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A B S T R A C T

Section 1 of this paper provides an introduction to this new “algebra of conditionals”, addresses various plausi-
bility tests for such an algebra, provides a Venn diagram disproving a supposed counter-example, and answers
various other objections raised in the literature about the efficacy of this algebraic extension of logic and con-
ditional probability. Section 2 greatly simplifies the calculation of the implications of a set of conditional prop-
ositions or conditional events. These results depend on defining a deductive relation for conditionals (actually two
have been found) with the property that the conjunction of two conditionals implies each of its components. That
seemingly innocuous property assures that the deductively closed set implied by a finite set of n conditionals with
respect to the deductive relation is implied by the single conditional formed by conjoining all n of them. The
results are illustrated by solving several examples of deduction with several uncertain conditionals.
1. Introduction

The general topic of conditional events and conditional probability
continues to be an active area of research, [1, 2, 6]. The main purpose of
this paper is to greatly simplify my previous expositions of deduction
with partially true conditionals1. This simplification is due to the dis-
covery of two new (at least to me) deductive relations on conditional
events (and conditional propositions) that greatly simplify the problem of
computing the implications of a set of two or more possibly uncertain
conditionals.

This problem arose when two Boolean conditionals (a given b) & (c
given d) were “quasi-conjoined” and expressed as a single Boolean con-
ditional (ab or cd) given (b or d), which (depending on the implication
relation adopted) might not imply one or both of its components! It
became necessary in theory to form all finite conjunctions of the assumed
conditionals in order to compute their combined implications. Due to
complexity, this was impractical even for a computer. This paper will
eliminate that issue and also answer some objections to the idea of
treating conditionals whose components are Boolean propositions or
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probabilistic events as trivalent ordered pairs with operations that extend
those of Boolean algebra.

1.1. The necessity of conditionals

It is commonly thought that explicitly conditional statements such as
“When it rains an umbrella is useful” are somehow different from (non-
explicitly conditional) statements formed by purely Boolean combina-
tions of “properties”, “propositions” or probabilistic “events”. However,
it is impossible to formulate a completely unconditional statement! They
all have an assumed context and a qualification within that context.
“Redness” entails the context of “color”; Truth entails the potential
context of its absence. Any assertion requires a conceptual framework in
which to make it.

It becomes clear that information should really come as an ordered
pair of statements, (a|b)— “a given b”, “a in the context of b”, “a if b” or
“if b then a”. The first two of these constructions are not necessarily
absolute implications but merely a qualification “a” in the context of a
condition “b”. Usually, the last two of these constructions mean “b
ember 2021
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necessarily implies a”, although this distinction has not always been
made.
1.2. The logic-probability, intension-extension connection

By information I mean the indicative conditional propositions of logic
and their associated conditional events of probability theory. Each
proposition q has an associated subset of models (worlds, examples) in
which it is unambiguously true, and the probability of q is defined to be
the probability of those models in which it is true. Thus, propositions can
be represented as measurable indicator functions defined on the universe
of models2.
1.3. Definition of the conditional closure

Let (B|B) denote the collection of all order pairs (a|b), where a, b are
Boolean propositions or probabilistic events. (B|B) will be called the
Conditional Closure of the Boolean algebra B, and its members will be
called conditional propositions (or conditional events, when viewed as
subsets of models).

An algebraic extension algebra of Boolean logic and probability logic
must avoid the 2-valued logical simplification of including in the truth of
a conditional statement or implication “a if b” all instances of the falsity
of the premise b. Translating “a if b” as “either a or not b”, the so-called
material conditional [24], takes the 2-valued position that if a condi-
tional is “not false”, then it must be true; and it is “false” only when “a” is
false and b is true. Thus “a if b” has been classified as true when either its
premise b is false or its qualification a, is true. A false premise supposedly
guarantees the truth of any conclusion!? However, a valid proof by
contradiction must be based on true premises except the one being
conjectured.

While 2-valued conditionals and implications adequately serve ab-
solute (2-valued) logical thinking, they severely distort conditional
probabilities by not adequately distinguishing between instances of a
false premise from those for which both the components of the condi-
tional are true. This is why it is necessary to have 3 truth categories:
“true”, “false” and “inapplicable” (undefined).

D. Lewis [7] early showed that (a|b) could not be assigned the con-
ditional probability P(a|b) and also be a member of the original Boolean
algebra containing a and b because then, using standard conditional
probability rules, P(a|b) ¼ P((a|b) ^ (a _ a0)) ¼ P((a|b) ^ a) þ P((a|b) ^
a0) ¼ P((a|b) | a)P(a) þ P((a|b) | a0)P(a0) ¼ P(a|ba)P(a) þ P(a|ba0)P(a0) ¼
(1)P(a) þ (0)P(a0) ¼ P(a) no matter what (except for trivial cases) the
propositions a and b!

Although no logical object (a|b) is explicitly included in the standard
formulation of either Boolean algebra or Kolmogorov probability theory,
there is an extension algebra [3] of ordered pairs that does in fact include
all these algebraic objects (a|b), and assigns them (conditional) proba-
bilities consistent with both Boolean logic and probability theory.

This partially distributive extension algebra of ordered pairs of
propositions or events allows the disjunction or conjunction of two or
more conditionals with different premises to be combined into as a single
conditional event with a well-defined conditional probability.
1.4. Definition of equivalence3

Two of these pairs (a|b) and (c|d) are considered equivalent (¼) in
case their conditions (b & d) are equivalent, and also their identified
qualifications or conclusions (a & c) are equivalent when conjoined with
their equivalent conditions. That is, (a|b) ¼ (c|d) if and only if b ¼ d and
2 See [5], p. 234.
3 Unknown to me at the time, Bruno de Finetti [8] early gave this definition of

equivalence for conditional statements. Also see [5], Definition 3.5.4, p 209.
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ab¼ cd, where juxtaposition means Boolean conjunction. Note that (a|b)
¼ (ab|b).

1.5. Three-valuedness

Such a pair (a|b), “a given b”, appears at first to have 4 truth states:
(True|True), (False|True), (True|False) and (False|False). The first two
reduce to “True” and “False” respectively when the given condition is
true. However, according to the above definition the last two states are
equivalent because their conditions are both false (and so equivalent),
and conjoined with those false premises their identified qualifications are
also false and so equivalent. In this last state the conditional is said to be
“inapplicable” or undefined. Notice, in this 3-valued system, “not false” is
no longer the same as “true”. It means “true or inapplicable”.

While it is often possible in symbolic logic to maintain a constant
context and therefore avoid the complexities of changing conditions, the
inherent inadequacy of such an approach is clear when propositions that
are only partially true enter the picture as in probability theory. Such
propositions can be true in somemodels (instances) but false in others. At
that point the inability to classify a proposition in any other way besides
“always true” or “not always true” (false) becomes inhibiting.

After all, inapplicability is all around us in every statement or prop-
osition. Since every statement has a premise, it does not apply in situa-
tions that falsify that premise. Thus, for any instance or outcome
(conditional) propositions have one of three mutually exclusive truth-
values: true, false and inapplicable (or undefined).

