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Abstract

Background

Food taxes and subsidies are one intervention to address poor diets. Price elasticity (PE) matri-

ces are commonly used to model the change in food purchasing. Usually a PE matrix is gener-

ated in one setting then applied to another setting with differing starting consumptions and

prices of foods. This violates econometric assumptions resulting in likely mis-estimation of total

food consumption. In this paper we demonstrate this problem, canvass possible options for

rescaling all consumption after applying a PE matrix, and illustrate the use of a total food expen-

diture elasticity (TFEe; the expenditure elasticity for all food combined given the policy-induced

change in the total price of food). We use case studies of: NZ$2 per 100g saturated fat (SAFA)

tax, NZ$0.4 per 100g sugar tax, and a 20% fruit and vegetable (F&V) subsidy.

Methods

We estimated changes in food purchasing using a NZ PE matrix applied conventionally, and

then with TFEe adjustment. Impacts were quantified for pre- to post-policy changes in total

food expenditure and health adjusted life years (HALYs) for the total NZ population alive in

2011 over the rest of their lifetime using a multistate lifetable model.

Results

Two NZ studies gave TFEe’s of 0.68 and 0.83, with international estimates ranging from

0.46 to 0.90 (except a UK outlier of 0.04). Without TFEe adjustment, total food expenditure

decreased with the tax policies and increased with the F&V subsidy–implausible directions

of shift given economic theory and the external TFEe estimates. After TFEe adjustment,

HALY gains reduced by a third to a half for the two taxes and reversed from an apparent

health loss to a health gain for the F&V subsidy. With TFEe adjustment, HALY gains (in
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1000’s) were: 1,805 (95% uncertainty interval 1,337 to 2,340) for the SAFA tax; 1,671

(1,220 to 2,269) for the sugar tax; and 953 (453 to 1,308) for the F&V subsidy.

Conclusions

If PE matrices are applied in settings beyond where they were derived, additional scaling is

likely required. We suggest that the TFEe is a useful scalar, but we also encourage other

researchers to examine this issue and propose alternative options.

Introduction

Nutrition policy to prevent or mitigate the obesity epidemic, and improve diets, is a major pol-

icy issue.[1] One policy option is food taxes and subsidies.[2, 3] To guide policy making, an

important role of research is to estimate the likely impact of such taxes and subsidies on

changes in diet (e.g. consumption of fruit and vegetables, total energy intake) [4, 5], intermedi-

ate outcomes (e.g. body mass index (BMI) [6], blood pressure), disease outcomes (e.g. stroke,

diabetes) [7] and ‘total’ health measures change (e.g. deaths averted, disability adjusted life

years averted or quality adjusted life years gained).[8, 9] Ideally, one would have randomized

trials of food taxes and subsidies for this estimation (e.g. [10–13]), but they are difficult to

implement and if implemented follow up for long-periods of time to ascertain both long-run

accommodation to new food prices and health outcomes is often not feasible. Alternatively,

one can analyze natural experiments, e.g. the tax on sugar-sweetened beverage (SSB) in Mexico

[14, 15], the Danish saturated fat tax [16] and the SSB tax in Philadelphia.[17]

To estimate the health impacts, including the relative health impacts across multiple policy

options, modelling is therefore useful.[18] A key–and challenging–aspect of this modelling is param-

eterizing how total diets actually change with food taxes and subsidies. For example, how much does

a tax on one food item affect consumption of other foods? Price elasticities (PEs) are commonly

used to convert a food tax/subsidy intervention to a change in total diet [19] which is then linked to

changes in BMI and other risk factors, then disease rates, and then to morbidity and mortality.

There are two types of PEs. First, there is the own-PE. This measures how much the price

(change) of a given food affects its own consumption. For example, a PE of -0.7 on red meat

means that if the price of meat increases by 1%, its consumption reduces by 0.7%. The second

is cross-PEs. This measures how much the price (change) of another food affects consumption.

For example, a cross-PE of +0.1 for red meat given an increase in price of poultry means that if

the price of poultry increases by 1%, the consumption of red meat increases by 0.1%. (A posi-

tive cross-PE means foods are substitutes and a negative cross-PE that they are complements)

Econometric analyses to generate PEs are demanding, requiring simultaneous data on both

price and demand and (ideally) substantial variation in price (e.g. by time or by region). Given the

impracticality of calculating new PEs for each new setting in which researchers and analysts esti-

mate the impact of price changes on food purchasing, by necessity PEs from one setting (e.g. a

given country for a given year) are often applied in another setting.[5, 6, 8] But there are inevitably

variations between settings in food purchasing patterns, prices and demand relationships. Indeed,

the most common food price elasticity matrix is a ‘conditional’ one meaning that it is generated

under the assumption that there is no change in total food expenditure for food price changes;

this nil impact on total food expenditure is violated when a PE matrix is applied to a different dis-

tribution of food prices and consumption–likely resulting in implausible shifts in total food

expenditure. The Text Box gives a simple food system example, showing how the transfer of price

elasticities calculated in one setting of food consumption to another can generate (likely) implausi-

ble estimates of post price change consumption.
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age and ethnic composition of the NZ population in

2011 was set using Statistics NZ resident

population estimates. All-cause mortality and

morbidity data, and disease specific incidence,

case fatality and prevalence rates, are all provided

in an Excel file “Disease Inputs used for Multi-State

Life Table Modelling (Version 1.0)” available at the

BODE3 publications webpage: https://www.otago.

ac.nz/wellington/departments/publichealth/

research/bode3/publications/index.html. Note that

many of these data are generated specifically for

the DIET model, requiring ‘epidemiological

coherence’ using the DISMOD epidemiological

calculator.1 They may not be fit for other purposes.

Excess health system costs for each disease

included in the model are provided in the DIET

model Technical Report 2 - also available at the

above BODE3 publications webpage. The price

elasticity matrix is reported in S1 and S2 Tables of

the current paper. Relative risks for the risk factor

disease associations are in the DIET model

Technical Report.2 Starting food consumption at

the level of 340 foods, by sex and ethnicity, was

taken from the NZ Adult Nutrition Survey; as stated

in the paper, was provided by the Otago University

‘Life in New Zealand’ (LINZ) staff (personal

communication, Blakey, Smith and Parnell, 2014).

Our data access agreement does not allow full

disclosure of the estimates we extracted from this

data, but others can approach LINZ directly for the

data. Starting food prices were sources from

Nutritrack data, which is available upon request

from the National Institute of Health Innovation,

University of Auckland. Other key variables, such

as the total food expenditure elasticity (TFEe), are

detailed in the manuscript. 1. Barendregt J,

Oortmarssen GJ, Vos T, Murray CJL. A generic

model for the assessment of disease epidemiology:

the computational basis of DisMod II. Popul Health

Metr 2003;1(1):4. 2. Cleghorn CL, Blakely T,

Nghiem N, Mizdrak A, Wilson N. Technical Report

for BODE3 Diet Intervention and Multistate

Lifetable Models, Version 1.1. Burden of Disease

Epidemiology, Equity and Cost-Effectiveness

Programme - Technical Report No16. Wellington:

Department of Public Health, University of Otago,

Wellington 2018.
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Box 1. Problems transporting price elasticity from one context to
another

Imagine a world with just three foods: fruit, vegetables and cereal. Average daily per per-

son consumption, price per 100g and kJ of energy per 100g are as follows:

kJ per 100g Price per 100g own-PE [fruit - fruit] cross-PE [Fruit-vegetables/cereals]

Fruit 150 $0.40 -1

Vegetables 150 $0.50 0.30

Cereals 500 $1.00 -0.05

https://doi.org/10.1371/journal.pone.0230506.t001

The own- and cross-PE estimated for this world are also shown. A 1% increase in the

price of fruit will result in a: 1% decrease in consumption of fruit; a 0.3% increase in the

consumption of vegetables (a substitute food); and a 0.05% decrease in cereals (a com-

plement food in this world). Now imagine that a 20% subsidy on fruit is implemented.

