∀(V′R, mR′) :

If CAP({s}, (V′R, mR′), c(s. f .)
S (s) = A, d(s. f .)

R) is True then

CAP(V′S, (V′R, mR′), c(s. f .)
S , d(s. f .)

R) is True

(16)

subject to maximizeA∈Z+ A (17)

To this end, if the RCP is solved for a set of single fixed type (s. f .) substrate nodes V′S ⊆ VS

with capacity function c(s. f .)
S and its accompanying demand function d(s. f .)

R , then their contracted view
is the aggregate fixed type (a. f .) substrate node s with capacity A. Note that it is not necessary to
define a different demand function for placing VNFs on aggregate fixed nodes, i.e., d(a. f .)

R = d(s. f .)
R .

Instead of showing the whole set of substrate nodes V′S, the CSP can choose to publish the aggregate
node, which integrates to the resource view of the OTT SPs.

Sensors 2020, 20, 3830 14 of 34

Extending the substrate graph model with the aggregation node s specified by the resource
contraction problem, we extend Formulation 1 to include aggregate fixed nodes in (6) as shown in (18):

∀si ∈ VS, r ⊆ VR : cS(r, si) =

1, if ∑v∈r d(s. f .)

R (v) ≤ c(s. f .)
S (si) and TS(si) = (s. f .)

1, if ∑v∈r d(s. f .)
R (v) ≤ c(a. f .)

S (si) and TS(si) = (a. f .)

0, otherwise

(18)

This describes a heterogeneous view of the infrastructure, while hiding some topology information
as desired. The view might be periodically updated as the capacities saturate, to keep the shared
information up-to-date and useful, according to the agreement among the providers.

Similar to many assignment problems, the CAP, and thus the RCP as well are NP-hard. The CAP is
a subproblem of the notoriously hard VNE problem, and proven to be NP-hard by reducing it to
the famous 3-SAT problem [3]. In the following we present an approximation algorithm for solving
the RCP, and we analyze its performance.

5.3. Approximating Resource Contraction

We propose a solution to efficiently approximate the NP-hard resource contraction problem (RCP)
presented in Formulation 3.

The pseudo-code of APRXRCP is shown in Algorithm 2. The VNF vmax with largest demand dmax

is selected from the input base VNF set. In lines 6 and 8 the big and small capacity substrate nodes are
defined, based on being or not being able to fit dmax, defining a 2-partition of the to-be-aggregated nodes
V′S. Note that operating on integer demands and capacities is important to achieve the approximation
result. A component of the final aggregation capacity A0 is defined by accounting for at least dmax space
in each big node V′(big)

S in line 7. This way, the maximum amount of repetition of the biggest VNF vmax

is handled in the input multiset (R(vn f s), mR) of CAP while solving the RCP. In addition, this approach
ensures that the CAP on the hidden substrate nodes is possible, as a lower limit on the sum of such
a capacity allocation is calculated. The function APRXRCP runs recursively by accounting for the
highest amount of reservable capacities for the second largest VNF, by removing vmax from the base
VNF setR(vn f s) and executing the whole function only for the small substrate nodes V′(small)

S in line 10.
As the recursively returned aggregation component A1 cannot be higher than dmax (otherwise the
essential property of Remark 1 might be violated), a result is produced. A termination criterion for the
recursion is an empty input VNF set, which results in summing the capacities of the input substrate
nodes (recursively remaining nodes with small capacities) in line 3.

In each recursive call, at least one VNF, the current vmax, is taken out of the input VNF set,
so the recursion is at most |R(vn f s)| deep. The algorithm performs polynomial number of steps
in the input sizes in each recursive call, so the recursion always terminates and its complexity
is O(|R(vn f s)|2|V′S|). We state the performance guarantee of APRXRCP presented in Algorithm 2
in relation to the optimal solution of RCP.

Theorem 2 (1
2 -approximation of the Resource Contraction Problem). Given any subset of the substrate

graph nodes V′S ⊆ VS and base VNF set R(vn f s) with capacity function c(s. f .)
S and VNF demand function

d(s. f .)
R , Algorithm 2 1

2 -approximates the optimal solution of the Resource Contraction Problem of Formulation 3:

1
2

OPT{RCP(V′S,R(vn f s), c(s. f .)
S , d(s. f .)

R)} ≤ APRXRCP(V′S,R(vn f s), c(s. f .)
S , d(s. f .)

R) (19)

The proof of Theorem 2 is presented in Appendix B. A numeric example for Formulation 3 solved
by APRXRCP is presented in Section 7.

Supported by Theorem 2, we can efficiently calculate the capacity of an aggregate fixed (a. f .) type
substrate node, hiding a set of single fixed (s. f .) type substrate nodes. This enables a CSP to provide

Sensors 2020, 20, 3830 15 of 34

a heterogeneous infrastructure view to its tenant OTT SPs, hiding sensitive parts of the topology,
while being able to show exact views where it is necessary, as it is demonstrated in Figure 3. The CSP
can use APRXRCP to 1

2 -approximate the optimal aggregate capacity to be shown to its tenants’ resource
orchestrators. The presented greedy heuristic framework Algorithm 1 in Section 3.2 can be easily
extended to respect the multiple types of substrate nodes, because only the capacity calculation function
of Formulation 1 needs to be modified. The aggregation scheme also contributes to the scalability of
the embedding algorithm executed by the OTT SP, as it decreases the number of substrate nodes in
its infrastructure view. As shown in (18), the capacity interpretation is extended for (a. f .) type nodes
and its implementation can be done in the MAPONENF(ei, vi) function.

Algorithm 2 Resource contraction algorithm solving Formulation 3

Input: V′S,R(vn f s), c(s. f .)
S , d(s. f .)

R
Output: A

1: procedure APRXRCP(V′S,R(vn f s), c(s. f .)
S , d(s. f .)

R) → A
2: ifR(vn f s) = ∅ then
3: return cap_sum(VS’)
4: else
5: vmax, dmax ← max

d(s. f .)
R
{R(vn f s)} . Get the VNF with biggest demand

6: V′(big)
S ← {si | si ∈ V′S, dmax ≤ c(s. f .)

S (si)}

7: A0 ← ∑
si∈V′(big)

S

max
{⌊

c(s. f .)
S (si)

2

⌋
+ 1, c(s. f .)

S (si)− dmax + 1
}

8: V′(small)
S ← {si | si ∈ V′S, dmax > c(s. f .)

S (si)}
9: if V′(small)

S 6= ∅ then
10: A1 ← APRXRCP(V′(small)

S ,R(vn f s) \ {vmax}, c(s. f .)
S , d(s. f .)

R)

11: return A0 + min
{

dmax − 1, A1

}
12: else
13: return A0
14: end if
15: end if
16: end procedure

6. Results on Elastic Resources

6.1. Modeling Resource Elasticity

To capture important characteristics of state-of-the-art computation infrastructure, we model
elastic capacity and on-demand billing. Kubernetes is widely used in the industry today, thanks to
its active open source community, enabling the rapid development of practical IoT deployments.
As it was demonstrated earlier, Kubernetes-based virtualization architectures are a good candidate to
meet the extreme requirements of IoT services [8]. We take the widely used Horizontal Pod Autoscaler
(HPA) of the Kubernetes container management system [6] as a representative example to model
resource elasticity. We propose a mathematical model of Kubernetes HPA to extend our detailed model
of the heterogeneous compute and network infrastructure.

Using Kubernetes terminology, we refer to a single instance of a containerized VNF as pod,
which is managed by HPA and replicated or terminated in response to changing workload. By default,
HPA measures the average of all instantiated pods’ utilization of their allocated CPU capacity,
and compares it to a target utilization [7].

Definition 1 lists the HPA parameters and formalizes its operation, which is the base for describing
the behavior of a single elastic substrate node si ∈ VS.