1.6. Operating on conditionals

Any extension of Boolean operations to two conditionals (a|b) and (c|
d) must of course reduce to ordinary Boolean operations of conjunction
(^; and), disjunction (_; or) and negation (0; not) whenever b¼ d, that is,
whenever the conditions are equivalent. This is true for the following
extended operations on conditionals4 having possibly non-equivalent
conditions.

1) (a|b) _ (c|d) ¼ (ab _ cd |b _ d)
2) (a|b) ^ (c|d) ¼ (abd0 _ cdb0 _ abcd |b _ d) ¼ ((a _ b0) (c _ d0) |b _ d)
3) (a|b)0 ¼ (a0|b)

In the conditional closure, a formally unconditioned (universally
conditioned) proposition or event, a, is identified with the conditional (a|
1), where 1 is the unique “always true” logical unit (b _ b0) or in prob-
ability theory the universal eventΩ having probability 1. All propositions
or events a, b that make up a conditional (a|b) are assumed to be
members of a fixed universe of all possibilities.

These operations on conditionals were chosen to be fully compatible
with the well-established “conditional probability function” P(a|b) of
“proposition a given b” defined to be the ratio P(a ^ b)/P(b).

The disjunction of two conditionals “(a given b) or (c given d)” ex-
pands the context to (b _ d) and qualifies this context with the propo-
sition ab _ cd, which is the disjunction of the applicable qualifications of
the component conditionals.

The conjunction of these same two conditionals equally expands the
context but further qualifies that context to the truth (ab) of the first
conditional conjoined with the inapplicability (d0) of the second condi-
tional plus (or) the truth of the second conditional conjoined with the
inapplicability of the first conditional plus the conjunction (abcd) of the
truths of both conditionals.

To show this conjunction of the two conditionals is also the condi-
tional ((a _ b0) (c _ d0) |b _ d) one need only expand (ab _ b0) (cd _ d0)
and condition the result by (b _ d).
4 Earnest Adams [9] called 1) & 2) quasi-operations. They were rediscovered
by the author and expressed as axioms in [5], p 216.
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1.7. Non-monotonic operations. A die example

As noted above, when two conditionals with different premises are
conjoined or disjoined their context is expanded to the disjunction of
their premises. This can result is an object whose probability is “non-
monotonic” with respect to its component conditional propositions. The
conjunction of two conditionals can have a larger probability than both
of its components! A disjunction can be less probable than each of its
components.

For instance, consider the experiment of rolling a familiar single 6-
sided die, and suppose I bet “if the roll is an even number, it will be a
2 or 4, and if the roll is 5 or 6, it will be 5.” The compound conditional ((2
or 4 | Even) ^ (5 | 5 or 6)) equals the single conditional event (2, 4 or 5
given “Even or 5 or 6”) and it has a well-defined conditional probability.
The conditional event is (2, 4, 5 given the roll is even or 5) and so it has a
conditional probability of 3/4.

Note however that the conditional probability of (2 or 4 | Even) is 2/
3. Conjoining this with (5 | 5 or 6), which has conditional probability 1/
2, yields the compound conditional (2, 4, or 5 given the roll is even or 5),
which has probability ¾, which is larger than both 2/3 and 1/2 despite
the conjoining of the two conditionals! But this is simply the way we
linguistically and probabilistically combine conditionals. E. Adams called
these operations “quasi-” because of their non-monotonic properties.

Nevertheless, quasi-conjunction is the only operation that is consis-
tent with conditional probability and that also affirms “proof by cases”.
That is, a proposition C can be proved true by showing “C is true if D is
true, and C is true if D is false”, which can be expressed as (C|D) ^ (C|D0),
which by quasi-conjunction equals (C |D _ D0), which is “C given D is true
or not true” ¼ C.

1.8. Reversion to the material conditional

Notice that according to the operations, when a conditional (c|d) is
conjoinedwith an unconditioned (i.e. universe conditioned) proposition b
the result is b(c _ d0); it reverts to its material conditional because b ^ (c|
d)¼ (b|1) ^ (c|d)¼ (bd0 _ bcd | 1 _ d)¼ (b(d0 _ cd) | 1)¼ b(c _ d0). This
is reasonable since the conditional (c|d) imposes no extra constraint on b
beyond (cd _ d0).

On the other hand, disjoining a conditional (c|d) with an uncondi-
tioned proposition b yields (cd _ b) not (cd _ d0 _ b). (c|d) does not make
(c|d) _ b true whenever d is false as does the material conditional
interpretation.

1.9. Conditional conditionals

Consider a conditional (a|b) given a second conditional (c|d). This
would be ((a|b) | (c|d)). Again, in practice, we generally conjoin all
conditions assumed along the way to some conclusion. This has been
called the import-export rule. Here, both b and (c|d) are conditions and
“a” is the qualification given those conditions.

Conditioning is commutative in most domains (e.g. most games of
chance) but not in all domains (e.g. quantum measurements) but either
way this can be interpreted (simplified) as (a | (b ^ (c|d))) ¼ (a |b(c _
d0)). So when a conditional (c|d) is itself a condition for a second condi-
tional, it again reverts to its “material conditional” (c _ d0). That is,

4) ((a|b) | (c|d)) ¼ (a | (b ^ (c|d))) ¼ (a |b(c _ d0))

This selective reversion to the material conditional has been called
Gibbardian Collapse [12, 13] perhaps suggesting it poses a difficulty for
this approach, but I see none.

1.10. Indicative conditionals

In “Indicative Conditionals” R. Stalnaker [14] provides some tests
that any adequate algebra of conditionals should be able to pass:
3

1. Either the butler (B) or the gardener (G) did it. Therefore, if the butler
didn't do it the gardener did.

2. The butler did it; therefore if he didn't, the gardener did.
3. Consider the denial of “If the butler didn't do it then the gardener

did”. Does this imply that the butler did it?

If the conditional (a given b) is reduced to the “material conditional”
(a or not b) then there are paradoxical results. 1. Seems quite reasonable;
2. Seems contradictory, and 3. The negation of “If the butler didn't do it
then the gardener did” should not imply that the butler did it.

Let's consider these examples. 1. Can be expressed as (B _ G)¼ 1. And
therefore, if B0 is given, then [(B _ G) |B0] ¼ (0 _ G |B0) ¼ (G|B0). The
gardener did it given the butler didn't. Test 1 passed.

2. The 2nd example can be expressed as ((G|B0) |B) given the butler did
it, if he didn't the gardener did. But ((G|B0) |B) ¼ (G |B0B) ¼ (G|0), the
inapplicable conditional. The conditions are inconsistent and so “no
conclusion” is the result. The conditional becomes inapplicable. Test 2
passed.

Notice that had (G|B0) been rendered as the material conditional (G or
not B0) ¼ (G _ B) then given B, ((G _ B) |B) ¼ (B|B); the contradiction
disappears and “the butler did it given he did it”, which is a big problem
for the material conditional rendering.