The table below shows the pre-subsidy and post-subsidy consumption, energy and

expenditure:

g/day kJ Expenditure

Pre-subsidy Fruit 50 (11.1%) 75 (5.5%) $0.20 (6.3%)

Vegetables 200 (44.4%) 300 (21.8%) $1.00 (31.3%)

Cereals 200 (44.4%) 1,000 (72.7%) $2.00 (62.5%)

Total 450 1375 $3.20

Post-20% subsidy on fruit Fruit 60 (13.3%) 90 (6.5%) $0.24 (7.5%)

Vegetables 188 (41.8%) 282 (20.4%) $0.94 (29.4%)

Cereals 202 (44.9%) 1,010 (73.1%) $2.02 (63.1%)

Total 450 1382 $3.20

Difference pre-

to post-subsidy

0% 0.51% 0.00%

https://doi.org/10.1371/journal.pone.0230506.t002

The subsidy resulted in no change in total expenditure (consistent with the assumptions

inherent within the calculation of ‘conditional’ price elasticities) and increased total

energy consumption by 0.51%.

Now imagine we use the above price elasticities in a different setting or

population – with differing starting consumption of foods (but the same prices per

100g). The pre- and post-subsidy grams per day consumption, energy intake and expen-

diture are:

g/day kJ Expenditure

Pre-subsidy in new setting Fruit 100 (25%) 150 (11.5%) $0.40 (13.8%)

Vegetables 100 (25%) 150 (11.5%) $0.50 (17.2%)

Cereals 200 (50%) 1,000 (76.9%) $2.00 (69%)

Total 400 1300 $2.90

Post-20% subsidy on fruit in new setting Fruit 120 (28.8%) 180 (13.5%) $0.48 (16.2%)

Vegetables 94 (22.6%) 141 (10.6%) $0.47 (15.8%)

Cereals 202 (48.6%) 1,010 (75.9%) $2.02 (68%)

Total 416 1331 $2.97

Difference pre-

to post-subsidy

4% 2.38% 2.41%

https://doi.org/10.1371/journal.pone.0230506.t003
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This simple example demonstrates distortions that may arise applying price elasticities

from one setting to another – in this case just due to differing starting consumptions of foods.

There may also be differing starting prices, and more fundamentally differing food preferences

with ‘genuinely’ differing consumer responses to price changes. Ideally, there would be price

elasticities worked out for each different setting that they are applied in, however that is

impractical.

This price elasticity transferability issue is problematic for health impact modelling studies,

which derive health consequences from absolute differences in dietary consumption patterns

between the observed and counterfactual scenarios.[18, 20] For example, our intended model-

ling will be using National Nutrition Survey (NNS) data from 2009 [21] (whilst older, it is

nationally representative and has data by ethnicity and for a wide range of food groups), where

the price elasticities were generated with experimental data (conducted in 2016, using foods

with overlap but not exact concordance with NNS food groups)[22, 23] using Bayesian priors

from price elasticities calculated using Household Economic Survey data (2007/08 and 2009/

10) and Food Price Index data (2007 and 2010).[5] Is applying PEs derived from one setting

into another setting acceptable? We argue yes–but with care (and rescaling). Look again at the

Text Box, and in particular the column percentages shown in parentheses in the tables. Whilst

we may be concerned about the validity of the new estimated totals of g/day, kJ and financial

expenditure post-subsidy, we may accept that the shifts in relative distribution across foods in

g/day, kJ and expenditure is valid. Therefore, all estimates need common rescaling given some

constraint (preserving the new column percentages). Possible constraints include no change in

(or some tolerable change in) one of the total weight of food, the total energy, or the total

financial expenditure. The question then is “what constraint should we use?”–a question we

consider in more detail below.

The aim of this paper is to peel back often-unacknowledged uncertainties in the use of PEs

to model food taxes and subsidies. Our goal is not to ‘damn the research endeavour to irrele-

vance’.[24] Quite the converse. We take the view that improving nutrition is a major public

health priority, and it is essential for researchers to estimate the health impacts of food taxes

and subsidy options. Modelling is an important part of that research agenda. Accordingly, the

objectives of this paper are:

1. Canvass the advantages and disadvantages of options for rescaling total expenditure after

conventional application of price changes through a PE matrix, options being: nil change in

energy intake; nil change in grams of food; nil change in total expenditure on food; some

change in total food expenditure using a total food expenditure elasticity (TFEe; i.e. change

in food expenditure is a function of a TFEe and the difference in total food price index

(FPI) pre- and post-tax or subsidy policy).

2. Demonstrate the use of the TFEe and its impact (compared to a conventional unscaled

application of a PE matrix generated for New Zealand (NZ) [25]) on household expendi-

ture, energy intake, BMI and health adjusted life years gained, for three NZ case studies: a

NZ$2 per 100g of saturated fat tax; a NZ$0.4 per 100g of sugar tax; and a 20% fresh fruit

and vegetable subsidy.

Note that the total expenditure now changes from pre- to post-subsidy, and the percent-

age change in total energy consumption (which will largely drive health impacts) is over

four times greater than in the original setting (2.38% compared to 0.51%).
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Options for rescaling total consumption or expenditure after

conventional application of a price elasticity matrix

There are a number of options to rescale all food purchasing after the conventional application

of a PE matrix.

1. Rescale all consumption so that energy intake is unchanged. Some health impacts of dietary

change are mediated through mechanisms other than energy balance and these can plausi-

bly be modelled in the way that Smed et al (2016) did when they estimated the health

impacts of the Danish saturated fat tax assuming no change in total energy intake. [16]

However, in reality for many pricing interventions, the dietary changes will plausibly

change energy balance. While in general humans maintain fairly close energy balance on a

week by week basis, small increases or decreases in energy intake maintained over the long

term will result in a higher or lower body weight on a year by year basis.

2. Rescale all consumption so that grams of (solid) food purchased is unchanged.

Studies by Rolls and others [26, 27] suggest that if one changes the energy density of food,

and allow (experimental) subjects to freely eat, then they eat to an amount that keeps the

weight of food consumed relatively consistent–and energy intake will thus fall if foods of

lower energy density are provided or ‘made easier’ to access. However, there are limits to an

assumption of constant grams of food. First, and an extreme example, a consumer swap-

ping from pre-mixed drinks to powdered sachets will purchase less weight. Second, and

less extreme, a consumer swapping from freshly-prepared to dried pasta, or fresh to dried

fruit, will purchase less weight. Third, differing moisture contents of substitute foods (e.g.

dry cereals compared to moister mueslis) will also presumably not be direct weight substi-

tutes. We are unaware of algorithms to manage these issues if rescaling by food weight was

used.

3. Rescale all expenditure to be unchanged to that pre-tax/subsidy. This is actually a specific

case of the expenditure elasticity approach below. However, it is a simplifying assumption–

economic theory suggests that total expenditure on food will change with change in average

food price or FPI, as we now explain.

