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EEG analysis in the field of neurology is customarily done using frequency domain methods like fast Fourier transform. A complex
biomedical signal such as EEG is best analysed using a time-frequency algorithm. Wavelet decomposition based analysis is a
relatively novel area in EEG analysis and for extracting its subbands. This work aims at exploring the use of discrete wavelet
transform for extracting EEG subbands in encephalopathy. The subband energies were then calculated and given as feature sets
to SVM classifier for identifying cases of encephalopathy from normal healthy subjects. Out of various combinations of subband
energies, energy of delta subband yielded highest performance parameters for SVM classifier with an accuracy of 90.4% in
identifying encephalopathy cases.

1. Introduction

Electroencephalogram (EEG) is a signal which represents
the electrical activity of millions of neurons in the brain.
The signal is acquired from the surface of the scalp. Since
it reflects the neuronal activity of the cerebral cortex, it is
used in the diagnosis of diseases which involves the function
of the cortical neurons. The “EEG picture” of a disease is
often a visual waveform or an abnormal frequency or a
hypersynchrony or abnormalities in waveform amplitude.

EEG signals are nonstationary; i.e., the frequency compo-
nents present in the signal vary with time [1]. Therefore, time
domain and frequency domain analysis are not sufficient to
give information of such signals. The time domain features
included the signal statistics like power of the signal, mean,
standard deviation, etc. First difference and second difference
are also computed in time series analysis to get the signal
variation over time [2]. Another time domain feature, namely,
Normalized Length Density, was proposed by Jenke et al.,
which quantifies self-similarities within the EEG signal [3].

Another time domain feature for EEG analysis was proposed
by Hausdorff et al. is the Nonstationary Index (NSI) [4]. The
NSI gives a measure of the stationarity of the signal and
measures the variation of segments average over time [2].
Frequency domain analysis includes employing fast Fourier
transform (FFT) to calculate power spectrum of signal,
relative power of EEG subbands, etc. [5, 6]. But none of
these methods can completely visualise the nonstationarity
behaviour of the signal.

Biomedical signals can be analysed in a better manner
using time-frequency analysis [7–9].Wavelet transforms give
the information of various frequency components present
in the signal at various instants. Thus, more information
about EEG subbands can be extracted by employing wavelet
transform instead of Fourier transform which is a frequency
domain approach. Many other studies have reported the use
of discrete wavelet transform (DWT) in the analysis of EEG,
most popularly in epilepsy [10–14] and Alzheimer’s disease
[15, 16]. Discrete wavelet transform (DWT) has been widely
used in the processing and analysis of biomedical signals as
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they are nonstationary. DWT has a major advantage over
Fourier transform as it can obtain both time and frequency
information from the signal.Wavelet decomposition of a time
series signal is obtained by passing it through a series of high
pass and low pass filters. The advantage for DWT is the low
computation time and ease of implementation.

In our study, we have explored the application of
discrete wavelet transform in EEG analysis in cases of
encephalopathies. Encephalopathy is a disease of the brain
due to malfunction or structural changes resulting from
metabolic disorders due to organ dysfunction, chemicals,
medications, or injuries [17].The common causes are hypona-
tremia, hepatic failure, renal failure, carbon dioxide narcosis,
and sepsis. Normal function of the brain depends on the
normal neuronal metabolism which is related to the systemic
homeostasis of the metabolites like glucose, electrolytes,
amino acids, etc. The failure of major organs like kidneys,
liver, lungs, and the respiratory systemmay result in a general
deterioration of the brain function. This type of secondary
impairment of the brain due to the malfunctioning of other
organs is called “metabolic encephalopathy” [18]. We have
compared the energies of the subbands, which were obtained
using DWT, with that of normal and classified using support
vector machine (SVM).

Demir et al. observed reduction in the alpha, asyn-
chronous slow waves, focal slow activities, triphasic waves,
burst-suppression pattern, and generalized or focal spike-
sharp activities in encephalopathic EEG [18]. Spectral anal-
ysis of EEG of patients with hepatic encephalopathy was
done by Amodio et al. by calculating mean dominant fre-
quency (MDF) and relative powers of subbands using fast
Fourier transform and autoregressive modelling [5]. Sagales
et al. reported combination of a decreased alpha power
spectral density, increased delta power spectral density, and
decreased mean dominant frequency as a good feature set
for discriminating hepatic encephalopathy cases fromnormal
group using frequency domain analysis [19]. Amodio et al.
applied an artificial neural network-expert system procedure
(ANNES) with visual and spectral analysis of EEG to identify
cases of hepatic encephalopathy [20]. Demir et al. concluded
that there is no significant correlation between EEG findings
and 2 groups of encephalopathy and normal healthy control
[18]. However, to the best of our knowledge, the results of
applying wavelet transform for analysing EEG in patients of
encephalopathy are not reported till date.