3. Denying (G |B0) - that the gardener did it given the butler didn't do
it - is (G |B0)0 ¼ (G0 |B0). It expresses the conditional statement “Given the
butler didn't do it, the gardener didn't either.” There is no implication
that the butler did it. Test 3 passed. [In this example, rendering (G |B0) as
the material conditional (G or not B0) ¼ (G _ B) seems to result in a
reasonable conclusion if denied: (G _ B)0 ¼ G0B0, that neither the butler
nor the gardener did it.]
1.11. The notorious fatalism argument

R. Stalnaker5 [14] also relays the “notorious argument” for fatalism: I
will be killed (K) or not (K0). I can take precautions (p) but they may be
ineffective (q) or unnecessary (r). Thus, ((q|pK) |K) or ((r|p0K0) |K0) im-
plies q or r — precautions are either ineffective or unnecessary!

What's happening here is that there is a hidden assumption involving
p; not all possibilities are expressed. The compound conditional is

((q|pK) |K) _ ((r|p0K0) |K0)

¼ (q|pKK) _ (r|p0K0K0)

¼ (q|pK) _ (r|p0K0)

¼ (qpK _ rp0K0 | pK _ p0K0)

But unlike (K _ K0) there is no assurance that (pK _ p0K0) will be true.
If it is assumed, then (qpK _ rp0K0 | pK _ p0K0) (pK _ p0K0)¼ (qpK _ rp0K0),
that is, either the precautions were ineffective (qpK) or unnecessary
(rp0K0). So there is no conundrum here.

Suppose instead that the situation is rendered as

[K ^ (q | pK)] _ [K0 ^ (r | p0K0)]

¼ [K(pK)0 _ KqpK] _ [K0(p0K0)0 _ (K0rp0K0)]

¼ K(p0 _ K0) _ qpK _ K0(p _ K) _ rp0K0

¼ Kp0 _ qpK _ K0p _ rp0K0

¼ K(p0 _ qp) _ K0(p _ rp0)

So, either I was killed and took no precautions or they were ineffec-
tive, or I was not killed and either took precautions or they were un-
necessary. These four possibilities are disjoint and have probabilities
adding to 1.
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1.12. Stalnaker Hypothesis defended

In another effort to exhibit a counter-example to the “Stalnaker Hy-
pothesis” (the correctness of conditional probability as the most
reasonable estimate of the degree of belief to attach to a conditional
proposition) John L. Polluck [15] constructs what Allan Gibbard [16]
refers to as an “intricately wrought example” that he says is an example of
the “dispositional fallacy” rather than a true counter-example.

In case there is still some doubt about this, here is a Venn diagram that
illustrates the matter. The situation is this: A certain large shipment of
vases was sent, 75% ceramic (C) and 25% plastic (p). We are told that if
dropped (D) a ceramic vase will always break (B), but a plastic one will
never break. (Implicitly, we are to assume that the probability of a vase
being dropped does not depend onwhether it is ceramic or plastic.) When
the vases arrive all the broken vases together with all the plastic vases
were discarded (R), and of those discarded, 3/4 were plastic and 1/4
were ceramic.

Now consider (B|D), that if a vase was dropped, it broke. Prior to
arrival, P(B|D) ¼ P(B(C _ p) |D) ¼ P(BC _ Bp |D) ¼ P(BC|D) þ P(Bp|D)
¼ P(C|D) þ 0 ¼ P(CD)/P(D) ¼ P(C)P(D)/P(D) ¼ P(C) ¼ ¾, since being
dropped is independent of being ceramic. Now Polluck claims that
given 75% of the discarded vases were plastic, this new information
intuitively makes it unreasonable (less likely) to believe that if a vase
was dropped then it broke. But he shows that since D ⊆ R (every
dropped vase was discarded) therefore P((B|D) |R) ¼ P(B | DR) ¼ P(B|
D) is still ¾.

But this is just another example of intuition going wrong with con-
ditionals. Given that a vase was discarded, 3/4 is still the probability it
broke if dropped. Figure 1 illustrates the matter in a Venn diagram.
1.13. Modus ponens

Recently, Paul �Egr�e, Lorenzo Rossi and Jan Sprenger [17] have
reexamined the adequacy of trivalent algebras with concerns about
whether modus ponens can be maintained. But if (a|b) and b are
conjoined, the result is ab because (a|b)b ¼ (a|b) (b|1) ¼ ((ab0 _ abb1 _
b1b0) | (b_ 1))¼ (ab|1)¼ ab. Therefore if b is true, and a is true given b is
Figure 1. Plastic & cer
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true, then both a and b are true. This even extends to arbitrary condi-
tionals. If (c|d) and [(a|b) given (c|d)] are conjoined, the result is (a|b) (c|
d) because [(a|b) given (c|d)] ¼ ((a|b)|(c|d)) ¼ (a |b(c _ d0)), and the
latter conjoined with (c|d) is (a |b(c _ d0)) (c|d)

¼ [(ab(c _ d0)d0 _ ab(c _ d0)cd _ (b(c _ d0))0cd | b(c _ d0) _ d]

¼ [(abd0 _ abcd _ (b0 _ c0d)cd | bc _ bd0 _ d]

¼ (abd0 _ abcd _ b0cd | bc _ b _ d) ¼ (abd0 _ abcd _ b0cd |b _ d)

¼ (a|b) (c|d)

1.14. Tautologies

A universal (unconditioned) tautology would be of the form (a¼ 1). A
conditional tautology would be of the form (a|b) ¼ (1|b), which means
(ab ¼ b) and therefore that b � a; b implies a; the models of b are
included in the models of a. [This can also be expressed as a _ b0 ¼ 1, the
truth of the “material conditional”, often expressed as b ⊃ a, which no-
tation is confusing since probabilistically, b ⊆ a when a _ b0 ¼ 1. So the
material conditional will always be written out as a _ b0. In what follows,
the symbol ⊃ will not be used.]

Adding statements such as (a¼ 1), (a 6¼ 1), (a¼ 0), (a 6¼ 0) and (b� a)
to the initial Boolean algebra of propositions or events amounts to adding
the existential (9) and universal (8) quantifiers. To say “there exists” is to
assert that a certain subset is non-empty. “For all” can be expressed with
� or ⊆.

1.15. Variable universes

In some circumstances, we may need to distinguish between the
probability P(q) of a proposition q versus the probability that q is a
tautology. P(q) is the probability of the models in which q is true, but the
probability that q is a certainty is Pr(q ¼ 1). This happens when the
universe U of possibilities can vary6, as for example in the game of rolling
either 2 or 3 dice and considering the event of getting a sum >2. It is a
certainty with 3 dice, but has just 5/6 probability rolling two dice. So if
amic vase delivery

6 See Section 4.5, “The Probability of Entailment”, p. 220 of [3].
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half the times, 3 dice are rolled, then (>2) is certain with probability ½.
Pr[(>2) ¼ U] ¼ ½. Each universe may have its own internal probability
function P of possibilities independent of the probability Pr of that uni-
verse among the alternate universes.

In this regard, B. Skyrms [18] employs different “propensities” that
serve to alter the initial universe U or its initial probabilities in order to
express counter-factual statements, which naturally shift the assumed
context (universe) between what was and what would or might have
been.