Sensors 2020, 20, 3830 16 of 34

Definition 1 (Kubernetes HPA parameters and operation). The following parameters are configured by
the operator of HPA [7]:

1. cmin and cmax are the minimal and maximal allowed pod count,
2. û ∈ [0, 1] is the targeted scaling metric average of all running pods,

3. t(sca) ∈ R+ time length of a scaling interval, when HPA evaluates metrics for scaling decisions,
4. σ ∈ [0, 1] is the scaling tolerance,

5. N(sca) :=
⌊

TR
t(sca)

⌋
, TR > t(sca) is the number of scaling intervals during the lifetime TR of the service R.

uj ∈ [0, 1] is the measured scaling metric average of all running pods in scaling interval j ∈
{1, 2, . . . N(sca)}. A scaling decision is made in scaling interval j, when∣∣∣uj

û
− 1
∣∣∣ > σ, (20)

and the number of pods in interval j + 1 recursively yields:

c∗j+1 =
⌈
cj
uj

û

⌉
. (21)

After applying the limits, pods are terminated or instantiated to meet the count

cj+1 = APPLYPODLIMITS(c∗j+1) =

c∗j+1 if cmin ≤ c∗j+1 ≤ cmax

cmin if c∗j+1 < cmin

cmax if c∗j+1 > cmax.

(22)

During a given scaling interval, the number of pods (i.e., VNF replicates) processing the incoming
task of a VNF vi is fixed. Elementary tasks of a VNF model are for example sensor data processing
tasks, video processing requests, HTTP requests for a webserver VNF, flow classification requests for
a firewall VNF or incoming images for an image processing VNF, etc. We extend our VNF model by
assigning incoming elementary task rate λi and processing rate µi to VNF vi. Notations for the service
and substrate model extensions of this section are gathered in Table 5.

Table 5. Notations for modeling the elasticity of substrate nodes.

Notation Description

λi ∀vi ∈ VR Incoming elementary task rate of VNF vi

µi ∀vi ∈ VR Processing rate of elementary tasks of VNF vi running in a single instance

si :: [x, y], si ∈ VS Local parameters x and y for substrate node si, e.g., parameters of Definition 1

cj, c∗j , cmin, cmax, c(curr) Pod numbers in various situations

uj, û, u(curr), ũ Scaling metric in various situations

c(s.e.)
S : VS 7→ Z+ Capacity function of single elastic substrate node type.

d(s.e.)
R : R+ ×VR ×VS Demand function of a VNF to-be-placed on (s.e.) type substrate node7→ N∪ {0}

As the default configuration of HPA uses CPU resources as scaling metric, we primarily assume
the modeling characteristics based on the nature CPU utilization of computation intensive tasks.
We propose to model the pod utilization states using a classic M/M/c queue, where “c” number of
pods are processing the VNF’s incoming tasks in parallel. The corresponding assumptions are collected
in Proposition 1.

Sensors 2020, 20, 3830 17 of 34

Proposition 1 (Model scaling interval as M/M/c queue). A scaling interval of the Kubernetes HPA
j ∈ {1, 2, . . . N(sca)} for a single VNF vi ∈ VR can be described by a classic M/M/c model supposing
the following assumptions:

1. the pods are instantiated and terminated instantly,
2. the arrival process of the VNF’s task is memoryless with constant rate λ = λi during the scaling interval,
3. each pod has identical characteristics, including the VNF’s task processing with an identical, memoryless

process with constant rate µ = µi during the scaling interval,
4. the task queue of VNF vi has infinite length and the task-to-pod assignment takes negligible time, assuming

computation intensive tasks and CPU utilization scaling metrics, the pods have two distinct utilization
states: busy and idle, with 100% and 0% scaling metric utilization, respectively,

5. scaling metric uj is the average utilization of all running pods.

Note that the HPA utilization metric can be easily configured and thus the assumptions of
Proposition 1 would still hold for the general scaling metric. For instance, if the application is I/O
intensive, and HPA is configured to scale based on I/O resource usage, Proposition 1 remains realistic.

We state our analytical results on the M/M/c queue model in Theorem 3.

Theorem 3 (Analysis of M/M/c queue). If inequality cµ ≤ λ holds for and M/M/c queue with arrival rate
λ and "c" instances of servers with processing rate µ, then the expected values E of the following real random
variables exist and can be calculated as follows:

• Total busy time Θc: measures the length of time until the first idle moment of an M/M/c system starting
from c busy servers.

E[Θc] = −
c

∑
k=1

d
ds

ηk(0)

• Weighted total busy time Ωc: measures the area under the time–busy server count chart for an M/M/c
system starting from c busy servers until the first idle moment.

E[Ωc] = −
c

∑
k=1

d
ds

βk(0)

where ηk(s) and βk(s) are the Laplace–Stieltjes Transform of the random variables composing the total busy
time Θc and weighted total busy time Ωc respectively. The exact definitions of the random variables and their
calculations are shown in Appendix C.

The proof of Theorem 3 is detailed in Appendix C. We propose to use the expected values E[Θc]

and E[Ωc] to estimate the scaling metric of HPA.

Proposition 2 (Usage of Theorem 3 to model HPA). The measured scaling metric uj of Kubernetes HPA
in any scaling interval j ∈ {1, 2, . . . N(sca)} for a single VNF vi ∈ VR can be estimated:

uj ≈ ũ =
E[Ωc]

cE[Θc]

calculated for an M/M/c queue with server count, arrival and departure rates c = cj, λ = λi and
µ = µi, respectively.

Argumentation. The momentary utilization of an M/M/c system in any given time–busy server count
trajectory (i.e., a concrete realization of the random process) is calculated by the number of busy servers

Sensors 2020, 20, 3830 18 of 34

(pods) divided by the number of total servers "c". Thus, the average utilization in an interval t can be calculated
by the area below the time–busy pod count chart until t, divided by the maximal possible (rectangular) area ct.
As Ωc measures the area under the trajectory chart and Θc measures the time until the idle state, their fraction
gives the average utilization. Applying the assumptions of Proposition 1 this metric equals to the scaling metric
which would be measured by HPA on the given pod count trajectory. This estimation neglects the dependence
of the two random variables and assumes that the probability P(t > Θc) is negligible, which are realistic
assumptions in a practical setting. Theorem 3 states the expected values E[Θc] and E[Ωc], which can be used to
estimate the measured scaling metric uj ≈ ũ.

6.2. Describing Elastic Resource Behavior

As described in Definition 1, the only non-deterministic part of HPA is the scaling metric
measurement uj in scaling interval j. Having the estimation uj ≈ ũ as shown in Proposition 2,
we can model an elastic node’s behavior in response to various loads.

Algorithm 3 determines a single elastic substrate node si’s behavior (https://github.com/
nadamdb/k8s-hpa-modeling) by the trajectory of the varying pod numbers working on a single
to-be-placed VNF’s task during the whole service lifetime TR. Procedure MODELHPABEHAVIOR takes
as input a VNF’s intensity characteristics, and a possible elastic host node’s HPA settings. It iteratively
uses the subroutine NEXTHPAPODCOUNT to determine the nature of the scaling decision in each
scaling interval during the lifetime of the service. The pod count trajectory function f (pod) is continuous
in its first argument, which tells for each time instance the predicted number of running pods which
would process the VNF vi’s tasks on substrate location si. If in any scaling interval the pod count
is restricted by the maximal number of pods cmax, the trajectory is invalidated by terminating the
algorithm according to the condition in line 7. As shown in line 17, the algorithm has to handle
scaling intervals when the M/M/c model’s stability criterion, i.e., a condition of Theorem 3 is not
met. A cumulative overload parameter ρ(overload) is used between iterations, which compensates
the estimated utilization metric by adding the volume of the overload. Line 21 gets the scaling metric
estimation based on Proposition 2, and the overload parameter is decreased by the compensated
amount. The scaling decision and the number of running pods are determined according to the HPA
operation shown in Definition 1 and formalized in Algorithm 3 starting from line 24.