2. Materials and Methods

2.1. Data Collection. The EEG data needed for this anal-
ysis was collected from patients of encephalopathy and
healthy individuals from EEG lab of Neurology Department,
Government Medical College, Thiruvananthapuram, Kerala.
We studied a sample consisting of 232 EEG epochs of 15
encephalopathic patients and 218 EEG epochs of 12 normal
healthy subjects. Encephalopathic cases included hepatic and
uremic encephalopathy.

Patients with structural pathology, infections of the CNS,
and cerebral vascular insult (confirmed by neuroimaging
or other investigations) and patients with clinical picture

suggestive of metabolic encephalopathy but without obvious
metabolic disturbances detected in the necessary biochemical
investigations and metabolic encephalopathy occurring in
the background of another neurological illness causing cog-
nitive dysfunction or a degenerative condition were excluded
from our study. Normal healthy controls of the study include
patients with single episode of syncope, who are clinically
found to be normal and whose seizures and structural lesions
were ruled out.

EEG epochs of 12-second duration were saved, from
the artefact-free region of the recording under the super-
vision of two neurologists. EEG signals were recorded in
EEG machine using NicVue software, in international 10-
20 electrode system with 21-channel recording with average
reference montage setting.

2.2. Mathematical Concepts of the Methodology

2.2.1. LPF-TVDDenoising. This is a novel approach proposed
by Selesnick et al. combining low pass filtering and sparse
filtering [21]. Linear time invariant filtering, specifically low
pass filtering (LPF), is applied for signals limited to a par-
ticular frequency band. Total variation denoising (TVD) is
the method of estimating denoised signal from a noisy signal
having a sparse derivative. As EEG signal consists of both low
frequency components and sparse-derivative components,
LPF-TVD approach is effective in preprocessing. Figure 1
shows a raw EEG signal and the same signal after LPF-TVD
filtering.

It is done by formulating the l1 norm of derivative of x
which represents the signal having a sparse derivative. Noisy
signal is represented by y=x+w. The optimization problem
can be written as

argminx {
1
2
y − x22 + 𝜆 ‖Dx‖1} (1)

As approximation of derivative is the first-order difference;
thus minimization of ‖Dx‖1 is done in (1). Its solution can be
written as

tvd (y, 𝜆) = argminx {
1
2
y − x22 + 𝜆 ‖Dx‖1} (2)

Here, majorization-minimization algorithm (MM Algo-
rithm) proposed by Figueiredo et al. [22] is used to solve this
problem for TVD denoising. Regularization parameter 𝜆 is
taken as 0.8 for LPF-TVD filtering.This technique was found
to be effective in denoising biomedical signals as evidenced in
ECG preprocessing by Ray et al. [23] and in EEG processing
[24].

2.2.2. Discrete Wavelet Transform (DWT). The technique of
time-frequency analysis has been utilised in EEG analysis
in many studies. EEG of epileptic patients was analysed
using DWT and transient features like epileptic spikes were
identified in time-frequency domain [11]. Osak et al. decom-
posed EEG into its subbands using DWT and reported that
entropy of subbands yields better performance for classify-
ing between seizures and normal group [10]. Three classes
normal, schizophrenia, and obsessive compulsive disorder
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Figure 1: (a) Raw EEG signal without denoising; (b) EEG signal after LPF-TVD denoising.
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Figure 2: General structure of discrete wavelet transform.

were classified based onwavelet decomposition parameters of
EEG signal by Hazarika et al. [25]. These studies report good
results for DWT in the field of EEG processing.

DWT makes computation easier and faster by avoiding
the redundant data which was processed in continuous
wavelet transform. DWTof a signal s[n] was taken by passing
it through a series of low pass and high pass filters to analyse
low frequency and high frequency components, respectively
(see Figure 2) [26, 27].

ylow [n] = s [n] ∗ g [n] =
∞

∑
k=−∞

s [k] .g [n − k] (3)

yhigh [n] = s [n] ∗ h [n] =
∞

∑
k=−∞

s [k] .h [n − k] (4)

Here, g[n] and h[n] represent the impulse response of
low pass and high pass filters, respectively. The outputs of
filters are given in (1) and (2). The low pass filter output
samples are then downsampled by 2, thereby reducing the
data redundancy (see (3)). As filter decreases the maximum
frequency of signal from fm to fm/2, sampling frequency
required is also decreased to half (as fs ≥ 2fm according to
sampling theorem)[28].Therefore, downsampling of the filter
output will not result in any loss of information.

ysam [n] =
∞

∑
k=−∞

s [k] .g [2n − k] (5)

After downsampling, sample number decreases to half
and scale is doubled [29]. Thus, time-frequency information
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of EEG signal is obtained using DWT technique. All the
analysis related to this was done using MATLAB R2014a
software.