1.16. More general conditionals

My overall goal has been to provide an algebra of conditional events
that joins Boolean logic and probability theory in the context of a fixed
universe U of all possibilities such as in games of chance. These have been
called indicative conditionals [14]. Whatever the applications of this
algebra to more general problems of “counter-factual conditionals”, such
as conditionals expressed in the subjunctive mood, the goal here is only
to supply a missing relation “a given b” for Boolean logic [19] and for
probability theory [20] by use of an “inapplicable” truth state for
conditionals.

Such conditional statements as “If Oswald hadn't killed Kennedy then
someone else would have” include a condition whose universe of possi-
bilities is not clearly defined and requires interpretation. For example.
this statement surely cannot be adequately rendered as “If Oswald didn't
kill Kennedy someone else did”. The initial expression suggests a con-
spiracy as context for the conclusion. The second conditional simply
expresses a logical necessity based on a conjecture.

Even more generally, modal logic includes propositions such as “p is
known or believed”, “p is hoped or feared”, “p ought or should be”, and
“p is good or bad”. These logics raise philosophical questions of the
meaning of the contexts and conclusions and what universe they reside
in. The situation gets even more complicated when two people with
different knowledge say the opposite or the same thing7. On the other
hand, temporal logics using constructions such as “p is true sometimes”,
“p is true at all times”, or “p was true at one time” seem to fall nicely
within the purview of probability theory and this extension algebra (B|B)
of conditional events. Or do they?

1.17. Random variables

As mentioned before, a proposition c can be represented as a
measurable indicator function defined on the set of all models, that has
value 1 for a model in which c is true, and value 0 on models for which c
is false. In turn a conditional proposition (c|d) can be represented as a
partially defined indicator function8 that is 1 when cd is true, 0 when c0d is
true, and undefined on models for which d is false.

Thus propositions become random variables (measurable indicator
functions) on the universe of models; conditional propositions become
partially defined random variables (partially defined measurable indi-
cator functions).

These indicator functions can in turn be used as a basis for expressing
conditional numerical random variables with extended operations (þ, -,
� and |)9.

Along rather different lines, A. Gilio and G. Sanfilippo [11] consider
an algebra of “conditional random quantities”. They employ a betting
metaphor to handle the trivalent nature of conditionals: If a Boolean
conditional (A|H) has conditional probability P(A|H)¼ x, then a player is
willing to pay the amount xs (called a “prevision”) for a chance to win a
monetary sum s in case (A|H) turns out to be true, 0 if (A|H) turns out to
7 See p. 232 of [13].
8 See for example Representation as Measurable Propositional Functions,

Section 5.8 (234-5) of [5, 10] or Chap. 4 (74–92) of [3].
9 See “Operating on Functions with Variable Domains”, P. Calabrese [10].
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be false, and xs (the prevision is returned) in case H turn out to be false
(null bet). They thus define10 a 3-valued random variable (A|H) ¼ AH þ
xH0, which is 1 on AH, 0 on A0H and x on H0.

Unlike De Finetti's (and my) definition of (A|H) as a partially defined
indicator function, their (A|H) is defined on the whole universe of all
possible outcomes, even those for which H is false. (The collection of all
possible complete assignments of values to variables is one way to specify
the logical atoms or models - the possible outcomes of both systems.)

The conjunction (A|H ^ B|K) of two of these 3-valued random
quantities, A|H and B|K with conditional probabilities x and y respec-
tively, is in general a random variable with 5 possible values including z
¼ Min{A|H, B|K} on H0K0, that is for instances when neither H nor K is
true.

In this framework, Gilio and Sanfilippo have shown11 that the
conjunction of nþ1 of these random variables p-implies (i.e. is numeri-
cally �) the conjunction of the first n of them. Their algebra ensures that
a conjunction of conditionals p-implies its components. This preserves
classical properties of Boolean logic such as monotonicity and also avoids
computational complexity.

By contrast, the non-monotonic quasi-conjunction operation,
although easily faithful to natural language and having clear probability
applications, seemed to make calculating the implications of a set of
conditionals rather difficult.

Early efforts by E. Adams [9] and later by P. Calabrese [3, 4] to use
quasi-conjunction to compute all implications of a set of uncertain con-
ditionals had run into complexity problems. The results of this paper
show that this obstacle can be avoided with the right implication rela-
tion, one not defined merely by generalizing one of the equations usually
used to define deduction between Boolean propositions A, B, namely A ¼
A ^ B, or equivalently, A _ B¼ B, or equivalently, B _ A0 is a certainty. In
short, the quasi-conjunction of conditionals will imply each one of its
components as long as the premise of that component re-conditions the
quasi-conjunction. (See Section 2.).

1.18. The surprise execution day dilemma

It was my master's thesis advisor, Professor Karl Menger, who relayed
the essence of the following rather nasty logical conundrum combining
“p is known” with “time” and with the subjunctive mood: A certain po-
litical prisoner was tried and convicted of a capital crime and immedi-
ately sentenced by the judge to be executed at noon on one of the
following 7 days. The judge, known for always being truthful and precise,
also stipulated that at no time before the execution would the condemned
man know the day of his execution until the morning of his execution
day.

Later that day the convict's lawyer greatly cheered up the condemned
man saying, “You can't be executed at all! Surely the judge can't have you
executed on the last day because then on the night before, you'd know
your execution day before the morning of the day. So clearly, the 7th day
can be eliminated from the possibilities. That leaves 6 days. Now having
eliminated the 7th day, suppose you are still alive on the night of the 5th

day. Then you would know ahead of time that the execution must occur
on the 6th day. So, the judge really can't wait until the 6th day either.”
Applying the same logic in turn to the 5th, 4th, 3rd, 2nd and 1st day, the
lawyer concluded that the prisoner could not be executed at all since the
judge always told the truth. But on the morning of the 4th day the pris-
oner was quite surprised to learn that he would be executed at noon that
day. Exactly what was wrong with the lawyer's logic? I first heard this
over 50 years ago, and I'm still thinking about it.
10 [11], p. 82.
11 [11], Theorem 7, p.84.
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2. Deduction

Let us now move on to consider deductions, which are not supposed
to merely be a qualification on some context as in general are indicative
conditionals. Deductions are meant to be absolute implications. No
exceptions.

From the model or extensional point of view, a deductive statement
between propositions such as “b implies a” means that any instance or
model of proposition b is also an instance or model of proposition a. This
can be conveniently represented as b � a, or as b ⊆ a (inclusion). While
the inclusion ⊆ is certain, the propositions themselves need not be. It
follows then that P(a|b) ¼ 1 unless b is impossible — the empty set φ of
instances, which is necessarily false. In that case (a|φ) ¼ U, the inappli-
cable conditional and P(U) ¼ is undefined. As usual, the empty event φ
implies all events e. A contradiction falsely implies anything! A premise
must have at least one instance to avoid this case.
2.1. Deduction with conditionals

The simplest (most conservative) and least imaginative extension of
Boolean deduction � to conditionals (a|b) & (c|d) is to define (a|b) � (c|
d), “(a|b) implies (c|d)”, to mean that b¼ d and ab� cd. To say b¼ d is to
say that the two conditionals are in the same Boolean subspace (B|b), and
the inequality ab � cd means that when (a|b) is true then (c|d) is true. It
easily follows from {b ¼ d and ab � cd} that c0d � a0b. This deductive
relation, {b ¼ d and ab � cd} has been denoted �Bo and called Extended
Boolean deduction12.