Note that Proposition 1 only requires the arrival and processing rates to be constant during
the scaling interval. Algorithm 3 is able to handle different rates in each scaling interval, enabling
it to follow dynamic changes in the request arrival or changes in the computation circumstances.
The presented algorithm has been tuned to real measurements taken on a Kubernetes HPA to properly
model the overloaded states, when Theorem 3 cannot be used. The overload parameter ρ(overload) aligns
the model’s prediction with experiments. A validative comparison between the estimated pod count
trajectory of Algorithm 3 and a measurement on the real pod count trajectory of a Kubernetes cluster
managed by HPA is discussed in Section 7.

https://github.com/nadamdb/k8s-hpa-modeling
https://github.com/nadamdb/k8s-hpa-modeling

Sensors 2020, 20, 3830 19 of 34

Algorithm 3 Pod count trajectory modeling of Kubernetes HPA

Input: vi, sj, parameters for sj defined in Definition 1
Output: f (pod) : [0, TR]×VR ×VS 7→ N∪ {0}

1: procedure MODELHPABEHAVIOR(vi, λi, µi, sj :: [c0, cmin, cmax, û, t(sca), σ, N(sca)])
2: c(curr) ← c0
3: ∀t ∈ [0, t(sca)] : f (pod)(t, vi, si) = c0 . Initialize output HPA trajectory function
4: ρ(overload) ← 0 . Cumulative overload parameter
5: for k ∈ {1, 2, . . . N(sca)} do
6: c∗k , ρ(overload) ← NEXTHPAPODCOUNT(c(curr), λi, µi, û, σ, ρ(overload))
7: if c∗k > cmax then
8: return ⊥ . Invalidate trajectory function f (pod)

9: else
10: c(curr) ← APPLYPODLIMITS(c∗k , cmin, cmax) . Use HPA pod limits in (22)
11: ∀t ∈ (kt(sca), (k + 1)t(sca)] : f (pod)(t, vi, si) = c(curr)

12: end if
13: end for
14: return f (pod)

15: end procedure
16: procedure NEXTHPAPODCOUNT(c(curr), λi, µi, û, σ, ρ(overload))
17: if λi > c(curr) ∗ µi then . In this case the M/M/c is instable
18: ρ(overload) ← ρ(overload) + λi − c(curr) ∗ µi
19: u(curr) ← 1.0
20: else . Use M/M/c based model
21: u(curr) ← min(ũ+ ρ(overload), 1.0) . Get ũ from Proposition 2
22: ρ(overload) ← ρ(overload) − (u(curr) − ρ(overload))
23: end if
24: if

∣∣∣ u(curr)

û − 1
∣∣∣ > σ then . Use (20) with uj = u(curr)

25: c(next) ←
⌈
c(curr) u(curr)

û

⌉
. Use (21) with (curr) as scaling interval j

26: else
27: c(next) ← c(curr)

28: end if
29: return c(next), ρ(overload)

30: end procedure

Using this model of an single elastic (s.e.) substrate node, we interpret their capacities,
the demands of the to-be-placed VNFs and further extend the capacity and demand functions with
an additional type:

∀t ∈ [0, TR], ∀vi ∈ VR, ∀sj ∈ VS, TS(sj) = (s.e.) :

d(s.e.)
R = MODELHPABEHAVIOR(vi, λi, µi, sj :: [c0, cmin, cmax, û, t(sca), σ, N(sca)]) (23)

d(s.e.)
R (t, vi, sj) = f (pod)(t, vi, sj)

∀si ∈ VS, TS(si) = (s.e.) : c(s.e.)
S (si) = si :: cmax (24)

The demand function of a single VNF, to-be-placed on an elastic node is defined as the output of
Algorithm 3, being either the pod count trajectory f (pod) or the invalid character ⊥. Assuming a strict
QoS approach for each VNF, we allow the placement of a set of VNFs, if their sum of demand functions
(i.e., their pod count trajectories) would never go above the maximal pod count cmax of an elastic node
si. Furthermore, if a VNF alone would exceed cmax, the containing VNF set is considered not placeable.

The above interpretation of elastic resource capacities and demands, defines the admission control
function for computation capacity managed by Kubernetes HPA. The effect of the incoming requests are

Sensors 2020, 20, 3830 20 of 34

modeled based on the infrastructure’s configuration, and this is used to compare the predicted dynamic
demand to the allocated infrastructure capabilities. Further extending the capacity constraint (18)
(which is an extension of (6) of Formulation 1) we get:

∀si ∈ VS, r ⊆ VR : cS(r, si) =

1, if ∑v∈r d(s. f .)
R (v) ≤ c(s. f .)

S (si) and TS(si) = (s. f .)

1, if ∑v∈r d(s. f .)
R (v) ≤ c(a. f .)

S (si) and TS(si) = (a. f .)

0, if ∃v ∈ r : d(s.e.)
R (t, v, si) =⊥ and TS(si) = (s.e.)

1, if ∀t ∈ [0, TR] : ∑v∈r d(s.e.)
R (t, v, si) ≤ c(s.e.)

S (si) and TS(si) = (s.e.)

0, otherwise

(25)

In addition to modeling the capacity of an elastic node, the defined demand function enables us
to refine the cost model of a VNF deployment on elastic substrate. If the cost of running a pod of VNF
vi on elastic node sj for one time unit is p(pod)(vi, sj), then the total cost of placing the VNF here for the
whole service lifetime TR can be calculated:

vi ∈ VR, sj ∈ VS, TS(sj) = (s.e.), TR ∈ R+ :

pVR(TR, vi, sj) = p(pod)(vi, sj)
∫ TR

0
d(s.e.)

R (τ, vi, sj)dτ (26)

The elastic substrate node model integrates into our heterogeneous infrastructure model, enabling
the CSP to expose its detailed view of its dynamic infrastructure towards an OTT SP if necessary.
The OTT SP’s orchestration algorithm can utilize this information to make VNF placement decisions
and accurate cost estimations using pod count trajectory prediction. Implementing Algorithm 3
and Equations (25) and (26) inside the MAPONENF(ei, vi) function, enables our greedy heuristic
framework to serve as the OTT SP’s orchestration algorithm over the CSP’s hybrid detailed-abstract
infrastructure resources.

7. Practical Exploitation

In this section we summarize how our results could be integrated with the referred 5G prototype
systems [8,19], and how they can be used for the example remote security camera analytics and alerts
IoT use case. We demonstrate the running time of Algorithm 1, and compare it to the times required
by other components of our prototype system. Furthermore, we present numeric examples for
applications of Theorem 1, the resource contraction problem solved by Algorithm 2 and comparing
the elastic resource model of Algorithm 3 to measurement. Figure 4 positions the presented algorithms
in a general 5G-enabled IoT framework. Finally, we briefly discuss the challenges of the aggregate
elastic resource type.

Sensors 2020, 20, 3830 21 of 34

Figure 4. Illustration of applying the presented results in a 5G prototype architecture for the remote
security camera analytics and alerts IoT application.

7.1. Result Application Examples

As shown by Figure 4, the core service graph embedding is executed by the OTT SP’s orchestration
logic, which must guarantee the end-to-end delay requirements, and be aware of the various substrate
node types of the underlying heterogeneous infrastructure. As it was demonstrated, our contribution
enables Algorithm 1 to solve and extended version of Formulation 1 including the delay constraint
of (8) and computation capacity constraints in (25). Our results empower existing and future 5G
architecture deployments to realize various IoT services, spanning wide geographic regions over
software-controlled, abstract and dynamic infrastructures provided by multiple communication and
computation entities.

7.1.1. Real-World Prototype Experiment

We have conducted experiments in a real-world sandbox environment, where the computation
nodes managed by Algorithm 1 are distributed across multiple European locations [19].
The proof-of-concept (PoC) 5G architecture prototype integrates Virtual Infrastructure Managers
(VIMs), which expose their computation resources for an OTT SP’s orchestrator running Algorithm 1.
Comparing our PoC to Figure 4, the role of a CSP is played by European Internet Service Providers,
while the computation infrastructure is provided by the participating institutions of the research
project. We measured the deployment time of two types of Robot Control services with high reliability
constraints, i.e., having the robot’s control logic provided by two independently deployed VNFs.
The details of the sandbox environment, prototype implementation and the experiment scenarios are
published in our earlier work [19], here we only summarize the relevant findings.

Table 6 shows the experiment results in terms of timing, for both application types. The difference
in the services is their communication underlay, which from the service placement algorithm’s

Sensors 2020, 20, 3830 22 of 34

perspective means different number of components. In both cases the running time of Algorithm 1
is orders of magnitudes smaller than the deployment time required by the underlying VIMs for starting
and configuring the to be instantiated VNFs. In the IP routing case more components of the whole PoC
architecture are involved in creating the service, this is the result of the significantly higher overall time.

Table 6. Sandbox experiments of our prototype implementation of Algorithm 1 [19].

Robot Control (SDN Routing) Robot Control (IP Routing)

Running time of Algorithm 1 0.25 s 0.32 s

VNF deployment at the VIMs 110.23 s 217.96 s

Overall time 112.67 s 219.2 s

We conclude that the computation requirement of Algorihtm 1 do not cause any bottlenecks in the
PoC, so enriching its features with the elastic resource modeling and infrastructure aggregating of the
well-scaling algorithms presented in this paper is possible. Our current paper complements this PoC
with firm theoretical results to propose foundations for modeling the infrastructure resources.