2.3. Processing of Data. The EEG epochs were subjected to
a filtering process using a combined technique of low pass
filtering and total variation denoising proposed by Ivan W
Selesnick [21]. After denoising, wavelet decomposition was
done to extract the subbands of EEG usingDWT.Themother
wavelet chosen for this work was Daubechies wavelet of order
4 (db4) because previous related works have pointed out the
fact that its smoothing feature is appropriate for analysing
EEG signals [30–34].

The EEG waves are conventionally classified into delta
(less than 4Hz), theta (4 to 7Hz), alpha (8 to 13 Hz ), and beta
waves (13 to 30 Hz), based on their frequency [35–37]. As the
EEG epochs used for the study were recorded at a sampling
frequency of 500Hz, maximum frequency content (fm) was
taken to be 250Hz according to Nyquist sampling theorem.
Based on this assumption, 6 levels of wavelet decomposition
have been performed (refer to Figure 3). The approximation
coefficients at 6th level (A6) and detailed coefficients at 6th
level (D6), 5th level (D5), and 4th level (D4) yield delta, theta,
alpha, and beta subbands of EEG, respectively.

Thus, the EEG was decomposed into its subbands and
their energies were calculated from the wavelet coefficients
[34, 38]. The relative energies of various subbands were
calculated by dividing them with total energy of the signal
(see (4) to (8)). Relative energies of the four subbands were
utilised for classification.

Energy of delta subband:

E [𝐴6] =
N
∑
j=1

𝐴62 (6)

Energy of theta, alpha, and beta subbands:

E [𝐷𝑙] =
N
∑
j=1

𝐷𝑙2 𝑙 = 6, 5, 4 (7)

As 𝑙=6, total energy of EEG epoch is as follows:

𝐸𝑡𝑜𝑡𝑎𝑙 = E [𝐴6] +
6

∑
j=1
(𝐸 [𝐷𝑗]) (8)

Edelta = E [𝐴6]𝐸𝑡𝑜𝑡𝑎𝑙
(9)

Etheta/alpha/beta = E [Di]
Etotal

i = 6, 5, 4 for theta, alpha, beta respectively
(10)

Various subband energies (expressed as percentage of
total energy called relative energy) were given as features
to SVM for classifying EEGs of encephalopathic patients
from that of normal healthy subjects. SVM is employed
in our study as many studies reported good results for
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Figure 3: Application of DWT to generate subbands of EEG.
Different levels of decomposition of DWT are shown. A6, D6, D5,
and D4 yield delta, theta, alpha, and beta waves, respectively. fm:
maximum frequency content of the EEG signal.

support vectormachine (SVM) classification and even higher
classification accuracy than neural networks in various neu-
rological disorders [8, 39–41]. SVM is one of the commonly
used methods for binary classification following supervised
machine learning algorithm. It maps the data points to a
higher dimensional space and tries to define a hyperplane
separating the two classes with maximal margin [42, 43].The
kernel function that may be a linear, radial basis function
(RBF), polynomial, or sigmoid kernel is responsible for the
transformation to the higher dimensional space [43]. In this
study, linear kernel function was used. Out of various inputs
given to the classifier, the subband energy yielding higher per-
formance parameters for identifying encephalopathy cases
was found out. The flow diagram of this study is given in
Figure 4.

3. Results and Discussion

3.1.Wavelet Analysis. Discrete wavelet transform (DWT)was
performed on the data. EEG epochs of both normal and
encephalopathic patients were decomposed into subbands,
namely, delta, theta, alpha, and beta using DWT. Here, as
the sampling rate was 500 Hz, maximum frequency was
taken to be 250 Hz. Therefore 6-level decomposition was
carried out using fourth-order Daubechies (db4) as the
mother wavelet. It was selected as mother wavelet because
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Figure 5: Various EEG subbands obtained using DWT: (a) normal EEG; (b) EEG in encephalopathy.

it offers maximum correlation with the EEG signal. Thus
the subbands were generated by 6-level decomposition using
DWT (see Figure 3). Their relative energies (expressed as
percentage of total energy) were calculated.

This is similar to the result given by Kaplan [44]. The
mean energy of the various subbands of EEG obtained
from the encephalopathic patients and normal EEG after
preprocessing and DWT are given in Figure 5. On analysis
of the subband energies, it was found that the share of delta
subband increased substantially with encephalopathy at the

expense of decreased energy of predominant alpha waves;
delta wavewas seen to be around two times that of the normal
EEG. See Table 1 and Figure 6 for details.

3.2. Statistical Analysis. Independent sample t-test was done
to identify the subband energies which showed significant
difference so that they can be potentially used for classifying
between encephalopathy group and normal. Delta subband
energy (p value <0.01; t= -25.06), alpha energy (p value <0.01;
t= 32.31), and beta energy (p value <0.01; t=24.27) showed
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Table 1: Values of mean, standard deviation, and standard error of subbands energies of normal and encephalopathic EEG.