However, suppose the condition b of the premise (a|b) properly in-
cludes the condition d of the conclusion (c|d) and still ab � cd holds.
Shall not that too be a valid deductive conclusion? After all, in practice,
when checking the implication of (c|d) by (a|b) we would routinely
restrict the condition b of the premise conditional to whatever was a
condition of the conclusion (c|d).

By themselves, [without the additional conditioning of the premise
(a|b) by the condition d of the conclusion (c|d)] the two inclusions {(d �
b), (ab � cd)} define a deductive relation that has been called �m^13.

It will be shown that including this additional conditioning
(restricting) of the premise conditional by the condition d of the
conclusion conditional (c|d) in the definition of deduction for condi-
tionals, makes all the difference when calculating the implications of a set of
conditionals. In fact, it greatly simplifies the treatment of deductively
closed sets of conditionals as developed in P. Calabrese [2002] and
[2017], which defined several deduction relations on conditionals in
terms of analogous Boolean equations such as [A implies B means A ^ B¼
A] or [A implies B means A _ B ¼ B].
2.2. Optimal deductive relations � for conditionals

Thus, we are led to define (a|b) totally implies (c|d), denoted as (a|b)
�T (c|d), in case ((a|b) |d) �Bo (c|d).

Thus “(a|b) wholly implies (c|d)” means that conditioned by d, (a|b)
�Bo (c|d). Now, (a|b) conditioned by d is ((a|b) |d) ¼ (a|bd). And (a|bd)
�Bo (c|d) means bd ¼ d and abd � cd. That is, {(d � b) and (ad � cd)}.
Summarizing:

2.2.1. Definition of total deduction �T for conditionals
(a|b) �T (c|d) if and only if both (d � b) and (ad � cd).
These two properties (d � b) and (ad � cd) seem to be quite

serviceable for logical deduction of (c|d) by (a|b). Again, it is the
implication that is certain, not necessarily either of the two conditionals.
Let's check that �T defines a deductive relation:
12 See p. 163 of [4].
13 See p. 165 of [4].
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2.2.2. Lemma: �T is a deductive relation. That is, it is both reflexive and
transitive

Proof of Lemma 2.2.2: Reflexivity: (a|b)�T (a|b) since b� b and abb
� ab.

Transitivity: Assume (a|b) �T (c|d) and (c|d) �T (e|f). So f � d � b.
Therefore b includes f. Furthermore, since ad � cd and cf � ef, it follows
that af¼ (af)d¼ (ad)f� (cd)f¼ cfd� (ef)d¼ ef. Therefore (a|b)�T (e|f).
So �T is transitive.

2.2.3. Properties of the deductive relation �T
From (ab � cd) and (d � b) it easily follows that (ad � cd), but not

conversely. The constraint ad � cd is weaker than requiring ab � cd.
Nevertheless, assuming (a|b)�T (c|d) in this new sense, it still follows

that (ab _ b0) � (cd _ d0) since (ab _ b0) ¼ (abd _ abd0 _ b0) and each of
these 3 components is included in cd _ d0: abd � cd, abd0 � d0, and of
course b0 � d0.

So (a|b)�T (c|d) implies the material conditional inequality (a _ b0)�
(c _ d0), which (taking complements of both sides) is equivalent to c0d �
a0b. Thus (a|b) �T (c|d) also implies that when (c|d) is false then (a|b) is
false. [Of course, in Boolean logic, an implication p � q (p implies q) is
always equivalent to its contra-positive implication q0 � p0 (not-q implies
not-p). That this property (modus tollens) is preserved by�T is reassuring
of its adequacy as a deductive relation for conditionals.]

However, (a|b) �T (c|d) does not imply ab � cd. Only abd � cd need
be true.

Note also that in general according to this deductive relation on
conditionals a universally conditioned proposition or event (X|1) trivially
implies a conditional (X|Y) with the same conclusion. That is, (X|1) �T

(X|Y) because Y � 1 and XY � XY.
The deduction (a|b) �T (c|d) also implies that (a|b) ^ (c|d) ¼ (a|b)

because (a|b) ^ (c|d)¼ (abd0 _ abcd _ b0cd |b _ d)¼ (abd0 _ abcd _ 0 |b)
since b0 � d0. And since ad� cd, it follows that (abd0 _ abcd |b)¼ (abd0 _
abd) |b) ¼ (ab|b) ¼ (a|b).

But (a|b) �T (c|d) does not in general imply that (a|b) _ (c|d) ¼ (c|d)
unless b � d, that is, unless in addition the context d of the conclusion
conditional (c|d) includes the context b of the premise conditional. In
that case b ¼ d and the deduction is simply Boolean with conditionals
having equivalent premises. Of course, (a|b)�T (c|d) does imply that (a|d)
_ (c|d) ¼ (c|d).

(a|b) �T (c|d) also obviously implies that P(a|d) � P(c|d) when both
are defined; it is probabilistically monotonic in this restricted sense. But
P(a|b) � P(c|d) may not hold.

Any other deductive relation “(a|b) implies (c|d)” for which the
context b of the premise conditional (a|b) does not include the context
d of the conclusion conditional (c|d) can only apply within b. Total
deduction �T is deduction in which the applicability of the premise
conditional covers the applicability of the conclusion conditional.

2.2.4. Definition of minimal deduction �M for conditionals
A similar modification of the probabilistically monotonic deductive

relation (a|b) �pm (c|d) previously defined14 as {ab � cd, c0d � a0b}
results in a weaker deductive relation that also has the desired simplifi-
cation properties. Thus, we are led to define the “minimal” deductive
relation (a|b) �M (c|d) to mean ((a|b) |d) �pm (c|d). This means {abd �
cd, c0d � a0bd}.

By taking complements of the second Boolean deduction we get that
(a _ (bd)0 � c _ d0, i.e. a _ b0 _ d0 � c _ d0, which is equivalent to a _ b0 � c
_ d0. Taking compliments again, this is equivalent to c0d � a0b. So (a|b)
�M (c|d) amounts to {abd � cd, c0d � a0b}. As shown in the preceding
subsection, these two inequalities are implied by the stronger deductive
relation �T.
14 See p. 165 of [4].



P.G. Calabrese Heliyon 7 (2021) e08328
2.2.5. Lemma: �M is a deductive relation
Proof of Lemma 2.2.5: Reflexivity is trivial since (a|b) �M (a|b)

means (a|bb) �pm (a|b), which means ab � ab and a0b � a0b, which
clearly is true. Transitivity is not so obvious. Suppose (a|b) �M (c|d) and
that (c|d)�M (e|f). We need to show (a|b)�M (e|f). That is, we need {abf
� ef, e0f � a0b}

Since (a|b) �M (c|d), c0d � a0b, and since (c|d) �M (e|f), e0f � c0d.
Therefore, by Boolean deduction transitivity, e0f � a0b, which proves the
second Boolean deduction. We also know abd� cd and cdf� ef and need
abf � ef.