4. Rescale using total food expenditure elasticity: Rescale all expenditure using econometric

methods that generalize conditional PE matrices (assumed zero change in total expenditure

on food due to reducing purchasing for foods with increased prices and/or shifting to other

foods; and option 3 above) to unconditional PE matrices (permits change in total food

expenditure with food price changes by allowing shifts between food and other components

of household budgets), by including an additional elasticity of expenditure (TFEe). Such

TFEe are occasionally found in the published literature [28–30], but have not (to our

knowledge) been used to rescale food purchasing post-PE matrix application. For example,

if the food price index (FPI; or average food price) increases by 5% following a saturated fat

(SAFA) tax, and the TFEe is 0.5 (i.e. expected household expenditure on food will increase

by 0.5% for each 1.0% increase in the FPI), then the new total expenditure on food will be

2.5% greater than the starting expenditure due to reduced household consumption of other

goods such as housing, savings, holidays, etc. We propose first applying the PE matrix con-

ventionally, then scaling all food consumption by a uniform ratio that ensures total food

expenditure increases by 2.5%. There is a strong economic rationale for this approach–all

food combined in one grouping of household expenditure that will have its own elasticity

of demand based on price.
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Methods for TFEe scalar adjustment case studies

Food and drink taxes and subsidies

Three food tax/subsidy policies were used by way of demonstration:

1. NZ$2 (in 2011 dollars; equivalent to US$1.45 in 2018 dollars) per 100 gram tax on saturated

fat, throughout the food system. Such a tax increased the price of butter by 71%, full fat

milk by 19% and sausages by 16%.

2. NZ$0.4 (US$0.29) per 100 gram tax on sugar, throughout the food system. Such a tax

increased the price of cordials and fruit drinks by 10.8%, tomato sauce by 12.9% and sugar

by 82.9%.

3. 20% subsidy on fruit and vegetables.

Price elasticities

We used a recent, NZ-specific PE matrix published elsewhere [25], and as shown in S1 Table

(standard deviations in S2 Table). Briefly, this PE matrix was generated using a Bayesian

approach to a linear almost ideal demand system, whereby priors for demand equation coeffi-

cients were generated from a previously published New Zealand food PE matrix [4, 5] inform-

ing the analysis of food purchasing data generated in a virtual supermarket experiment that

randomized participants to differing price sets for foods. The randomized price sets used in

this experiment aimed to maximize price variations on foods often suggested as targets for

food subsidies or taxes (e.g. sugar tax, F&V subsidy), approximating the degree of price change

we use as case studies in this paper.[23, 31] For computational tractability, and theoretical rea-

sons (i.e. food complements and substitutes for cross-PE elasticity estimation are larger

between ‘like’ foods (e.g. poultry and pork) than ‘unlike’ foods (e.g. poultry and dairy)),

the demand equations were first estimated for 11 hierarchical subsets of food groups, then

aggregated to one large 23 by 23 food group PE matrix–as is common practice (for example

[6]).

Disaggregation of the 23-by-23 matrix to a 345-by-345 matrix in the simulation

modelling. At the level of 23 food groups, there is still important heterogeneity within food

groups in product-level concentrations of sugar and SAFA per 100 grams (for example low

and full fat cheeses fall in the same dairy food group). Therefore, we disaggregated foods and

their PE to a much larger 345-by-345 food matrix, based on the consumption data in the NZ

National Nutrition Survey (2008/09) (acquired directly from the University of Otago’s Life

in New Zealand Research Group who conducted the survey; personal communication, Bla-

key, Smith and Parnell, 2014). For example, full-fat and low-fat versions of dairy products

should be taxed differently, and it was necessary to allow for shifts in purchasing within

dairy products. Whilst external data for finely disaggregated PE matrices was not available,

econometric theory posits that as one keeps disaggregating foods into smaller and smaller

subgroupings, the own-PE of each food is expected to increase in absolute value terms.[32,

33] For example, the own-PE of all cheese might be -0.6, but high fat cheese separated out

might be -0.65. Why? Because, assuming subgroups in each aggregated category are substi-

tutes, changing the price of just high fat cheese means consumers can swap to low fat cheese.

A theoretical constraint in food demand system specifies that the sum of budget share

weighted own- and cross-PEs for a food item must be a constant, therefore, positive cross-

PEs (e.g. between high fat and low fat cheese when we disaggregate cheeses) will lead to an

expectation of larger own-PEs (e.g. the own-PE of high fat and the own-PE of low fat

cheese).[34] How much does the own-PE strengthen? Unfortunately, that is difficult to
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estimate and is genuinely uncertain. Therefore, we first assumed that the own-PE for each of

the 23 food groups increases in absolute terms by 2.5% for each additional food sub-group it

is disaggregated into, with a relatively wide 1.25% standard deviation (SD) on the normal

scale meaning the 95% uncertainty interval traverses 0.05% to 4.95%. (We selected 2.5% as

the central value as this would mean a 25% to 50% greater own-PE for each of 10 to 20 disag-

gregated foods (e.g. the own-PE for types of dairy product considered separately) within one

food category (e.g. the own-PE for dairy considered as one group), which seemed plausible

given studies that do report both overall and disaggregated own-PEs.) Next, we then ensured

the cross-PEs between the newly disaggregated foods satisfied the ‘adding up’ property with

contributions proportional to expenditure (ie, Cournot aggregation).[34] Finally, we report

analyses in this paper showing how sensitive results are to this PE disaggregation scalar, by

estimating the impact on health adjusted life years (HALYs) gained from using the 2.5th and

97.5th percentile values (i.e. 0.05% to 4.95%; other than the sugar tax, results were reasonably

insensitive to its value; Fig 1 and S6 Table).

As an example of how this 2.5% disaggregation scalar works, consider a food group with an

aggregated own-PE of -1.0 that is disaggregated to five foods, with proportionate expenditure

of 20%, 40%, 20%, 10% and 10% for foods 1 to 5 respectively. The expected own-PE for each of

the five foods was -1.125 (i.e. -1–5×0.025), and the cross-PEs for foods 2, 3, 4 and 5 onto 1

were 0.0625 (i.e. 40%/80% × 0.125), 0.03125, 0.015625 and 0.015625 respectively. A similar

method was used to disaggregate cross-PE (e.g. the cross-PE of milk onto bread when both

food groups were further disaggregated, again ensuring econometric assumptions were met;

see elsewhere for details [35]).

Fig 1. Central estimate of HALY gained and uncertainty ranges, by policy, for: Non-TFEe adjusted; full probabilistic Monte Carlo simulation for total 95%

intervals; univariate sensitivity analysis for 2.5th and 97.5th percentile of TFEe distribution; and univariate sensitivity analysis for 2.5th and 97.5th percentile of PE

disaggregation scalar. The central estimates slightly vary between the ‘full’ and two sensitivity analyses, as the former is the mean of all Monte Carlo simulations

whereas the latter is the central estimate for one simulation using expected (i.e. average) values for all input parameters. Values used to plot this graph are shown in

Table 1 and S5 and S6 Tables.

https://doi.org/10.1371/journal.pone.0230506.g001

PLOS ONE Scaling food consumption: price and expenditure elasticities

PLOS ONE | https://doi.org/10.1371/journal.pone.0230506 March 26, 2020 7 / 17

https://doi.org/10.1371/journal.pone.0230506.g001
https://doi.org/10.1371/journal.pone.0230506


Total food expenditure elasticity (TFEe). Estimating the elasticity of expenditure on all

foods considered together at the level of changes in the average price of all foods (i.e. TFEe)

requires studies of total household expenditure, with consumption items at the level of all foods

combined and other groupings of household expenditure (e.g. housing, recreation, education).