7.1.2. Application of Theorem 1

Our result on greedy heuristic bound for end-to-end delay, can be used to design the step-by-step
bounds for guaranteed constraint approximation performance. The OTT SP’s orchestration logic can
use the conditions of Theorem 1 to make a path-delay-aware decision while choosing the routing path
for individual service graph connections. Path options are illustrated by dashed arrows in Figure 4.
The following numerical example demonstrates how such bounds can be designed.

The expression for the bounds product B(dist)B(req) of Theorem 1 can be rearranged to express the
estimation of ε:

ε ≥ n + α− (n + 1)B(dist)B(req)

D(req)(αD(req) + ds0t)
. (27)

To numerically calculate the example, we take a 10-long service chain as the service graph, i.e., n = 10.
Taking a permissive approach for designing the bounds (i.e., B(dist)and B(req)), and preserving their
dependency on problem input parameters, we may take the

√
3

2 of their allowed intervals, as shown
in Table 7.

Table 7. Numerical example for applying Theorem 1 for greedy algorithm design.

Algorithm Chosen Formula Numerical Value
Parameter (n = 10, α = 0.9)

B(dist)
√

3
2

n+α
n+1 D(req) 0.85D(req)

B(req)
√

3
2 (αD(req) + ds0t) 0.78D(req)+ 0.87ds0t

ε 1
4 (n + α) 2.72

Substituting these bounds to Equation (27) and making the simplifications we get actual bound
for the approximation value ε, shown in Table 7. Having the bound for ε we can choose the value of α

from its allowed interval α = 0.9 ∈ (14
43 , 1]. This enables us to calculate the numeric value for all other

algorithm parameters, presented in the last column of Table 7.
Note that the shown (1 + ε)-approximation does not utilize the backtracking capability of the

greedy heuristic, which drastically lowers the end-to-end delay augmentation or meets the requirement.
The shown method formalizes the design process of greedy end-to-end heuristics, to tackle the trade-off
between computation complexity and constraint violation. This result enables us to control the
computational impact of Algorithm 1 in the whole orchestration process.

Sensors 2020, 20, 3830 23 of 34

7.1.3. Resource Contraction Example Using Algorithm 2

To facilitate the VNF placement on the aggregate fixed (a. f .) type substrate nodes, the CSP wishes
to aggregate the capacities of its servers, and show an abstract view of the computation capacities to
the OTT SP’s orchestration logic. The CSP Aggr. compute node of Figure 4 illustrates this scenario.
The VNF placement logic uses the (a. f .) case of (25) to decide whether a VNF can be placed on
the aggregate substrate node. The following numerical example shows the 1

2 -optimal solution of the
NP-hard problem of Formulation 3 by our proposed approximation algorithm shown in Algorithm 2.

For simplicity we omit the capacity and demand functions from the inputs of the related
problems and algorithms, and only list the substrate node capacities, VNF demands in the
CAP, RCPand APRXRCP arguments. We take the base VNF set R(vn f s) with capacity demands
Dem = {1, 2, 4} and to-be-aggregated substrate nodes V′S with capacities Cap = {2, 3, 5, 7, 8}.
First, we estimate OPT{RCP(Cap, Dem)}, which is obviously smaller than 20, as 5 times the VNF
with demand 4 could be allocated on the aggregate node, i.e., CAP({20}, {4, 4, 4, 4, 4}) is true, but could
not be allocated on the hidden nodes, i.e., CAP(Cap, {4, 4, 4, 4, 4}) is false. Our proposed resource
contraction algorithm APRXRCP(Cap, Dem), shown in Algorithm 2, in its first iteration with dmax = 4,
calculates A0 = 2 + 4 + 5 = 11 for the big capacities {5, 7, 8}. In the second iteration for the
small capacities, it calculates A1 = APRXRCP({2, 3}, {1, 2}) = 3. So the aggregate capacity
APRXRCP(Cap, Dem) = A0 + min{dmax − 1, A1} = 14, which is at least 14

19 -approximation of the
optimal solution.

In conclusion, the CSP can efficiently show its resources meeting the essential property for
abstraction, as described in Remark 1, which view can be quickly generated.

7.1.4. Comparison of Algorithm 3 to Measurement

Finally, our results on modeling Kubernetes HPA, the OTT SP, running Algorithm 1, can estimate
the trajectory of VNF replication states for the IoT service’s lifetime in response to user traffic.
The trajectory estimation is presented in Algorithm 3 and should be implemented in the OTT SP’s
orchestration logic, making placement decisions based on (25). This is illustrated by the placements of
Extract DB VNF and Webserver VNF to single elastic (s.e.) substrate nodes on Figure 4.

Figure 5 shows the predicted pod count trajectory and its comparison to the behavior of a real
Kubernetes cluster deployment managed by HPA. The experiment uses a webserver VNF packaged in
a pod, receiving independent, identically and exponentially distributed user requests with constant
arrival (λi = 10 request

min) and processing intensity (µi = 1 request
min) for an hour.

Figure 5. Validative example of single elastic resource model by Algorithm 3 compared to a real
Kubernetes Horizontal Pod Autoscaler (HPA) pod count trajectory.

Sensors 2020, 20, 3830 24 of 34

The HPA’s scaling interval t(sca) is set to 1 min, with targeted scaling metric û = 0.5,
scaling tolerance σ = 0.1 and pod limits cmin = 1, cmax = 20. The model utilizes the calculated
arrival and processing rate of the webserver VNF during the current scaling interval. So that, not
only a fixed pair of arrival rate λi and processing rate µi is given (as shown in Algorithm 3), but the
realization of the randomized processes is used to calculate the local rates. This approach slightly
generalizes the algorithm to provide a reasonable comparison to the measurement, as the Kubernetes
HPA is not aware of the exact rates used for generating the arrival and processing times. These
estimated rates are used as the input for the NEXTHPAPODCOUNT() function to predict the utilization
metric, and thus predict the number of active pods for the next scaling interval. The experiment starts
with a single running pod, when both the model and the measurement initially over-provisions with
very similar extent and timing. Both trajectories follow the slight oscillation around the equilibrium
pod count of 11–13, resulting in at most −/+15% deviation

Using this model the OTT SP can make a well-informed decision for deploying its IoT service
over the CSP’s elastic and heterogeneous infrastructure.

7.2. Aggregate Elastic Substrate Node Type

Designing a model for aggregate elastic (a.e.) infrastructure node types is extremely challenging,
as modeling elasticity requires various parameters describing the dynamic behavior, while aggregation
abstracts the lower level infrastructure details. For instance, aggregating the view of multiple
Kubernetes HPA nodes using the resource contraction problem (RCP) would require allocating a fix
capacity to each of the to-be-hidden clusters. This goes against preserving the dynamic nature of
the underlying nodes. On the other hand, describing the aggregate elastic node’s capabilities using
well-studied queuing systems, such as the M/M/c queue, would require crude simplifications of
infrastructure characteristics.

This is a possible future research direction in infrastructure modeling as dynamicity increasingly
gains momentum in cloud computing, while network management of edge resources is already
challenging, calling for higher computing and communication resource abstractions.

8. Conclusions

We have identified a gap between the rapid evolution of virtualization-based infrastructure
technologies and the essentially unchanged substrate models of service placement algorithms.
Distributed computing solutions, such as Mobile Edge Computing and 5G utilize increasingly capable
infrastructure technologies for addressing quickly changing user demands, and scaling up to the
immense sizes of IoT networks. On the contrary, the service component placement algorithms,
managing service deployment on top of these architectures, only consider fixed substrate capacities.

Primarily, we have presented our resource aggregation model to support the scalability of
network management algorithms, and help preserving sensitive infrastructure information during
inter-provider control-plane communication. Secondly, we have used our classic queuing theory
results to build an elastic resource model for the auto-scaling mechanism of the wide-spread container
management system, Kubernetes. Our results on infrastructure modeling empower existing 5G
prototype architectures to place delay-constrained IoT service components on highly dynamic
and abstract resource views. In addition, we demonstrated how scalable service placement algorithms
can meet path delay requirements by making greedy decisions, while optimizing for independent
metrics. Our results integrate with placement algorithms using elementary service-to-resource
mapping decisions, enabling their easy deployments already in the proof-of-concept phase. All of our
results are complemented with rigorous mathematical theorems whose proofs have been presented
in detail.