Now abf ¼ ab(e _ e0)f ¼ abef _ abe0f. But abe0f ¼ 0 because e0f � a0b.
Therefore, abf ¼ abef � ef.
2.3. Deductively closed sets of boolean propositions or events

A deductively closed set (DCS) H is one for which the conjunction of
any two members of H is also a member of H, and any proposition or
event deductively implied (�) by a member of H is also a member of H.

In purely Boolean logic and in the logic of probabilistic events (sub-
sets of some universe), the set of all implications H(A) of some single
proposition or event A are all the propositions or subsets X that include A.
That is, H(A)¼ {X: A� X}. Furthermore, the collection of all implications
of a finite set J of Boolean propositions or events {Ai: i ¼ 1,2,3...n} is just
the set of implications of the single proposition or event C ¼
(A1A2A3...An) formed by the conjunction of all members of J. H(J) ¼ {X:
C � X}.

This simplicity in Boolean logic depends on the fact that the
conjunction (A ^ B) of two Boolean propositions A, B implies each of the
components of that conjunction. That is, (A ^ B)�A and (A^ B)� B. And
this property easily extends to any finite collection of Boolean proposi-
tions or events. Thus, if A and B are in the set H(J) of implications of J
then so is (A ^ B) and both A and B are implied by (A ^ B).

A deductively closed set (DCS) that is generated by a single one of its
members is said to be principle.
2.4. Deductively closed sets of conditionals

Now that we have two appropriate deductive relation for conditionals
with varying contexts all within a fixed universe, we can consider the
implications of a collection of such conditionals.

2.4.1. Theorem 1
The (principle) deductively closed set HT(a|b) with respect to the

deductive relation �T generated or implied by a single conditional (a|b)
is {(x|y): (a|b) �T (x|y)} ¼ {(x|y): y � b and ay � xy}.

Proof of Theorem 1:We need HT to be closed under conjunction and
implication. That is, if both (c|d) and (e|f) are in HT, then so is (c|d) (e|f),
and if (c|d) 2 HT and (c|d) �T (e|f), then (e|f) 2 HT.

HT is trivially closed under implication by the transitivity of �T. So
suppose both (c|d) and (e|f) are in HT. We want to show that their
conjunction (c|d) (e|f)¼ (cdf0 _ cdef _ d0ef |d _ f) 2 HT. Since d� b and f
� b, therefore (d _ f) � b. Secondly, since ad � cd and af� ef, then a(d _
f) ¼ a(df0 _ df _ d0f) ¼ (adf0 _ adaf _ ad0f) � (cdf0 _ cdef _ ed0f).
Therefore, (c|d) (e|f) 2 HT.

2.4.2. Theorem 2
If (a|b) and (c|d) are two conditional propositions or events, then (a|

b) ^ (c|d) �T (a|b) and (a|b) ^ (c|d) �T (c|d). That is, the conjunction of
two conditionals implies the components of that conjunction.

Proof of Theorem 2: By the deductive relation �T for conditionals,
{(a|b) ^ (c|d)�T (a|b)} means that ((a|b) ^ (c|d) |b)�Bo (a|b). Now (a|b)
^ (c|d)¼ (abd0 _ abcd _ b0cd |b _ d) and conditioning by b yields ((abd0 _
abcd |b) ¼ ((ab) (cd _ d0) |b) � (ab|b) ¼ (a|b). By symmetry, the same is
true for (a|b) ^ (c|d) �T (c|d). So the conjunction implies both its
components.
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2.4.3. Corollary
The deductively closed set HT with respect to the deductive relation

�T generated or implied by a finite set J of conditional propositions or
events is principle, being the deductive implication of the single condi-
tional proposition formed by conjoining all members of J.

Proof of Corollary 2.4.3: By the theorem, the corollary is true for
two conditionals. If J is a set of n conditionals (n > 2), and C is the
conjunction of all members of J, then the 2nd through nth conditionals of
C can be conjoined to form a single conditional to which the theorem
applies together with the 1st conditional. Thus, the first conditional is in
HT. Since conjunction of conditionals is commutative, the same argument
can be applied to each of the other components of C. Thus C � (a|b) for
every (a|b) in J and C also implies the conjunction of any of the members
of J and by transitivity it implies any conditional implied by members of
HT.

The above simplification of the implications of a set of conditionals to
those of a single conditional is not valid for the deductive relation�m^. It
is true of the weaker deductive relation (a|b) �^ (c|d) defined by d � b
and (a _ b0)� (c _ d0), but (a|b)�^ (c|d) does not ensure that (c|d) is true
when (a|b) is true. Nor does it ensure that P(a|b) � P(c|d). Only by
conditioning the premise conditional (a|b) by the premise d of the
conclusion conditional (c|d) as part of the deductive relation does it
equate to what I have denoted �T on conditionals.

2.4.4. Theorem 3
The (principle) deductively closed set HM(a|b) with respect to the

deductive relation �M generated or implied by a single conditional (a|b)
is {(x|y): (a|b) �M (x|y)} ¼ {(x|y): aby � xy, x0y � a0b}.

Proof of Theorem 3: HM needs to be closed under conjunction and
implication. That is, if both (c|d) and (e|f) are in HM, then so is (c|d) (e|f),
and if (c|d) 2 HM and (c|d) �M (e|f), then (e|f) 2 HM.

HM is trivially closed under implication by the transitivity of �M. So
suppose both (c|d) and (e|f) are in HM. We want to show that their
conjunction (c|d) (e|f)¼ (cdf0 _ cdef _ d0ef |d _ f)¼ ((c _ d0) (e _ f0) | (d _
f)) 2HM. That is, we need ab(d _ f)� (cdf0 _ cdef _ d0ef) and ((c _ d0) (e _
f0))0 � a0b.

Since (c|d) in HM, {abd � cd, c0d � a0b}. Similarly, {abf � ef, e0f �
a0b}. Therefore, ((c _ d0) (e _ f0))0 ¼ (c _ d0)0 _ (e _ f0)0 ¼ c0d _ e0f � a0b _
a0b ¼ a0b. That shows the second required deduction.

Next, ab(d _ f) ¼ ab(df0 _ df _ fd0) ¼ (abdf0 _ abdf _ abfd0) � (cdf0 _
(cd) (ef) _ efd0), using abd � cd and abf � ef. That shows the first
required deduction.

2.4.5. Theorem 4
If (a|b) and (c|d) are two conditional propositions or events, then (a|

b) ^ (c|d)�M (a|b) and (a|b) ^ (c|d) �M (c|d). That is, the conjunction of
two conditionals implies the components of that conjunction.