We are aware of two NZ estimates: Michelini and Chatterjee (1997) and Michelini (1999) [36, 37].

Michelini (1999) is the best with a longer series of data, the use of an almost ideal demands system

model, and more disaggregation of food groups. Table 2 of Michelini (1999) reports an own-PE

for food combined of -0.168 (standard error 0.1952), which equates to a TFEe of 0.832 (with the

same standard error, which translates to a 95% confidence interval of 0.45 to 1.21). This central

value equates to 0.832% increase in total household spending on food for a 1% increase in the FPI.

However, the upper confidence limit seems unlikely, as a TFEe greater than 1 suggests people

over-compensate for price increases by spending even more than necessary to maintain the same

quantity of food purchased. We also found eight international studies that used multi-stage bud-

geting models to estimate unconditional and uncompensated food own-PEs, for high-income

countries up to June 2017 (keywords: “price elasticities” or “price elasticity” or “demand” and

“food” and “multi-stage” or “multi stage”; see Table 2 and adjacent text of [35] for further details).

Consistent with theoretical expectation, all estimates were between zero and one. The estimates

ranged from 0.46 to 0.90 (except a UK outlier of 0.04), with the average, median and standard

deviation across these eight studies being 0.59, 0.66 and 0.29, respectively. For Monte Carlo analy-

ses incorporating input parameter uncertainty, we therefore specified a Beta distribution for the

TFEe, parameterized alpha = 6 and beta = 2, which returns mean = 0.75, median = 0.77,

mode = 0.83, 2.5th percentile = 0.42 and 97.5th percentile = 0.96.

Separate food group expenditure elasticities

When using TFEe, from an econometric perspective we are shifting from conditional to

unconditional price elasticities (as we allow total food expenditure to change). This change in

total food expenditure it similar to a change in total income, which has a separate impact on

food purchasing over and above the own- and cross-PEs. We calculated such expenditure elas-

ticities (EE) at the level of the 23 food groups (S3 Table).

Estimating post-tax or post-subsidy food quantities

The estimation of post-tax or post-subsidy food quantities is a two-step process. First, we prop-

agate the food price changes through the Marshallian conditional PEs–which should result in

no change in total food expenditure (due to the ‘conditional’ nature of these PEs), but is

unlikely to do so for the reasons outlined above and in the Text Box. So we have to rescale all

step 1 estimates to ensure this assumption is met. In the second step, we allocate the actual

change in total food expenditure out across all foods using the above EEs propagated through

the change in total food expenditure (given by the change in food price index and TFEe). How-

ever, this is unlikely to generate the ‘correct’ total post-tax or -subsidy food expenditure, so a

further scaling step is required. These two steps are now outlined in detail.

Step 1: Application of price elasticities and scaling to ensure no change in total food

expenditure. The before-tax or -subsidy total expenditure on food is:

XB ¼
Xn

i

qB
i pB

i Eq 1

Where qB
i is the before tax- or -subsidy quantity and pB

i is the before-tax or -subsidy price

per unit quantity, and i indexes foods 1, 2, 3,. . .,n.
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The initial estimate of the percentage change in quantity of each food i due to price changes

propagated through price elasticities is:

%Dqi;PE ¼
Xn

j

ð%Dpj � εijÞ Eq 2

where %Δpj is the percentage change in price of food j, and εij are the food price elasticities for

pairwise combinations of foods (i and j). However, it is not guaranteed that these food quantity

changes when multiplied through the after-tax or -subsidy food prices will sum to the same

total food expenditure before-tax or -subsidy, which is the assumption of a conditional Mar-

shallian PE. (We need to satisfy this assumption before applying the expenditure elasticities

that will ‘convert’ the calculations from conditional to unconditional.) So, we calculate the

implied total food expenditure arising from Eq 2 as:

XPE ¼
Xn

i

ð1þ%Dqi;PEÞq
B
i pA

i Eq 3

where pA
i is the after-tax or -subsidy price of each food item i. We then scale all first estimates

of the percentage change in quantity to ensure no change in total food expenditure:

%DqS
i;PE ¼

XB

XPE
� ð1þ%Dqi;PEÞ

� �

� 1 Eq 4

And therefore:

DqS
i;PE ¼ %DqS

i;PE � qB
i Eq 5

Step 2: Application of expenditure elasticities and total food expenditure elasticity

(TFEe) to allocate change in total food expenditure across foods. First, we set the change in

total food expenditure as:

DX ¼ %DFPI � TFEe � XB Eq 6

Where the percentage change in food price index is:

%DFPI ¼ 100%�
Pn

i qB
i pA

i

XB
� 1

� �

Eq 7

The preliminary estimate of the percentage change in food quantity due to change in total

food expenditure is:

%Dqi;EE ¼ %DFPI � TFEe � Zi Eq 8

where ηi the food EE of food i. (Note that Eq 8 is utilizing our assumption that total food

expenditure after-tax or -subsidy is set by the TFEe and %ΔFPI.) Thus, the preliminary esti-

mate of EE generated change in food quantity is:

Dqi;EE ¼ %Dqi;EE � ð1þ%DqS
i;PEÞ � qB

i

The preliminary estimate of change in total food expenditure is:

DXEE ¼
Xn

i

Dqi;EE � pA
i Eq 9
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which is unlikely to equal our target change of ΔX (Eq 6). We therefore create a scalar:

Scalar ¼
DX
DXEE

Eq 10

and multiply all preliminary EE-generated changes in q by this scalar to generate ‘true’ after-

tax or -subsidy q:

qA
i ¼ ðScalar � Dqi;EEÞ þ DqS

i;PE þ qB
i Eq 11

that ensures total food expenditure post-tax or -subsidy is:

XA ¼ XB þ DX ¼
Xn

i

qA
i pA

i Eq 12

Dietary and epidemiological modelling

We estimate the impact of changes in dietary intake and HALYs gained over the remainder of

the lives of the New Zealand 2011 population, using a multistate lifetable simulation model.

This is a major modelling task. For this paper with objectives of quantifying the impact of

TFEe adjustment, and quantifying uncertainty about the same, we only briefly describe this

modelling. The conceptual model is shown in S1 Fig, and details are published elsewhere.[35]

The starting food consumption was the average (by sex, age, and ethnic group) from the 2008/

09 National Nutrition Survey [21], and starting food prices from Nutritrack (a brand-specific

packaged food database). Each food was linked to nutrient information using the food compo-

sition data from the National Nutrition Survey. By summing across all changes in food intake,

several of the outputs presented in this paper were generated: change in total food expenditure,

energy intake, and BMI. (The latter BMI change was derived from the change in energy intake,

using the method of Hall et al 2011.[38])

The HALYs were estimated using a multi-state lifetable with 14 parallel diet-related dis-

eases, for the entire New Zealand population alive in 2011 modelled over the remainder of

their lifetimes. Changes in food, nutrients and physiological measures were combined with rel-

ative risks for each of these factors with the diseases (sourced from the Global Burden of Dis-

ease study [39]) to generate potential impact fractions (PIFs). These PIFs then altered disease

incidence rates (with time lags into the future, e.g. 10 to 30 years (each limit with probabilistic

uncertainty) for cancers), which then altered disease prevalence rates and mortality rates, all

captured in the main lifetable as incremental changes in HALYs.