Normal/ Encephalopathy N Mean Std. Deviation

Beta energy (% of total energy) Normal 218 14.96 6.85
Encephalopathy 232 2.89 2.71

Alpha energy (% of total energy) Normal 218 30.60 6.03
Encephalopathy 232 9.64 7.68

�eta energy (% of total energy) Normal 218 19.71 6.47
Encephalopathy 232 19.20 11.78

Delta energy (% of total energy) Normal 218 31.39 10.34
Encephalopathy 232 67.73 19.34

Table 2: Data set for training and testing.

Encephalopathy Normal Total
Training 100 100 200
Testing 132 118 250
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Figure 6: Distribution of EEG subband energies in encephalopathy
and healthy groups.

significant difference. Theta subband energy (p value >0.05;
t=0.58) did not show significant difference between the two
groups [t is the test statistic of independent sample t-test and
p value shows its significance; p value less than 0.01 shows
very high significance].

3.3. Classification Using Support Vector Machine (SVM). We
have implemented an SVM classifier for the diagnosis of
encephalopathy based on the energies of subbands of EEG
signal. We used a subset of data to train and subsequently the
rest of the data were tested (see Table 2).
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Figure 7: Performance parameters of SVM classifier based on dif-
ferent subband energies of EEG.Accuracy, sensitivity, and specificity
are colour coded in the bar diagram.

The features used for classification were

(i) energies of all subbands, i.e., delta, theta, alpha, and
beta,

(ii) energies of delta, alpha, and beta individually (as
these were found to be significantly different in the
statistical tests).

Accuracy, sensitivity, and specificity are mainly used as
performance parameters for the classifier. Sensitivity is the
ability of the test to find out the diseased cases correctly
(TP/TP+FN). Specificity is the ability of the classifier to find
out the normal cases rightly (TN/TN+FP). Accuracy may be
described as the ability of the classifier to distinguish diseased
and normal cases correctly (TP+TN/TP+TN+FP+FN). Test
statistics of the classifier are given in Table 3. The test
showed highest performance when delta alone was used as
the parameter with a sensitivity of 91.67% and specificity of
88.98% giving an accuracy of 90.4%. Performance parameters
of the classifier for various feature sets are demonstrated
in Figure 7. When alpha alon was used as the parameter
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Table 3: Test statistics of SVM classifier based on different feature sets based on subband energies of EEG.

All sub-bands Delta only Alpha only Beta only
True Positive (TP) 86 121 115 94
True Negative (TN) 118 105 110 118
False Positive (FP) 0 13 8 0
False Negative (FN) 46 11 17 38

the sensitivity was 87.12% and specificity was 93.22% giv-
ing an accuracy of 90%. This can be related to the phe-
nomenon of loss of alpha activity and prominence of delta
waves found in encephalopathy. The accuracy dropped
when other combinations of subband energies were used as
parameters.

Normal EEG background activity in an person who is
awake is in the alpha range in the posterior head region. The
initial EEG changes in encephalopathy are mild slowing of
background which is reactive to external stimuli, followed
by intermittent polymorphic delta activity. With worsening
encephalopathy, there is continuous polymorphic delta activ-
ity persisting >80% of the record which is unreactive to exter-
nal stimuli, with absent posterior dominant background [6].
Severe encephalopathy may progress to burst-suppression
pattern (bursts of slow and sharp waves lasting 1-3 seconds,
followed by suppression lasting 5-10 seconds), background
suppression (<10 𝜇V), and electrocerebral silence (<2𝜇V).
In summary, the EEG in encephalopathy is characterized
by the loss of normal posterior dominant alpha background
activity in the awake state with the appearance of delta
waves, initially intermittent followed by continuous delta
activity [19, 45]. Hence our finding of higher sensitivity and
specificity of delta band and alpha band in encephalopathy is
expected.

4. Conclusion

The “splitting” of an EEGwaveform into its various frequency
subbands maybe best performed using discrete wavelet
transform compared with the customarily used frequency
domain approach like fast Fourier transform. Our study
concludes the relevance of wavelet decomposition in EEG
analysis where time localisation of frequency components
of the signal is possible. After applying LPF-TVD filtering,
the EEG subbands were extracted using DWT and their
energies were calculated. Statistical tests conducted revealed
significant difference in delta, alpha, and beta between
encephalopathy and normal EEG. Implementation of SVM
classifier gave higher performance parameters for classifying
the two groups when delta alone or alpha alone were taken
as the features. The results correlate with the explanation
of loss of normal alpha rhythm and prominence of delta
rhythm during encephalopathy. This work can be extended
for identifying various stages and severity of encephalopathy.
This study provides a complete framework for the automated
diagnosis of encephalopathy based on subband energies of
EEG.
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