Proof of Theorem 4: By the deductive relation �M for conditionals,
(a|b) ^ (c|d) �M (a|b) means that (abd0 _ abcd _ b0cd) (b _ d)b � ab and
a0b� [(a _ b0) (c _ d0)]0(b _ d). Now (abd0 _ abcd _ b0cd) (b _ d)b¼ (abd0

_ abcd)¼ (ab) (cd _ d0)� (ab), which shows the first Boolean deduction.
Furthermore, [(a _ b0) (c _ d0)]0(b _ d) ¼ [(a _ b0)0 _ (c _ d0)0](b _ d) ¼
(a0b _ c0d) (b _ d) ¼ (a0b _ c0d), which includes a0b. That shows the
second Boolean deduction. Therefore, (a|b) ^ (c|d) �M (a|b). By sym-
metry, the same is true for (a|b) ^ (c|d) �M (c|d). So, the conjunction
implies both its components.

2.4.6. Corollary
The deductively closed set HM with respect to the deductive relation

�M generated or implied by a finite set J of conditional propositions or
events is principle, being the deductive implication of the single condi-
tional proposition formed by conjoining all members of J.

Proof of Corollary 2.4.6: The proof is the same as the proof of the
Corollary 2.4.3 for �T with HT replaced by HM and �T replaced by �M.

For simplicity, the remainder of this paper will provide examples of
the deduction (a|b) �T (c|d) as defined above in which the applicability
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b, of the premise conditional (a|b) covers the condition d, of the
conclusion conditional (c|d). Since (a|b) �T (c|d) implies (a|b) �M (c|d)
these examples are also examples of (a|b) �M (c|d).
15 See [21], p. 27, #78.
16 See J. Pearl [22].
2.5. Examples of deduction with sets of conditionals

Suppose J ¼ {(a|b), (c|d)} is a set of two conditionals. What are the
implications with respect to the deductive relation �T ? H(J) ¼ {(x|y):
((a|b) (c|d) |y) �Bo (x|y)}. These are the conditionals for which y � (b _
d) and that satisfy (abd0 _ abcd _ b0cd) y � xy.

Suppose J ¼ {(a|b), (c|d), (e|f)} is a set of conditionals. What are the
implications with respect to the deductive relation �T ? The answer is all
conditionals (x|y) for which ((a|b) (c|d) (e|f) |y) �Bo (x|y). This means
that (b _ d _ f) � y and (ab _ b0) (cd _ d0) (ef _ f0) y � xy.

2.5.1. Family gathering rules
Suppose a certain dysfunctional family contains six members S ¼ {A,

B, C, D, E, F} and they only gather according to the following rules:

- If A is present then so are B and C present. That is, (BC | A).
- If D or E is present then A is not present. That is, (A0 |D _ E)
- If F is present then C is too. That is, (C |F).

What are the possible gatherings of this family? (Obviously, this
example can be interpreted as a set of conditional inclusion relationships
between subsets.)

The quasi-conjunction K of the 3 conditionals is

(BC | A) (A0 |D _ E) (C | F)

¼ [(BC _ A0) (A0 _ (D _ E)0) (C _ F0) | (A _ (D _ E) _ F)]

and the conclusion of this conditional can be simplified as:

¼ (BC _ A0) (A0 _ D0E0) (C _ F0)

¼ (A0 _ (BC) (D0E0)) (C _ F0)

¼ A0(C _ F0) _ (BC) (D0E0) (C _ F0)

¼ A0C _ A0F0 _ BCD0E0

¼ BCD0E0 _ A0(C _ F0)

¼ ABCD0E0 _ A0(C _ F0)

So K ¼ (ABCD0E0 _ A0(C _ F0) | (A _ D _ E _ F))

Let's check this: Conditioning K by A reduces K to (ABCD0E0 | A),
which preserves the rules regarding A. Notice that F may be present or
not. The rules are neutral about F given A.

Conditioning K by D reduces K to (A0(C _ F0)D | D), events for which A
will be absent, D present, and either C present or F absent. Note that B, or
E, or both may or may not be present at the gathering given D is present.
Conditioning K by either B or E along with D simply adds them to the
gathering without any further implications.

Conditioning K by E reduces K to (A0(C _ F0)E | E). These are gath-
erings without A, with E, and with either C or not F.

Conditioning K by F reduces K to (BCD0E0F _ A0(CF) | F)¼ ((CF) (BD0E0

_ A0) | F)¼ ((CF) (ABD0E0 _ A0) | F)¼ (A0CF _ ABCD0E0F | F)¼ (A0CF|F) _
(ABCD0E0F | F). In such gatherings given F is present, either A is present
along with B, C but not D or E, or else A is not present, C is present, and B,
and D may or not be present.

Conditioning K by C reduces K to

(ABCD0E0 _ A0(C _ F0) | (A _ D _ E _ F) C)

¼ (ABCD0E0 _ A0C | (A _ D _ E _ F) C)

But (A _ D _ E _ F) does not in general include C. So, the rules do not
in general imply anything more given C is present.
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Similarly, since (A _ D _ E _ F) � B is not guaranteed, given B is
present the three rules embodied in K do not in general imply anything
more.

2.5.2. The absent-minded coffee drinker15 (revisited)
So far, we have considered only so-called “indicative conditionals”,

for which the two components are members of a sample space of prob-
abilistic events or equivalently, a set of logical propositions whose
models (worlds) in which they are true form such a sample space. But
some conditionals incorporate propositions that are hard to express
indicatively. Consider the following example.

“Since my spoon is dry (D) I must not have sugared (G) my coffee,
because the spoon would be wet (D0) if I had stirred (S) the coffee, and I
wouldn't have stirred it unless I had put sugar in it.”

The above coffee drinker seeks to deduce whether his or her coffee is
sugared (G) based on the observation that the spoon is dry (D) together
with the two conditional statements, one of which is (D0|S) that the spoon
wouldn't be dry if the coffee was stirred. I am interpreting the second
conditional - “I wouldn't have stirred it unless I had put sugar in it” - as
(S0|G0) whose contrapositive (2-valued logical equivalent) is (G|S) that “if
I stirred my coffee, then I must have sugared it”.

This 2nd conditional statement might be interpreted to mean the
conjunction of (S0|G0) and (S|G), the latter being “if I sugared my coffee, I
would have stirred it”. But let's leave that interpretation out for the time
being.

We form K

¼ (D) (D0 |S) (S0 |G0) ¼ [(D|1) (D0 |S)] (S0 |G0)

¼ (D1S0 _ D1D0S _ 10D0S | 1 _ S) (S0 | G0)

¼ (DS0 _ 0 _ 0 | 1) (S0 | G0)

¼ (DS0 |1) (S0 |G0)

¼ [(DS0G _ DS0S0G0 _ 10S0G0) | (1 _ G0)]

¼ (DS0G _ DS0G0 _ 0 | 1)

¼ (DS0 | 1) ¼ DS0

Had (S0|G0) been replaced by its contra-positive (G|S) the result would
be the same with an easier computation:

(D) (D0 |S) (G|S) ¼ (D) (D0G|S) ¼ (DS0 _ 0 _ 0 | 1) ¼ (DS0 |1) ¼ DS0

So with no further conditions the spoon is dry and the coffee is not
stirred, but there is no implication that the coffee is or is not sugared (G0).
Based on the conditionals as expressed, the coffee might still be sugared
and not stirred; (S|G) is not included in the initial interpretation. Stirring
the coffee given it has been sugared is not part of the initial
interpretation.