Monte Carlo simulation was used to estimate uncertainty in the HALY outputs, by drawing

randomly from probability distributions about all input parameters (some given above; others

elsewhere [35]; 2000 iterations). In addition to generating 95% uncertainty intervals about the

HALYs, we also explore the specific impact of uncertainty in the TFEe and PE disaggregation

scalar by reporting the HALY values for the 2.5th and 97.5th percentiles of these two input

parameters (i.e. univariate sensitivity analyses).

Results

Table 1 shows the impacts of the three tax and subsidy scenarios onto changes in expenditure,

grams of food per day, energy intake, BMI and HALYs gained–before (i.e. conventional analy-

ses) and after TFEe adjustment. Consider first the changes in expenditure in the first column.

The SAFA tax resulted in an increase of the total price index (i.e. price of all food together) of

3.91%, yet a conventional application of PEs suggests that the consumer will not compensate

at all for this and instead decrease total food expenditure by 1.92% (Table 1). Put another way,
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this is a ‘revealed’ TFEe of -0.49 (i.e. -1.92/3.91) meaning that for every 1% increase in the over-

all price of food the consumer will actually reduce expenditure by 0.49%. Our central estimate

of the TFEe is 0.75 (i.e. consumers will increase food expenditure by 0.75% for every 1%

increase in the food price index), which when used to rescale all expenditure results in a post-

TFEe adjusted increase of 2.93% in food expenditure. (We consider uncertainty in this 0.75

estimate below.) Looking down the rest of first column of Table 1 we see that in all instances

the conventional PE application shifts the total food expenditure in the opposite direction to

theoretical expectation, namely ‘revealed’ TFEs of -0.56 and -0.22 for the sugar tax and F&V

subsidy.

Rescaling all food purchasing by a common amount so that the overall change in total food

expenditure is 75% of the change in food price index, the TFEe adjustments result in: more

muted changes in grams of food but no change of direction; lesser reductions in energy intake

and BMI for SAFA and sugar tax, and a reversal to a modest reduction in energy intake and

BMI for the F&V subsidy.

Regarding the flow on impact to HALYs gained (Table 1 and Fig 1), TFEe adjustment

reduced the HALY gains by 46% for the SAFA tax and by 33% for the sugar tax, and reversed

an apparent health loss to a health gain for the F&V subsidy. TFEe adjusted HALY gains (in

1000’s) were: 1,805 (95% uncertainty interval 1,337 to 2,340) for the SAFA tax; 1,671 (1,220 to

2,269) for the sugar tax; and 953 (435 to 1,308) for the F&V subsidy. It is important, however,

Table 1. Model outputs (grams of food/day, expenditure, energy, BMI and HALYs gained) for saturated fat and sugar taxes, and fruit and vegetable subsidy, for the

preferred TFEe adjustment and conventional (no TFEe adjustment) analyses.

Expendi-

ture #

All food

(g/day)

Energy

(kJ)

BMI Fruit (g/

day)

Vege (g/

day)

Salt (g/

day)

PUFA

(g/day)

SSBs

(mls/

day)

Sugar

(g/day)

HALYs † 95% UI

HALYs ‡

Business as usual (BAU) 16.09 3016 8,536 27.51 149.44 149.68 3.43 0.050 102.58 108.92 173,012,000

Changes compared to BAU

Saturated fat tax of $2 per
100g (causing a 3.91% increase
in the FPI)
Conventional model–no TFEe

adjustment

-1.92% -68 -740 -1.30 -0.58 -0.83 -0.19 -0.001 0.40 -5.21 3,343,000

TFEe adjustment 2.93% -14 -348 -0.61 5.75 6.20 -0.07 -0.001 4.65 0.18 1,805,000 (1,337,000 to

2,340,000)

Sugar tax of $0.4/100 grams
per 100g (causing a 1.88%
increase in the FPI)
Conventional model–no TFEe

adjustment

-1.04% -45 -522 -0.91 -0.05 0.00 -0.04 0.002 -22.50 -17.53 2,504,000

TFEe adjustment 1.41% -16 -321 -0.56 3.20 3.58 0.02 0.002 -20.56 -20.81 1,671,000 (1,220,000 to

2,269,000)

Fruit and vegetable subsidy of
20% (causing a 3.27% decrease
in the FPI)
Conventional model–no TFEe

adjustment

0.72% 78 218 0.39 28.72 53.97 0.04 0.000 -0.46 5.49 415,000

TFEe adjustment -2.45% 45 -56 -0.10 24.22 48.62 -0.05 0.000 -2.88 1.84 953,000 (453,000 to

1,308,000)

† 0% discount rate; HALYs at 3% annual discount rate are shown in S4 Table. Values are ‘expected values’ using central estimates for all input parameters (i.e. not from

Monte Carlo simulation).

‡ Uncertainty intervals for 2000 simulations (for TFEe adjusted results only) drawing the 2.5th and 97.5th percentiles.

# $ for BAU. % change for changes compared to BAU.

https://doi.org/10.1371/journal.pone.0230506.t004
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to put these HALY gains in context of the 173 million HALYs under business as usual over the

remainder of the population’s lifespan. Accordingly, reconsider the SAFA tax: the conven-

tional analysis was suggesting a 1.93% increase in HALYs, and the TFEe adjustment a 1.05%

increase in HALYs–or a 0.88% point difference. And for the F&V subsidy: the conventional

analysis was suggesting a 0.24% decrease in HALYs, and the TFEe adjustment a 0.55% increase

in HALYs–or a 0.79% point difference. That is, we are trying to pick up relatively small magni-

tude effect sizes, and a small absolute error or difference appears as a large relative error or

difference.

Fig 1 also shows the 95% uncertainty intervals for the TFEe adjusted analysis (i.e. for Monte

Carlo simulation where all input parameters are sampled from their uncertainty distributions),

plus the range of HALY gain values for the 2.5th to 97.5th percentile values of the probability

distributions for the TFEe (2.5th percentile = 0.42 and 97.5th percentile = 0.96), and the PE dis-

aggregation scalar (0.05% and 4.95%). The uncertainty in the TFEe accounts for much of the

total 95% uncertainty for the SAFA tax and the F&V subsidy. The uncertainty in the PE disag-

gregation parameter is less influential, except for the sugar tax where it drives much of the total

uncertainty (including more uncertainty than that for the 95% range of TFEe values).

Discussion

Our modelling suggests that conventional application of PE matrices can produce implausible

absolute changes in food nutrient intake. Based on the rationale that PE matrix induced

changes in relative food intake are valid for food tax and subsidy policies simulated with an

appropriate PE matrix (e.g. that a saturated fat tax reduces fatty food purchasing and intake

relative to F&V), we present the TFEe scalar as a theoretically plausible solution to scale or

constrain total absolute expenditure and therefore total food and nutrient intake. Economic

theory suggests that change in total food expenditure will follow change in the total FPI

according to an expenditure elasticity, the TFEe. Our empirical simulations using a TFEe

adjustment have face validity. For example, the magnitude of HALY gains is maximal for

sugar and SAFA taxes that impact many foods.

There are limitations to our proposed method and modelling. First, there may not be a

ready source TFEe for a given context. However, there are strong theoretical bounds for the

TFEe: it is unlikely to be greater than 1.0 –as this would imply that consumers increase food

expenditure by a greater percentage than the percentage change in total food price index; and

it is unlikely to be less than 0 –as this would imply that consumers do not increase food expen-

diture at all in response to a price increase. Thus, it is likely bounded between 0 and 1, and

with plausible uncertainty intervals about its value (as we argue we included in this study) the

true value will be covered. Put another way, to not use TFEe scaling will often equate to assum-

ing that it is less than 0 or greater than 1.0 (e.g. as implied by some of our unscaled analyses).