Finally, we have showcased the practical applicability of our theorems and algorithms to
demonstrate what roles our results play for realizing the remote security camera analytics and alerts
IoT application across wide geographic areas. The infrastructure resources provided by multiple CSPs

Sensors 2020, 20, 3830 25 of 34

and CPs are used by customers facing OTT SPs, who provide IoT services. All players of these complex
business relations benefit from higher resource abstraction, accurate modeling of dynamic resources
and efficient service placement algorithms.

The computation and communication infrastructure for realizing various IoT applications is
becoming increasingly capable to keep up with the user requirements for high service quality.
In emerging modern networks, the management algorithms not only have to handle communication
resources, but the coordinated management of computation needs to be blended in. The contributions
of this paper are believed to be essential for effective abstract resource information exchange
and detailed modeling of elastic resources. We hope that our results could serve as a basis for such
communication protocol definitions and standardized data models for multi-domain, heterogeneous
5G infrastructures.

Author Contributions: Conceptualization, B.N. and B.S.; formal analysis, B.N.; writing—original draft
preparation, B.N. and B.S.; writing—review and editing, B.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Theorem 1. For easier notation and without loss of generality, we index the substrate nodes
by the index of the hosted VNFs ∀vi ∈ VR,V(vi) = si, with potential substrate aliases for VNF
colocation (i.e., s1 = s2,V(v1) = V(v2)).

As the delay distances between any two substrate nodes si, sj ∈ VS is pre-calculated, the following
fraction could be calculated in each greedy step of the algorithm. The numerator is a lower estimation
of the total used delay (if vi+1 is going to be hosted on the specific substrate node si+1) until the end of
the whole service graph path V(vn+1) = sn+1 = t. This expression can be interpreted as the sum of
path delay on a feasible path for request edge (vi, vi+1) ∈ ER, and the host candidate si+1’s distance to
t. The denominator is an upper estimation of the numerator as it expresses the local remaining delay
budget, if V(vi+1) = si+1.

Fi =
d(f p)

sisi+1 + dsi+1t

D(req) −∑i−1
j=0 d(f p)

sjsj+1

, ∀vi ∈ VR = {v0, v1, . . . vn},V(vi) = si (A1)

The fraction Fi is always positive, as the numerator represents distances and the denominator
is the remaining delay budget D(si) at the given greedy step. The delay budget at the beginning of the
mapping is the end-to-end delay requirement D(req), when the current VNF is v0 with fixed location s0.
Let us take the commonly known inequalities between the harmonic and arithmetic means of the n + 1
fractions Fi ∀vi ∈ {v0, v1, . . . vn}:

Harmonic(Fi) =
n + 1

n

∑
i=0

D(req)−∑i−1
j=0 d(f p)

sjsj+1

d(f p)
si si+1

+dsi+1t

≤

n

∑
i=0

d(f p)
si si+1

+dsi+1t

D(req)−∑i−1
j=0 d(f p)

sjsj+1

n + 1
= Arithmetic(Fi) (A2)

Upper bounding the right side expression by replacing the internal denominator by the delay
requirement bound B(req), we get common denominator for each element. Furthermore, replacing
the delay distance bound dsi+1t ≤ ds0t as stated in the conditions of the theorem, each element is strictly

Sensors 2020, 20, 3830 26 of 34

increased as shown in (A3). Upper bounding each feasible path delay by αD(req), and simplifying by
(n + 1) we get the final upper bound.

Arithmetic(Fi) ≤

n

∑
i=0

d(f p)
sisi+1 + ds0t

(n + 1)B(req)
≤

(n + 1)
(
αD(req) + ds0t

)
(n + 1)B(req)

=
αD(req) + ds0t

B(req)
(A3)

Secondly, we lower bound the harmonic mean of the fractions, by applying the trivial lower
bound for the feasible path delay d(f p)

sisi+1 ≥ dsisi+1 . This decreases the denominator in each element of
the sum, which increases the total in the main denominator, resulting in a lower main fraction value.
The second lower estimation is done by replacing each element’s denominator by the lower bound on
the used substrate node’s distance B(dist), resulting in a common denominator:

Harmonic(Fi) ≥
n + 1

n

∑
i=0

D(req)−∑i−1
j=0 d(f p)

sj sj+1
dsi si+1+dsi+1t

≥ (n + 1)B(dist)

n

∑
i=0

(
D(req) −∑i−1

j=0 d(f p)
sjsj+1

) ≥ . . . (A4)

Next, we increase the denominator by discarding negative values from each element of the sum,
moreover, for each index i only the last element of the inner sum (with the highest index j) is kept.
Rearranging the sum, we get the total used path delay until VNF vn, which equivalently can be
rewritten as shown in (A5). As the feasible path delay is upper bounded by αD(req) for each step,
we get the last lower estimation.

· · · ≥ (n + 1)B(dist)

(n + 1)D(req) − D(used)
n

=
(n + 1)B(dist)

(n + 1)D(req) − D(used)
n+1 + d(f p)

snt

≥ (n + 1)B(dist)

(n + 1 + α)D(req) − D(used)
n+1

(A5)

Meeting the two sides of the estimations we get

(n + 1)B(dist)

(n + 1 + α)D(req) − D(used)
n+1

≤ αD(req) + ds0t

B(req)
(A6)

which can be rearranged to a general upper bound of the total used path delay D(used)
n+1

D(used)
n+1 ≤ (n + 1 + α)D(req) − (n + 1)B(dist)B(req)

αD(req) + ds0t
. (A7)

Substituting the expression as stated for the product of the bounds B(dist)B(req), we upper bound
the right-hand side and get the main statement of the theorem for (1 + ε)-approximation. The upper
limits stated for the bounds individually can be verified by substituting them into (A6).

Appendix B

Proof of Theorem 2. First of all, we state and prove some lemmas, to support the claims of the theorem
(Thanks for Márton Zubor, PhD for his essential help with this proof).

Lemma A1. Let VNF vmax ∈ R(vn f s) be with maximum demand dmax := max
d(s. f .)

R
(R(vn f s)), and let

substrate node s ∈ VS be with capacity c(s. f .)
S (s) ≥ dmax. Furthermore, let request multiset be (V′R, mR′), V′R ⊆

R(vn f s), such that dem_sum((V′R, mR′)) = ∑vi∈V′R
d(s. f .)

R (vi)mR′(vi) > c(s. f .)
S (s).

Then, ∃(V′′R , mR′′) ⊆ (V′R, mR′) so that

Sensors 2020, 20, 3830 27 of 34

max
{⌊ c(s. f .)

S (s)
2

⌋
+ 1, c(s. f .)

S (s)− dmax + 1
}
≤ dem_sum((V′′R , mR′′)) ≤ c(s. f .)

S (s) (A8)

Proof of Lemma A1. Choose elements of (V′′R , mR′′) from (V′R, mR′) in non-increasing order (starting

with highest demand VNF), until the inequality dem_sum((V′′R , mR′′)) ≤ c(s. f .)
S (s) holds. Then clearly

(even if vmax was the only chosen element) c(s. f .)
S (s) − dmax < dem_sum((V′′R , mR′′)) holds.

As the values are integers, adding 1 to the right-hand side, the inequality is reached.
Without loss of generality we can index the ordered list of (VR

′, mR′), where M = size((VR
′, mR′)):

d(s. f .)
R (v1) ≥ d(s. f .)

R (v2) ≥ · · · ≥ d(s. f .)
R (vM). We define the notation for the multisets with listed

elements in this order and their corresponding demand sum as

(VR
(i), mR(i)) = {v1, . . . vi}, ∀i = 1 . . . M (A9)

Di = dem_sum((VR
(i), mR(i))), ∀i = 1 . . . M (A10)

Since dmax ≤ c(s. f .)
S (s), we can choose and index k ∈ {1 . . . M− 1} such that

d(s. f .)
R (v1) = D1 < · · · < Dk ≤ c(s. f .)

S (s) < Dk+1 < · · · < DM = dem_sum((VR
(M), mR(M))) (A11)

Looking at the interesting part of these inequalities

Dk ≤ c(s. f .)
S (s) < Dk+1 = Dk + d(s. f .)