If the conditional (S|G) is included with the other three conditionals,
then K ¼ (DS0|1) (S|G)¼ (DS0G0 _ 0 _ 0 | 1 _ G) ¼ (DS0G0 | 1)¼ DS0G0. So
the coffee drinker could conclude that the coffee was not yet sugared, nor
stirred.

2.5.3. The penguin problem16 (revisited)
In the above deduction examples, the conditionals were all taken to

be totally true. However, conjoining partially true information with
totally true information degrades or obscures the absolutely true infor-
mation while it may improve the probability of the partially true
information.

Consider the following conditional statements: “Birds fly (F)”, “Pen-
guins (p) are birds (B)” and “Penguins don't fly.” These can be expressed
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as (F|B), (B|p) and (F0|p). What are the implications of these three
conditionals?

Notice that (F|B) is not totally true; it might be expressed as the
conditional probability P(F|B) >> 0. On the other hand, (B|p) is totally
true by definition of a penguin; p � B. So (B|p) ¼ (Bp|p) ¼ (p|p) ¼ (1|p)
and P(B|p) ¼ 1. A bird is certain, given a penguin. The conditional (F0|p)
that penguins don't fly is probably an empirical observation but not part
of the definition of a penguin. Thus, it might be expressed as P(F0|p) ~ 1.
Or for anatomical reasons perhaps penguins can't fly; p� F0. In that case p
� B and p � F0 conjoin as p � F0B.

In either case, since their conditions are equal, (B|p) (F0|p) can be
expressed as (BF0|p), penguins are birds that don't fly.

Conjoining (F|B) with (BF0|p) yields K ¼ (FBp0 _ 0 _ 0 |p _ B)¼ (FBp0

|B) ¼ (Fp0|B).
Now given a bird (B), K is unchanged: ((Fp0 |B) |B) ¼ (Fp0|B). Given a

bird the qualification is a flying non-penguin. But given a penguin p, K
becomes (K|p) ¼ (FBp0p |p) ¼ (0|p), a contradiction. If (all) birds fly and
penguins are birds then logically, penguins must fly or else there is a
contradiction.

However, conjoining partially true conditionals such as (F|B) with
totally true ones always degrades the available information. In this case,
it seems to lose the information that penguins are non-flying birds.

What is needed is a probability analysis of the partially true condi-
tional (F|B) that also incorporates the totally true information.

Since (F|B) is definitely not a certainty, we can start with one, namely,
(F _ F0 |B) and conjoin the other certain information, (BF0|p), with it. This
yields:

K ¼ (F _ F0 |B) (BF0 |p)

¼ [(F _ F0)Bp0 _ (F _ F0)B(BF0p) _ B0(BF0p) | (B _ p)]

¼ [FBp0 _ F0Bp0 _ (0 _ F0Bp) _ 0 | B]

¼ (FBp0 _ F0Bp0 _ F0Bp | B)

¼ (Fp0 _ F0p0 _ F0p | B)

Given a penguin p, K becomes (K|p) ¼ ((Fp0 _ F0p0 _ F0p | Bp) ¼ (F0B|
p). That is, given a penguin you get a non-flying bird. Furthermore, P(F0B|
p) ~ 1.

Given a bird B, K is unchanged, (Fp0 _ F0p0 _ F0p | B)¼ (p0 _ F0p | B). So
given a bird, you get either a non-penguin bird (that may or may not fly)
or a non-flying penguin, and P((Fp0 _ F0p0 _ F0p | B) ¼ 1.

The conditional (p0 _ F0p | B) can be expressed as (p0 _ F0 | B)¼ ((pF)0|
B). Given a bird, you never get a flying penguin. P((pF)0| B) ¼ 1.

Furthermore, since Fp0, F0p0 and F0p are disjoint, P(Fp0 _ F0p0 _ F0p |B)
¼ P(Fp0|B) þ P(F0p0|B) þ P(F0p|B) ¼ 1.

This formula allows for non-penguin, non-flying birds like ostriches.

2.6. Computer calculations

When it comes to performing practical logical and probabilistic cal-
culations starting with a finite set of known or assumed propositions and
conditional propositions (all variables having a finite number of possible
values), the services of a computerized expert system are essential.

In principle, the universe U of all possible value assignments of n
variables, each with m possible values, has mn members called atoms.
And the set 2U ¼ {all subsets of these atoms} constitutes the universe of
all potential events (propositions) that can be formed with the initial
variables. 2U has 2 raised to the power mn members. Even for n ¼m ¼ 4,
this is 264, which is more than 18,446,700,000,000,000,000 members.
That's over 18,400 trillion, a number that make even the US national debt
of $28 þ trillion look small! And this results in 364 different possible
conditional propositions — “rules” in computer jargon.

The four operations 1) – 4) faithfully simplify compound and nested
conditionals. Theorem 2 simplifies the calculation of the deductive
9

implications of a pair of conditionals, and its corollary extends this to any
finite set of conditionals. The set of implications of a set J of conditionals
with respect to the new deductive relations�T and�M is shown to be the
implications of the single conditional formed by the conjunction of the
members of J.

While these operations and theorems can help with the complexities
of information processing, lack of sufficient facts or initial assumptions
requires methods to give equal weight to otherwise unconstrained vari-
able assignments. For this complexity problem, the concept of informa-
tion entropy has come to the rescue of otherwise intractable calculations.
For example, the expert system SPIRIT developed at FernUniversit€at
Hagen, Germany [23] employs these and graph theory methods to link
clusters of related variables and by assuming conditional independence
to fill in any information gaps, efficiently finds the optimal (maximum
information entropy) distribution given the initial assumptions.

3. Summary & conclusions

Section 1 provides a general introduction to this algebra of condi-
tionals and addresses various tests, questions, examples and objections
raised about the efficacy of this algebraic extension of Boolean logic and
conditional probability.

Section 2 of this paper defines two new, simplifying deductive re-
lations �T and �M between uncertain conditional propositions (a|b) and
(c|d). One is (a|b) �T (c|d), which means {d � b, ad � cd}. The other is
(a|b) �M (c|d), which means {c0d � a0b, ad � cd}. �T implies �M. With
respect to each of these deductive relations, it is proved that the impli-
cations of a finite set of conditionals are also the implications of the single
conditional formed by conjoining all of them with the so-called quasi-
conjunction of two or more conditionals. These new deductive relations
avoid the complexity problems previously associated with deduction
with the quasi-conditional operation. The quasi-conjunction of a finite set
S of conditionals encodes their conjoined constraints given the disjunc-
tion of the premises of the conditionals of S, but the individual premise x
of an arbitrary conditional (y|x) in S must condition that quasi-
conjunction in order to imply y. The quasi-conjunction of all members
of S implies any member (y|x) of S when conditioned by x.
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