Second, our study is just for NZ PEs applied to NZ; attempts at replication in other contexts

are justified. Third, we assume perfect competition in that the pre-tax market price does not

vary once taxes (or subsidies) are imposed, that tax pass-through is 100%, and that the price

elasticities we use (with TFEe adjustment) are reasonable proxies for long-run responses to

price changes. Fourth, more dietary risk factors could be included than shown in our concep-

tual model to estimate HALYs (S1 Fig). For example, a recent global burden of disease study

includes 15 dietary risk factors with updated relative risks.[40] Including more risk factors will

probably just increase the absolute magnitude of HALY changes, but not the alter the pattern

of findings–unless a specific tax was placed on a food item not currently in our model (e.g. red

meat). Fifth, our study is a modelling study. There is a strong need for more real-world evalua-

tions of food taxes and subsidies. One way forward is to use natural experiment analyses that
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carefully evaluate the impact of actual policies, for example Smed et al (2016) used econometric

fixed effects modelling of consumer purchasing data to evaluate the Danish saturated fat tax.

[16] They found that the tax did reduce saturated fat purchasing, and that it also had mixed

spillover effects to increase vegetable consumption but also increase salt intake. Interestingly

in light of our current study, they found it necessary to constrain or rescale their outputs to an

assumption of no change in energy intake when modelling deaths averted or delayed, as sensi-

tivity analyses found the net health impact to be very sensitive to any change in energy intake.

Put another way, even though Smed et al undertook as rigorous as possible natural experiment

analyses, they still confronted a need for theoretical constraint or scaling of the modelling of

health impacts–demonstrating both the challenges in estimating net heath impacts, and also

the need for studies such as ours probing deeper the issue and possible solutions.

It is useful to compare our method with some previously published simulation studies

using PE matrices (Table 2). Approaches used that may prevent undue violation of assumptions

inherent in the calculation of PE matrices include ensuring the total changes in food price for

any tax or subsidy policy is less than 1% [9] and policies that use F&V subsidies to offset food

tax revenue.[8] (Expressed conversely, any food and tax subsidy policy that sees a sizeable

change in the total food price index likely requires some form of constraint–which we propose

may be the TFEe.) Briggs et al (2015)[6]–whilst only assessing the impact of taxes on sugary

drinks (a small fraction of all food)–used hierarchical demand systems (e.g. solving separate

drinks as one system separately from drinks combined with other food groups). This hierarchi-

cal approach means that cross-PEs between what we think are disparate food groupings (e.g.

meat versus breakfast cereals) are actually constrained to smaller absolute values, as substitutes

and complements are assumed to mainly occur within the separate food demand systems.

Table 2. Characteristics of selected previous food tax and subsidy modelling papers.

Price elasticity matrix

Author Interventions and setting Number of food

groups

Derivation of PE matrix Cross-PE used? Constraint or

rescaling after

PE application?

Health gain findings

Blakely et al

(current

study)

NZ. SAFA and sugar tax, F&V

subsidy.

340

(disaggregated

from 23)

Bayesian LAIDs model, 12

hierarchical demand

systems. Marshallian

conditional PEs.

Yes Yes; using TFEe Substantial HALY gains:

SAFA tax � sugar tax > F&V

subsidy.

Briggs et al

(2013) [6]

UK. 20% sugar sweetened

drink tax.

12 drinks

categories and 5

food categories.

Bayesian AIDs model, 5

hierarchical demand

systems. Unconditional

within each demand system;

conditional across demand

systems.

Yes No 20% SSB tax would result in

1.3% reduction in obesity

rates.

Cobiac et al

(2017) [9]

Australia. Separate and

combined policies such that all

policies had <1% impact on

total food expenditure. Salt,

sugar, saturated fat and SSB

taxes: F&V subsidy.

24 NZ PE matrix as used in Ni

Mhurchu et al (2015) [4].

UK PE matrix for sensitivity

analysis.

Yes, with

suppression of

statistically non-

significant cross-

PE.

No Combined taxes and F&V

subsidy > sugar tax > salt tax

� SAFA tax. F&V subsidy

alone led to health loss.

Sensitive to PE matrix used.

Ni

Mhurchu

et al (2015)

[4]

NZ. Sodium and sugar tax.

F&V subsidy. Tax on foods

contributing to greenhouse

gases.

24 Household economic survey

data, with prices from food

price index

Yes, with

theoretical

suppression of

non-important

cross-PE.

No Sodium tax > sugar

tax > F&V subsidy in terms

of deaths prevented or

postponed.

AIDS = almost ideal demand system. LAIDS = linear AIDS. HALY = health adjusted life year.

Unconditional means that the a change in expenditure was allowed in the assumptions for calculating PE.

https://doi.org/10.1371/journal.pone.0230506.t005
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Our study here offers three advances. First, the price elasticities we draw on use a Bayesian

method blending priors with experimental data, and a hierarchical of demand systems that

should (consistent with theory) mean cross-PEs between disparate foods are appropriately

kept small in absolute terms (similar to Briggs et al above [6]). Second, we present a method

for disaggregating a PE matrix to a large (in this case 340 food groups) matrix to allow separate

consideration of foods with differing nutrient levels (e.g. sugar content) that consequently

attract differing price changes. Third, and the main purpose of this paper, we propose using an

additional constraint–the TFEe. We propose that there is good a priori reason to use this con-

straint, and particularly so: a) if the policies we are assessing generate sizeable changes (e.g.

greater than 1%) in the FPI; and/or 2) the modelled total food expenditure following conven-

tional application of the PE matrix is ‘counter-intuitive’ economically, for example with total

expenditure decreasing post tax or total expenditure increasing post-subsidy.

In conclusion, we are proposing new methods that we think can improve simulation of

food tax and subsidy impacts. We encourage other researchers to scrutinize and critique our

proposals, and we strongly recommend future research to compare estimates from such

modelling with real-world natural experiments.
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4. Ni Mhurchu C, Eyles H, Genç M, Scarborough P, Rayner M, Mizdrak A, et al. Effects of Health-Related

Food Taxes and Subsidies on Mortality from Diet-Related Disease in New Zealand: An Econometric-

Epidemiologic Modelling Study. PLoS ONE. 2015; 10(7):e012847. https://doi.org/10.1371/journal.pone.

0128477 PMID: 26154289

5. Ni Mhurchu C, Eyles H, Schilling C, Yang Q, Kaye-Blake W, Genc M, et al. Food Prices and Consumer

Demand: Differences across Income Levels and Ethnic Groups. PLoS One. 2013; 8(10):e75934.

https://doi.org/10.1371/journal.pone.0075934 PMID: 24098408; PubMed Central PMCID:

PMC3788811.

6. Briggs AD, Mytton OT, Kehlbacher A, Tiffin R, Rayner M, Scarborough P. Overall and income specific

effect on prevalence of overweight and obesity of 20% sugar sweetened drink tax in UK: econometric

and comparative risk assessment modelling study. BMJ. 2013; 347:f6189. https://doi.org/10.1136/bmj.

f6189 PMID: 24179043.