R (vk+1) (A12)

c(s. f .)
S (s)− d(s. f .)

R (vk+1) < Dk (A13)

From the initial indexing d(s. f .)
R (vk+1) ≤ d(s. f .)

R (vk) and we get d(s. f .)
R (vk+1) ≤ Dk as the demand of vk

is contained in Dk. Adding this to the previous equation

c(s. f .)
S (s) < 2Dk (A14)

With using the chosen index k as the multiset to be found (VR
′′, mR′′), we get the remaining term of the

statement of the lemma: ⌊
c(s. f .)

S (s)
2

⌋
+ 1 ≤ Dk = dem_sum((VR

′′, mR′′)) (A15)

Lemma A2. Let A0 be as defined in line 7 of Algorithm 2, then the following inequalities hold:

cap_sum(V′(big)
S)

2
≤ A0 ≤ OPT{RCP(V′(big)

S ,R(vn f s), c(s. f .)
S , d(s. f .)

R)} (A16)

Proof of Lemma A2. The right inequality directly follows from the definition of A0, because for all

substrate nodes with big capacity si ∈ V′(big)
S the inequality c(s. f .)

S (si)
2 ≤ max

{⌊ c(s. f .)
S (si)

2

⌋
+ 1, c(s. f .)

S (si)−

dmax + 1
}

.
The second inequality means we can solve the Capacity Allocation Problem for all request

multisets ∀V′R ⊆ R(vn f s), ∀(V′R, mR′), where dem_sum((VR
′, mR′)) ≤ A0 because the condition of the

essential property in (16) are met, i.e., the sum of demands is lower than the capacity of the aggregate
node created from the big capacity substrate nodes V′(big)

S . For proving the inequality, we need to

Sensors 2020, 20, 3830 28 of 34

provide a solution for the Capacity Allocation Problem for all VNF multisets (V′R, mR′) onto substrate

nodes V′(big)
S .

If there is any substrate node si ∈ V′(big)
S , which can fit all of the VNFs, i.e., dem_sum((VR

′, mR′)) ≤
c(s. f .)

S (si), then the allocation is given. Otherwise, in this situation, according to Lemma A1 we can
choose some VNF multiset (VR

′′, mR′′) ⊆ (VR
′, mR′), which completely fits to a substrate node si ∈

V′(big)
S . Repeat this step by discarding the used substrate node si and the allocated VNFs (VR

′′, mR′′),
until a complete mapping of (VR

′, mR′) is found. Indirectly suppose that this iterative method fails,
which means there is a multiset of VNFs (VR

∗, mR∗) for which dem_sum((VR
∗, mR∗)) > A0, but this

contradicts the initial condition of fitting to the aggregate node.

Lemma A3. If substrate node set V′S ⊆ VS is disjoint union of V(0)
S and V(1)

S , then (the capacity and demand
functions are omitted for readibility)

OPT{RCP(V′S,R(vn f s))} ≤ OPT{RCP(V(0)
S ,R(vn f s))}+ OPT{RCP(V(1)

S ,R(vn f s))} (A17)

Proof of Lemma A3. Let
A′ = OPT{RCP(V′S,R(vn f s))}

A(0) = OPT{RCP(V(0)
S ,R(vn f s))}

A(1) = OPT{RCP(V(1)
S ,R(vn f s))}

Then the left side of the inequality means we can solve CAP(V′S, (V′R, mR′), c(s. f .)
S , d(s. f .)

R) for any request
multiset ∀V′R ⊆ R(vn f s), ∀(V′R, mR′), where dem_sum((VR

′, mR′)) ≤ A′. While on the right side,
if we take the same VNF multiset (VR

′, mR′) we can solve the corresponding CAP-s if (VR
′, mR′)

has a special 2-set partition (VR
(0), mR(0)) and (VR

(1), mR(1)) so that dem_sum((VR
(0), mR(0))) ≤ A(0)

and dem_sum((VR
(1), mR(1))) ≤ A(1). These request sets can be collected from the solution of the

CAP for the initial substrate set V′S as V(0)
S and V(1)

S are given.
As the OPT{RCP} function is subadditive for the substrate graph sets (i.e., adding new substrate

nodes does not necessarily increase OPT{RCP} due to e.g., not being able to map more VNFs anyway),
and the CAPproblems are feasible, the inequality follows.

Now we return to the proof of the main statement. Note that the demand and capacity functions
are omitted from the input of OPT{RCP} and APRXRCP as they do not change during the proof.
We prove OPT{RCP(V′S,R(vn f s))} ≤ 2 · APRXRCP(V′S,R(vn f s)) by induction on the number of
elements inR(vn f s).

We take the partition of the substrate nodes V′S into big capacity nodes V′(big)
S and small capacity

nodes V′(small)
S as it is used in Algorithm 2. From Lemma A2 and from (15) of Formulation 3,

respectively we get

cap_sum(V′(big)
S) ≤ 2A0 ⇐ (Lemma A2) (A18)

OPT{RCP(V′(big)
S ,R(vn f s))} ≤ cap_sum(V′(big)

S) ⇐ (15) (A19)

OPT{RCP(V′(big)
S ,R(vn f s))} ≤ 2A0 (A20)

Solving the RCP for the small substrate nodes V′(small)
S is clearly the demand of the smallest fitting

VNF (reminiscent of line 11 of Algorithm 2):

OPT{RCP(V′(small)
S ,R(vn f s))} = min

{
dmax − 1, OPT

{
RCP(V′(small)

S ,R(vn f s) \ {vmax})
}}

(A21)

Sensors 2020, 20, 3830 29 of 34

where VNF vmax ∈ R(vn f s) is with maximum demand dmax := max
d(s. f .)

R
(R(vn f s)). By the inductive

assumption on the number of VNFs we know

OPT{RCP(V′(small)
S ,R(vn f s) \ {vmax})} ≤ 2APRXRCP(V′(small)

S ,R(vn f s) \ {vmax}) (A22)

Substituting it into the previous equation we get the inequality

OPT{RCP(V′(small)
S ,R(vn f s))} ≤ 2 min

{
dmax − 1, APRXRCP(V′(small)

S ,R(vn f s) \ {vmax})
}

(A23)

Adding together the inequalities (A20) and (A23), we get the recursive return value of
APRXRCP on the right side:

OPT{RCP(V′(big)
S ,R(vn f s))}+ OPT{RCP(V′(small)

S ,R(vn f s))} ≤

2A0 + 2 min
{

dmax − 1, APRXRCP(V′(small)
S ,R(vn f s) \ {vmax})

}
(A24)

Finally, applying Lemma A3 to the disjoint sets of V′(big)
S and V′(small)

S we get the lower estimation by
the optimal value on the left side:

OPT{RCP(V′S,R(vn f s))} ≤ 2 · APRXRCP(V′S,R(vn f s)) (A25)

Appendix C

Proof of Theorem 3. The condition of cµ ≤ λ ensures the stability of the system, i.e., all of the
subsequently defined random variables have first moments [32,33].

We build our results on the foundational analytical work on M/M/c models presented in [33].
We restate some of their results and definitions using the notations of our paper to prove the theorem.
We take the definition of the M/M/c busy period Tk as the time until the first occasion the system
decreases the number of active pods from k to k− 1. It is formalized in Definition A1.

Definition A1 (Busy period Tk of M/M/c [33]). Let k ∈ {1, 2, . . . c} be the number of busy pods in
an M/M/c system, and let Tk ∈ R+ be a random variable:

Tk = min[t : k jobs in the system at time 0+,

k− 1 jobs in the system at time t].

Using the definition of Tk we formally define the total busy time Θc used in Theorem 3 as the sum
of all busy times. Due to the memoryless property of the M/M/c system, the subsequent values of the
independent random variables Tk can be summed.

Definition A2 (Total busy time Θc of M/M/c). The random variable of the total busy time Θc measures
the length of time until the first idle moment of an M/M/c system starting from c busy servers.

Θc =
c

∑
k=1

Tk

Following the idea of [33] for the definition of Tk, we analogously define the random variable of
the single weighted busy period Bk. A demonstration is shown in Figure A1 and the formal definition
in Definition A3.

Sensors 2020, 20, 3830 30 of 34

k+1

time

Number of busy pods

k

k-1

Ik

BkBk+1
k * Ik

Tk

Figure A1. Illustration for the recursive definition of Bk.

Definition A3 (Weighted single busy period Bk of M/M/c). Let Ik be the random variable of inter-event
time of the aggregate Poisson process of an M/M/c system with

• k Poisson processes (pods) serving requests with rate µ and
• the arrival Poisson process with rate λ.

Denote the probabilities of an arrival and departure of such aggregated Poisson process by p(arr)
k and p(dep)

k ,
respectively. Let Bk, k ∈ {1, 2, . . . c} be the weighted total load of an M/M/c system while first time reducing
the number of currently active pods from k to k− 1:

Bk =

=

{
kIk + Bk+1 + Bk, with probability p(arr)

k

kIk, with probability p(dep)
k

if 1 ≤ k < c

= cTc if k = c.

At Definition A3 we recursively use the mixture distribution of random variables, defined by
the arrival and departure events. For the case of 1 ≤ k < c the first event is either a departure or arrival
after Ik time has passed. The area under the chart until this event is kIk, which concludes the Bk if this
event was the departure of a served request, with probability p(dep)

k . In case of an arrival, in addition
to the previously calculated area kIk, the random variable recursively consists of the sum of Bk+1
and Bk , because the number of jobs in the system has increased by one, and eventually returns back to
k. Due to the memoryless property of the M/M/c system, the random variables are independent so
they can be summed. Thus, the value of the Bk adds up to the total area under the time–number of
busy pods chart, during the time interval Tk as illustrated by Figure A1. In the case of k = c, the area
under the chart is the length of the interval Tc (see Definition A1) times the maximal number of busy
servers c.

The distribution of the inter-event time Ik is exponentially distributed with rate λ + kµ.
The probabilities of an arrival or departure event if there are k busy pods in the defined aggregate
Poisson process can be calculated [33]:

p(dep)
k =

kµ

λ + kµ
; p(arr)

k =
λ

λ + kµ
(A26)

Analogously to Definition A2, we formally define the total weighted busy time Ωc. Due to
the memoryless property of the M/M/c system, the subsequent Bk values are independent random
variables, so they can be simply summed.

Definition A4 (Weighted total busy time Ωc of M/M/c). The weighted total busy time measures the area
under the time–busy pod count function for an M/M/c system starting from c busy servers until the first
idle moment:

Ωc =
c

∑
k=1

Bk

Sensors 2020, 20, 3830 31 of 34

Both considered composite random variables Θc and Ωc are composed of independent random
variables as defined earlier, so their expected values can be calculated summing the expected values of
the components:

E[Θc] =
c

∑
k=1

E[Tk] (A27)

E[Ωc] =
c

∑
k=1

E[Bk] (A28)

In the following we show how to calculate these expected values using Laplace–Stieltjes
Transform (LST).

Lemma A4 (Laplace–Stieltjes Transform (LST) properties [32]). Let FX(x) be the CDF of X arbitrary
random variable with LST ϕX(s).

aX −→ FX(
x
a
), where a ∈ R+, (A29)

FX(
x
a
)

LST−−→ ϕX(as), where a ∈ R+, (A30)

FX+Y(x) LST−−→ ϕX(s)ϕY(s), where X and Y are independent random variables, (A31)

E[X] = − d
ds

ϕX(0) is the expected value of X. (A32)

Referring to earlier works on the M/M/c analysis, the previously defined distributions’ LSTs
have been calculated [33], we state them here as lemmas.

Lemma A5 (Laplace–Stieltjes Transform of Tk [33]). Let ηk(s) be the Laplace–Stieltjes Transform of
the cumulative distribution function (CDF) of busy period Tk:

ηk(s) =

kµ

s−λ−ληk+1(s)+kµ
if 1 ≤ k < c,

cµ
s+λ−ληc(s)+cµ

if k = c

Using (A32) of Lemma A4 we can calculate the elements of the summation in (A27),
which concludes the calculation of the first expected value:

cE[Θc] = c
c

∑
k=1

E[Tk] = −c
c

∑
k=1

d
ds

ηk(0) (A33)

Lemma A6 (Laplace–Stieltjes Transform of Ik [33]). Let the LST of the CDF of inter-event time Ik be υk(s):

υk(s) =
λ + kµ

s + λ + kµ

Lemma A7 (Laplace–Stieltjes Transform of Bk). Let βk(s) be the LST of the CDF of weighted single busy
period Bk:

βk(s) =

p(dep)

k υk(k·s)
1−p(arr)

k υk(k·s)βk+1(s)
if 1 ≤ k < c,

ηc(c · s) if k = c.

Sensors 2020, 20, 3830 32 of 34

Proof of Lemma A7. As Bk is recursively defined in Definition A3, we express its LST in a recursive
form. Using the first two properties of Lemma A4, the LSTs of the random variables are scaled.
Summation of the independent variables means multiplication in the LST-space as shown in Lemma A4.
Using Lemma A6 and Lemma A5, the LSTs of inter-arrival time Ik and single busy period Tk are known.
Applying the mixture distribution of random variables with probabilities p(arr)

k and p(dep)
k to the case

1 ≤ k < c of Definition A3 we get:

βk(s) = p(dep)
k υk(k · s) + p(arr)

k υk(k · s)βk+1(s)βk(s) if 1 ≤ k < c (A34)

Finally, arranging the equation to βk(s), and expressing βk(s) for the case of k = c, we get
the statement of the lemma.

Using (A32) of Lemma A4 we can calculate the elements of the summation in (A28),
which concludes the calculation of the second expected value:

E[Ωc] =
c

∑
k=1

E[Bk] = −
c

∑
k=1

d
ds

βk(0) (A35)

Dividing (A35) by the previously calculated expression (A33), we get the directly calculable
fraction for the scaling metric estimation, as used in Proposition 2:

ũ =
E[Ωc]

cE[Θc]
=

∑c
k=1

d
ds βk(0)

c ∑c
k=1

d
ds ηk(0)

(A36)

References

1. Varga, P.; Peto, J.; Franko, A.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L.
5G support for Industrial IoT Applications—Challenges, Solutions, and Research gaps. Sensors 2020, 20, 828.
[CrossRef] [PubMed]

2. Blanco, B.; Fajardo, J.O.; Giannoulakis, I.; Kafetzakis, E.; Peng, S.; Pérez-Romero, J.; Trajkovska, I.;
Khodashenas, P.S.; Goratti, L.; Paolino, M.; et al. Technology pillars in the architecture of future 5G
mobile networks: NFV, MEC and SDN. Comput. Stand. Interfaces 2017, 54, 216–228. [CrossRef]

3. Rost, M.; Schmid, S. Charting the Complexity Landscape of Virtual Network Embeddings. In Proceedings of
the IFIP Networking Conference (IFIP Networking) and Workshops, Zurich, Switzerland, 14–16 May 2018.

4. Rost, M.; Schmid, S. Virtual Network Embedding Approximations: Leveraging Randomized Rounding.
IEEE/ACM Trans. Netw. 2019, 27, 2071–2084. [CrossRef]

5. Laghrissi, A.; Taleb, T. A Survey on the Placement of Virtual Resources and Virtual Network Functions.
IEEE Commun. Surv. Tutor. 2019, 21, 1409–1434. [CrossRef]

6. Kubernetes Documentation. Available online: https://kubernetes.io/docs/home/ (accessed on
27 March 2020).

7. Horizontal Pod Autoscaler—Kubernetes. Available online: https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/ (accessed on 24 March 2020).