7. Basu S, Vellakkal S, Agrawal S, Stuckler D, Popkin B, Ebrahim S. Averting Obesity and Type 2 Diabe-

tes in India through Sugar-Sweetened Beverage Taxation: An Economic-Epidemiologic Modeling

Study. PLoS Medicine. 2014; 11(1):e1001582. https://doi.org/10.1371/journal.pmed.1001582 PMID:

24409102

8. Nnoaham KE, Sacks G, Rayner M, Mytton O, Gray A. Modelling income group differences in the health

and economic impacts of targeted food taxes and subsidies. Int J Epidemiol. 2009; 38(5):1324–33.

https://doi.org/10.1093/ije/dyp214 PMID: 19483200

9. Cobiac L, Tam K, Veerman L, Blakely T. Taxes and subsidies for improving diet and population health

in Australia: A cost-effectiveness modelling study. PLoS Med. 2017; 14(2):e1002232. https://doi.org/10.

1371/journal.pmed.1002232 PMID: 28196089

10. Ni Mhurchu C, Blakely T, Jiang Y, Eyles HC, Rodgers A. Effects of price discounts and tailored nutrition

education on supermarket purchases: a randomized controlled trial. Am J Clin Nutr. 2010; 91(3):736–

47. https://doi.org/10.3945/ajcn.2009.28742 PMID: 20042528

11. Ball K, McNaughton SA, Le HN, Gold L, Ni Mhurchu C, Abbott G, et al. Influence of price discounts and

skill-building strategies on purchase and consumption of healthy food and beverages: outcomes of the

Supermarket Healthy Eating for Life randomized controlled trial. Am J Clin Nutr. 2015; 101(5):1055–64.

Epub 2015/04/17. https://doi.org/10.3945/ajcn.114.096735 PMID: 25877492.

PLOS ONE Scaling food consumption: price and expenditure elasticities

PLOS ONE | https://doi.org/10.1371/journal.pone.0230506 March 26, 2020 15 / 17

https://doi.org/10.1016/s0140-6736(14)61744-x
http://www.wcrf.org/int/policy/nourishing-framework/use-economic-tools
http://www.wcrf.org/int/policy/nourishing-framework/use-economic-tools
https://doi.org/10.1016/s0140-6736(14)61745-1
https://doi.org/10.1371/journal.pone.0128477
https://doi.org/10.1371/journal.pone.0128477
http://www.ncbi.nlm.nih.gov/pubmed/26154289
https://doi.org/10.1371/journal.pone.0075934
http://www.ncbi.nlm.nih.gov/pubmed/24098408
https://doi.org/10.1136/bmj.f6189
https://doi.org/10.1136/bmj.f6189
http://www.ncbi.nlm.nih.gov/pubmed/24179043
https://doi.org/10.1371/journal.pmed.1001582
http://www.ncbi.nlm.nih.gov/pubmed/24409102
https://doi.org/10.1093/ije/dyp214
http://www.ncbi.nlm.nih.gov/pubmed/19483200
https://doi.org/10.1371/journal.pmed.1002232
https://doi.org/10.1371/journal.pmed.1002232
http://www.ncbi.nlm.nih.gov/pubmed/28196089
https://doi.org/10.3945/ajcn.2009.28742
http://www.ncbi.nlm.nih.gov/pubmed/20042528
https://doi.org/10.3945/ajcn.114.096735
http://www.ncbi.nlm.nih.gov/pubmed/25877492
https://doi.org/10.1371/journal.pone.0230506


12. Brimblecombe J, Ferguson M, Chatfield MD, Liberato SC, Gunther A, Ball K, et al. Effect of a price dis-

count and consumer education strategy on food and beverage purchases in remote Indigenous Austra-

lia: a stepped-wedge randomised controlled trial. The Lancet Public Health. 2017; 2(2):e82–e95.

https://doi.org/10.1016/S2468-2667(16)30043-3 PMID: 29253401

13. Waterlander WE, de Boer MR, Schuit AJ, Seidell JC, Steenhuis IH. Price discounts significantly

enhance fruit and vegetable purchases when combined with nutrition education: a randomized con-

trolled supermarket trial. Am J Clin Nutr. 2013; 97(4):886–95. Epub 2013/03/01. https://doi.org/10.

3945/ajcn.112.041632 PMID: 23446898.

14. Mexican National Institute of Public Health and the Carolina Population Center at the University of North

Carolina. Mexico’s National Institute of Public Health study indicates the federal sugar-sweetened bever-

age tax is successfully reducing purchases in Mexican households 2015 [3 July 2015]. Available from:

http://alianzasalud.org.mx/2015/06/mexicos-national-institute-of-public-health-study-indicates-the-

federal-sugar-sweetened-beverage-tax-is-successfully-reducing-purchases-in-mexican-households/.

15. Colchero MA, Popkin BM, Rivera JA, Ng SW. Beverage purchases from stores in Mexico under the

excise tax on sugar sweetened beverages: observational study. BMJ. 2016; 352:h6704. https://doi.org/

10.1136/bmj.h6704 PMID: 26738745.

16. Smed S, Scarborough P, Rayner M, Jensen J. The effects of the Danish saturated fat tax on food and

nutrient intake and modelled health outcomes: an econometric and comparative risk assessment evalu-

ation. Eur J Clin Nutr. 2016. https://doi.org/10.1038/ejcn.2016.6 PMID: 27071513

17. Silver LD, Ng SW, Ryan-Ibarra S, Taillie LS, Induni M, Miles DR, et al. Changes in prices, sales, con-

sumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in

Berkeley, California, US: A before-and-after study. PLoS Med. 2017; 14(4):e1002283. Epub 2017/04/

19. https://doi.org/10.1371/journal.pmed.1002283 PMID: 28419108; PubMed Central PMCID:

PMC5395172.

18. Eyles H, Ni Mhurchu C, Nghiem N, Blakely T. Food pricing strategies, population diets, and non-com-

municable disease: a systematic review of simulation studies. PLoS Med. 2012; 9(12):e1001353. Epub

2012/12/15. https://doi.org/10.1371/journal.pmed.1001353 PMID: 23239943; PubMed Central PMCID:

PMC3519906.

19. Nghiem N, Wilson N, Genc M, Blakely T. Understanding Price Elasticities to Inform Public Health

Research and Intervention Studies: Key Issues. Am J Public Health. 2013;epub date: Sep 12 2013.

Epub 2013/09/14. https://doi.org/10.2105/AJPH.2013.301337 PMID: 24028228.

20. Briggs ADM, Wolstenholme J, Blakely T, Scarborough P. Choosing an epidemiological model structure

for the economic evaluation of non-communicable disease public health interventions. Popul Health

Metr. 2016; 14(17). https://doi.org/10.1186/s12963-016-0085-1 PMID: 27152092

21. University of Otago and Ministry of Health. A Focus on Nutrition: Key findings of the 2008/09 New Zea-

land Adult Nutrition Survey. Wellington Ministry of Health., 2011.

22. Waterlander WE, Jiang Y, Nghiem N, Eyles H, Wilson N, Cleghorn C, et al. The effect of food price

changes on consumer purchases: a randomised experiment. Lancet Public Health. 2019; 4(8):e394–

e405. https://doi.org/10.1016/S2468-2667(19)30105-7 PMID: 31376858

23. Waterlander WE, Blakely T, Nghiem N, Cleghorn CL, Eyles H, Genc M, et al. Study protocol: combining

experimental methods, econometrics and simulation modelling to determine price elasticities for study-

ing food taxes and subsidies (The Price ExaM Study). BMC Public Health. 2016; 16(1). https://doi.org/

10.1186/s12889-016-3277-5 PMID: 27435175

24. Shemilt I, Marteau TM, Smith RD, Ogilvie D. Use and cumulation of evidence from modelling studies to

inform policy on food taxes and subsidies: biting off more than we can chew? BMC Public Health. 2015;

15(1). https://doi.org/10.1186/s12889-015-2459-x

25. Nghiem N, Jacobi L, Ramı́rez-Hassan A, Waterlander W, Blakely T. Thomas Bayes goes to the Virtual

Supermarket: Assessing price elasticities and food price policies in a large food demand system com-

bining prior elasticity estimates and experimental data. under review.

26. Rolls BJ. The relationship between dietary energy density and energy intake. Physiol Behav. 2009; 97

(5):609–15. https://doi.org/10.1016/j.physbeh.2009.03.011 PMID: 19303887; PubMed Central PMCID:

PMC4182946.

27. Williams RA, Roe LS, Rolls BJ. Comparison of three methods to reduce energy density. Effects on daily

energy intake. Appetite. 2013; 66:75–83. https://doi.org/10.1016/j.appet.2013.03.004 PMID: 23523752;

PubMed Central PMCID: PMC3666187.

28. Klonaris S, Hallam D. Conditional and unconditional food demand elasticities in a dynamic multistage

demand system. Applied Economics. 2003; 35(5):503–14. https://doi.org/10.1080/00036840210148058

29. Brännlund R, Ghalwash T, Nordström J. Increased energy efficiency and the rebound effect: Effects on

consumption and emissions. Energy Economics. 2007; 29(1):1–17. https://doi.org/10.1016/j.eneco.

2005.09.003

PLOS ONE Scaling food consumption: price and expenditure elasticities

PLOS ONE | https://doi.org/10.1371/journal.pone.0230506 March 26, 2020 16 / 17

https://doi.org/10.1016/S2468-2667(16)30043-3
http://www.ncbi.nlm.nih.gov/pubmed/29253401
https://doi.org/10.3945/ajcn.112.041632
https://doi.org/10.3945/ajcn.112.041632
http://www.ncbi.nlm.nih.gov/pubmed/23446898
http://alianzasalud.org.mx/2015/06/mexicos-national-institute-of-public-health-study-indicates-the-federal-sugar-sweetened-beverage-tax-is-successfully-reducing-purchases-in-mexican-households/
http://alianzasalud.org.mx/2015/06/mexicos-national-institute-of-public-health-study-indicates-the-federal-sugar-sweetened-beverage-tax-is-successfully-reducing-purchases-in-mexican-households/
https://doi.org/10.1136/bmj.h6704
https://doi.org/10.1136/bmj.h6704
http://www.ncbi.nlm.nih.gov/pubmed/26738745
https://doi.org/10.1038/ejcn.2016.6
http://www.ncbi.nlm.nih.gov/pubmed/27071513
https://doi.org/10.1371/journal.pmed.1002283
http://www.ncbi.nlm.nih.gov/pubmed/28419108
https://doi.org/10.1371/journal.pmed.1001353
http://www.ncbi.nlm.nih.gov/pubmed/23239943
https://doi.org/10.2105/AJPH.2013.301337
http://www.ncbi.nlm.nih.gov/pubmed/24028228
https://doi.org/10.1186/s12963-016-0085-1
http://www.ncbi.nlm.nih.gov/pubmed/27152092
https://doi.org/10.1016/S2468-2667(19)30105-7
http://www.ncbi.nlm.nih.gov/pubmed/31376858
https://doi.org/10.1186/s12889-016-3277-5
https://doi.org/10.1186/s12889-016-3277-5
http://www.ncbi.nlm.nih.gov/pubmed/27435175
https://doi.org/10.1186/s12889-015-2459-x
https://doi.org/10.1016/j.physbeh.2009.03.011
http://www.ncbi.nlm.nih.gov/pubmed/19303887
https://doi.org/10.1016/j.appet.2013.03.004
http://www.ncbi.nlm.nih.gov/pubmed/23523752
https://doi.org/10.1080/00036840210148058
https://doi.org/10.1016/j.eneco.2005.09.003
https://doi.org/10.1016/j.eneco.2005.09.003
https://doi.org/10.1371/journal.pone.0230506


30. Dey MM, Alam MF, Paraguas FJ. A multistage budgeting approach to the analysis of demand for fish:

an application to inland areas of Bangladesh. Marine Resource Economics. 2011; 26(1):35–58.

31. Waterlander W, Nghiem N, Yannan J, Eyles H, Wilson N, Cleghorn C, et al. The effect of randomized

changes in food prices on food purchasing in a virtual supermarket experimental study. Under review.

32. Andreyeva T, Long MW, Brownell KD. The impact of food prices on consumption: a systematic review

of research on the price elasticity of demand for food. Am J Public Health. 2010; 100(2):216–22. Epub

2009/12/19. https://doi.org/10.2105/AJPH.2008.151415 PMID: 20019319; PubMed Central PMCID:

PMC2804646.

33. Dharmasena S, Capps O. Intended and unintended consequences of a proposed national tax on sugar-

sweetened beverages to combat the U.S. obesity problem. Health Econ. 2011:n/a-n/a. https://doi.org/

10.1002/hec.1738 PMID: 21538676

34. Raunikar R, Huang CL. Food Demand Analysis. Ames: Iowa State University Press; 1987.

35. Cleghorn CL, Blakely T, Nghiem N, Mizdrak A, Wilson N. Technical Report for BODE3 Diet Intervention

and Multistate Lifetable Models, Version 1.1. Wellington: Department of Public Health, University of

Otago, Wellington 2018 February, 2018. Report No.

36. Michelini C. New Zealand household consumption patterns 1983–1992: An application of the almost-

ideal-demand-system. New Zealand Economic Papers. 1999; 33(2):15–26. https://doi.org/10.1080/

00779959909544305

37. Michelini C, Chatterjee S. Demographic variables in demand systems: An analysis of New Zealand

household expenditure 1984–1992. New Zealand Economic Papers. 1997; 31(2):153–73. https://doi.

org/10.1080/00779959709544272

38. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the

effect of energy imbalance on bodyweight. Lancet. 2011; 378(9793):826–37. https://doi.org/10.1016/

S0140-6736(11)60812-X PMID: 21872751

39. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, et al. Global,

regional, and national comparative risk assessment of 79 behavioural, environmental and occupational,

and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global

Burden of Disease Study 2013. The Lancet. 2015. https://doi.org/10.1016/S0140-6736(15)00128-2

PMID: 26364544

40. Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195

countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet.

2019. https://doi.org/10.1016/s0140-6736(19)30041-8 PMID: 30954305

PLOS ONE Scaling food consumption: price and expenditure elasticities

PLOS ONE | https://doi.org/10.1371/journal.pone.0230506 March 26, 2020 17 / 17

https://doi.org/10.2105/AJPH.2008.151415
http://www.ncbi.nlm.nih.gov/pubmed/20019319
https://doi.org/10.1002/hec.1738
https://doi.org/10.1002/hec.1738
http://www.ncbi.nlm.nih.gov/pubmed/21538676
https://doi.org/10.1080/00779959909544305
https://doi.org/10.1080/00779959909544305
https://doi.org/10.1080/00779959709544272
https://doi.org/10.1080/00779959709544272
https://doi.org/10.1016/S0140-6736(11)60812-X
https://doi.org/10.1016/S0140-6736(11)60812-X
http://www.ncbi.nlm.nih.gov/pubmed/21872751
https://doi.org/10.1016/S0140-6736(15)00128-2
http://www.ncbi.nlm.nih.gov/pubmed/26364544
https://doi.org/10.1016/s0140-6736(19)30041-8
http://www.ncbi.nlm.nih.gov/pubmed/30954305
https://doi.org/10.1371/journal.pone.0230506