8. Fernandez, J.M.; Vidal, I.; Valera, F. Enabling the Orchestration of IoT Slices through Edge and Cloud
Microservice Platforms. Sensors 2019, 19, 2980. [CrossRef] [PubMed]

9. Knight, S.; Nguyen, H.; Falkner, N.; Bowden, R.; Roughan, M. The Internet Topology Zoo. IEEE J. Sel. Areas
Commun. 2011, 29, 1765–1775. [CrossRef]

10. Chowdhury, M.; Samuel, F.; Boutaba, R. PolyViNE: Policy-Based Virtual Network Embedding across
Multiple Domains. In Proceedings of the Second ACM SIGCOMM Workshop on Virtualized Infrastructure
Systems and Architectures—VISA ’10, New Delhi, India, 3 September 2010; Association for Computing
Machinery: New York, NY, USA, 2010; pp. 49–56. [CrossRef]

http://dx.doi.org/10.3390/s20030828
http://www.ncbi.nlm.nih.gov/pubmed/32033076
http://dx.doi.org/10.1016/j.csi.2016.12.007
http://dx.doi.org/10.1109/TNET.2019.2939950
http://dx.doi.org/10.1109/COMST.2018.2884835
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
http://dx.doi.org/10.3390/s19132980
http://www.ncbi.nlm.nih.gov/pubmed/31284514
http://dx.doi.org/10.1109/JSAC.2011.111002
http://dx.doi.org/10.1145/1851399.1851408

Sensors 2020, 20, 3830 33 of 34

11. Kumar, A.; Rastogi, R.; Silberschatz, A.; Yener, B. Algorithms for provisioning virtual private networks in
the hose model. IEEE/ACM Trans. Netw. 2002, 10, 565–578. [CrossRef]

12. Ravindran, R.; Smith, P.A.; Wang, G.Q.; Zhang, H. Method and Apparatus for Computing Metric Information
for Abstracted Network Links. US Patent 7,382,738, 3 June 2008.

13. Tran, A.K.; Piran, M.J.; Pham, C. SDN Controller Placement in IoT Networks: An Optimized
Submodularity-Based Approach. Sensors 2019, 19, 5474. [CrossRef] [PubMed]

14. Karakus, M.; Durresi, A. A survey: Control plane scalability issues and approaches in Software-Defined
Networking (SDN). Comput. Netw. 2017, 112, 279–293. [CrossRef]

15. Kang, N.; Liu, Z.; Rexford, J.; Walker, D. Optimizing the “One Big Switch” Abstraction in Software-Defined
Networks. In Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and
Technologies—CoNEXT ’13, Santa Barbara, CA, USA, 9–12 December 2013; Association for Computing
Machinery: New York, NY, USA, 2013; pp. 13–24. [CrossRef]

16. Gil Herrera, J.; Botero, J.F. Resource Allocation in NFV: A Comprehensive Survey. IEEE Trans. Netw.
Serv. Manag. 2016, 13, 518–532. [CrossRef]

17. Sonkoly, B.; Szabo, R.; Jocha, D.; Czentye, J.; Kind, M.; Westphal, F.J. UNIFYing Cloud and Carrier Network
Resources: An Architectural View. In Proceedings of the 2015 IEEE Global Communications Conference
(GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–7. [CrossRef]

18. Vaishnavi, I.; Czentye, J.; Gharbaoui, M.; Giuliani, G.; Haja, D.; Harmatos, J.; Jocha, D.; Kim, J.; Martini, B.;
MeMn, J.; et al. Realizing services and slices across multiple operator domains. In Proceedings of the NOMS
2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018;
pp. 1–7. [CrossRef]

19. Sonkoly, B.; Szabó, R.; Németh, B.; Czentye, J.; Haja, D.; Szalay, M.; Dóka, J.; Gerő, B.P.; Jocha, D.; Toka, L.
5G Applications from Vision to Reality: Multi-Operator Orchestration. IEEE J. Sel. Areas Commun. 2020, 38,
1401–1416. [CrossRef]

20. Fischer, A.; Botero, J.F.; Beck, M.T.; de Meer, H.; Hesselbach, X. Virtual Network Embedding: A Survey.
IEEE Commun. Surv. Tutor. 2013, 15, 1888–1906. [CrossRef]

21. Xie, Y.; Liu, Z.; Wang, S.; Wang, Y. Service Function Chaining Resource Allocation: A Survey. arXiv 2016,
arXiv:1608.00095.

22. Moens, H.; Turck, F.D. VNF-P: A model for efficient placement of virtualized network functions.
In Proceedings of the 10th International Conference on Network and Service Management (CNSM) and
Workshop, Rio de Janeiro, Brazil, 17–21 November 2014; pp. 418–423.

23. Qu, L.; Assi, C.; Shaban, K.; Khabbaz, M.J. A Reliability-Aware Network Service Chain Provisioning With
Delay Guarantees in NFV-Enabled Enterprise Datacenter Networks. IEEE Trans. Netw. Serv. Manag.
2017, 14, 554–568. [CrossRef]

24. Gouareb, R.; Friderikos, V.; Aghvami, A. Virtual Network Functions Routing and Placement for Edge Cloud
Latency Minimization. IEEE J. Sel. Areas Commun. 2018, 36, 2346–2357. [CrossRef]

25. Leivadeas, A.; Kesidis, G.; Ibnkahla, M.; Lambadaris, I. VNF Placement Optimization at the Edge and Cloud.
Future Internet 2019, 11, 69. [CrossRef]

26. Németh, B.; Sonkoly, B.; Rost, M.; Schmid, S. Efficient service graph embedding: A practical approach.
In Proceedings of the 2016 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), Palo Alto, CA, USA, 7–10 November 2016; pp. 19–25. [CrossRef]

27. Sonkoly, B.; Szabó, M.; Németh, B.; Majdán, A.; Pongrácz, G.; Toka, L. FERO: Fast and Efficient Resource
Orchestrator for a Data Plane Built on Docker and DPDK. In Proceedings of the IEEE INFOCOM 2018—IEEE
Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 243–251. [CrossRef]

28. Németh, B.; Szalay, M.; Dóka, J.; Rost, M.; Schmid, S.; Toka, L.; Sonkoly, B. Fast and efficient network service
embedding method with adaptive offloading to the edge. In Proceedings of the IEEE INFOCOM 2018—IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA,
15–19 April 2018; pp. 178–183. [CrossRef]

29. Holzmüller, D. Improved Approximation Schemes for the Restricted Shortest Path Problem. arXiv 2017,
arXiv:1711.00284.

30. Abbasi, A.A.; Younis, M. A survey on clustering algorithms for wireless sensor networks. Comput. Commun.
2007, 30, 2826–2841. [CrossRef]

31. Schaeffer, S.E. Graph clustering. Comput. Sci. Rev. 2007, 1, 27–64. [CrossRef]

http://dx.doi.org/10.1109/TNET.2002.802141
http://dx.doi.org/10.3390/s19245474
http://www.ncbi.nlm.nih.gov/pubmed/31842268
http://dx.doi.org/10.1016/j.comnet.2016.11.017
http://dx.doi.org/10.1145/2535372.2535373
http://dx.doi.org/10.1109/TNSM.2016.2598420
http://dx.doi.org/10.1109/GLOCOM.2015.7417869
http://dx.doi.org/10.1109/NOMS.2018.8406168
http://dx.doi.org/10.1109/JSAC.2020.2999684
http://dx.doi.org/10.1109/SURV.2013.013013.00155
http://dx.doi.org/10.1109/TNSM.2017.2723090
http://dx.doi.org/10.1109/JSAC.2018.2869955
http://dx.doi.org/10.3390/fi11030069
http://dx.doi.org/10.1109/NFV-SDN.2016.7919470
http://dx.doi.org/10.1109/INFOCOM.2018.8485953
http://dx.doi.org/10.1109/INFCOMW.2018.8406882
http://dx.doi.org/10.1016/j.comcom.2007.05.024
http://dx.doi.org/10.1016/j.cosrev.2007.05.001

Sensors 2020, 20, 3830 34 of 34

32. Lakatos, L.; Szeidl, L.; Telek, M. Introduction to Queueing Systems with Telecommunication Applications;
Springer Publishing Company, Incorporated: New York, NY, USA, 2013.

33. Omahen, K.; Marathe, V.M. Analysis and Applications of the Delay Cycle for the M/M/c Queueing System.
J. ACM (JACM) 1978, 25, 283–303. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/322063.322072
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Background
	Network Abstraction
	Service Placement

	Base System Model and Optimization Problem
	System Model and Problem Formulation
	Heuristic Greedy Backtrack Approach

	Result on Path Delay Constraint
	Result on Resource Aggregation
	Revisit the BiS-BiS Model
	Resource Contraction Problem
	Approximating Resource Contraction

	Results on Elastic Resources
	Modeling Resource Elasticity
	Describing Elastic Resource Behavior

	Practical Exploitation
	Result Application Examples
	Real-World Prototype Experiment
	Application of Theorem 1
	Resource Contraction Example Using Algorithm 2
	Comparison of Algorithm 3 to Measurement

	Aggregate Elastic Substrate Node Type

	Conclusions
	
	
	
	References

