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Abstract

We identify temporal investor networks for Nokia stock by constructing networks from corre-

lations between investor-specific net-volumes and analyze changes in the networks around

dot-com bubble. The analysis is conducted separately for households, financial, and non-

financial institutions. Our results indicate that spanning tree measures for households

reflected the boom and crisis: the maximum spanning tree measures had a clear upward

tendency in the bull markets when the bubble was building up, and, even more importantly,

the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time,

we find less clear reactions in the minimal and maximal spanning trees of non-financial and

financial institutions around the bubble, which suggests that household investors can have a

greater herding tendency around bubbles.

Introduction

The strategic interaction and collection of individuals or agents in a financial setup can play a

key role in determining their financial outcomes. Understanding how investors behave and

operate has been a topic of interest in behavioral finance in the recent past. Previously, investor

trading strategies and investor behavior were studied at an aggregated level using conventional

regression methodologies [1, 2, 3, 4, 5, 6, 7]. In addition, the evolution of networks of stocks

and currency rates and their structural change have been successfully analyzed in the existing

literature [8, 9, 10, 11, 12, 13]. The effects of the economic and financial bubbles on the stock

market have also been analyzed in the literature [14, 15, 16]. However, investor networks have

received much less attention, and even though complex network methods have been applied

to identify investor networks [17, 18, 19, 20], research studying the dynamics of investor

networks around a financial crisis is lacking. This paper aims to take the first step toward pro-

viding an understanding of investor networks by focusing on the dynamics of investor correla-

tion networks during the dot-com (IT Millennium) bubble using unique investor transaction

registry data, which contain all the trades of Finnish households and institutions in Helsinki

Exchange. In particular, we focus on the question of how gradual and non-gradual changes in

investor network structures are related to the stock price process. This research opens avenues
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to increase the understanding of the actual mechanisms of stock markets to identify domino

effects that can propagate through investors and propel the stock markets into a crisis state.

In this paper, investor correlation matrices are obtained using time series of investor-spe-

cific daily net volumes for Nokia, a major Finnish technology company, around the millen-

nium. At the same time, Nokia is the most liquid stock in our data sample from the Helsinki

stock exchange, and there has been other research based on the company’s stock market data,

for example, by [18, 21, 22]. Investors’ correlation matrices are estimated for three main cate-

gories of investors: financial institutions, households, and non-financial institutions. Correla-

tion matrices can be interpreted as link-weighted networks, and the links in the resulting

networks where all nodes are connected can be filtered with a multitude of different

approaches [12, 23, 24, 25]. An elegant and popular method in stock market network analysis

is to employ minimal or maximal spanning tree methods to find a “backbone” of the full corre-

lation network [8, 9, 11, 26, 27, 28]. Several more complicated correlation matrix construction

and filtering methods have been developed recently [23, 25, 29, 30, 31, 32, 33], but utilizing

these methods is left for future research.

The analysis of investor networks dynamics in this paper introduces two theoretical chal-

lenges when compared to other financial correlation networks. First, the set of investors is

much larger than, for example, the number of stocks, and the set of active investors is strongly

time-varying. The vast majority of methods developed for analyzing dynamic, or temporal,

networks are based on the assumption that only the links change while the set of nodes is stable

[34, 35]. Further, changes in the set of investors limits the applicability of methods based on

analyzing each network snapshot separately, as metrics that are sensitive to network size can-

not be compared across different time windows, where the number of investors can vary sig-

nificantly. The second challenge is related to the widely varying sparsity of the time series,

where few investors are extremely active and many others trade very infrequently. The active

investors could be investigated using high temporal resolution and short observation window

lengths, but the infrequent investors must be examined using lower resolution and a longer

time window. The conventional correlation analysis performed here requires that a single time

resolution level and observation window length be chosen, and this choice must be a compro-

mise between the two extremes.

We construct minimum and maximum spanning trees for networks within six-month time

windows, with a displacement of one month. Our results with estimated correlations between

households’ transactions show that the average weight of maximum spanning tree increases

and the average weight of minimum spanning tree decreases before the tipping point of the

stock prices (at which stock prices start to decline), after which they remain quite stable. In

other words, when the bubble propagates, on average, an investor has more positive correla-

tions with other investors in the maximum spanning tree. At the same time, however, the cor-

relations with the most distant investor, in terms of trading style, become even more negative

in the minimum spanning tree. This suggests that households became polarized before the

Nokia price crash in 2000. However, as no strong effect can be observed for financial institu-

tions the average weights of the minimum and maximum spanning trees of institutional inves-

tors are not as clearly related to the evolution of the financial crisis.

Dot-com bubble

In this paper, we analyze the behavior of Nokia’s investors around the dot-com bubble in

2000. Bubbles are a phenomenon where the prices of assets deviate from their fundamental

values [36]. Generally, during bubbles, investors purchase shares anticipating future gains.

When the bubbles collapse, there is a sudden fall in prices, and that was the case in the dot-

Investor spanning trees
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com bubble. Particularly, during the late 1990s, internet-based stocks dominated the equity

markets, and there was heavy investment in the internet and technology-based start-ups with

extremely optimistic expectations. As investors started pouring money into technology-based

start-up companies, the prices of the companies’ shares grew very high. Then, in early 2000,

investments in these companies reduced drastically, and many of these companies that were

expected to generate profits failed, leading to the bursting of the bubble. Consequently, there

was panic selling and the market slumped.

Bubbles have been studied quite extensively and from various perspectives. According to

[37], market prices during bubbles follow power-law acceleration and have log-periodic oscil-

lations. The dot-com bubble had similar characteristics and resulted in a crash (see, for exam-

ple, ref. [38]). One perspective is that bubbles occur due to the uncertainty that prevails in the

market [39]. In this regard, ref. [40] provides evidence that uncertainty is a plausible cause for

a sudden rise in the price of some stocks. Similarly, the high level of uncertainty matched the

high prices and high return volatility in the market during the dot-com bubble. The sudden

rise and fall in market prices during the dot-com bubble was associated with variations in risks

from various sources. Bakshi and Wu [41] show that with the rising valuation of the NASDAQ

100, return volatility as a risk measure increased, estimates for the market price for diffusion

risk became negative (from September 21, 1999 to January 5, 2000), and the market price of

jump risk became unusually high. Another perspective on bubbles is that they occur when

there are new innovations [42] that investors see as opportunity pulls, anticipating high profits

in the future. Other reasons for the occurrence of a bubble are a lack of experience on the part

of traders [43], investor’s emotions [44], investor over-confidence [45], and public announce-

ments [46]. There are several reasons for a bubble to burst. According to [40], one of the rea-

sons that the dot-com bubble burst was that the expected profitability of technology stocks

became low. Not all bubbles lead to crashes, but when a bubble does crash, it signals important

information to the market. According to [42], a burst signals that there is a need to implement

new innovations that occurred during the bubble period. This requires social and economic

support to continue the growth of innovations that could benefit the economy.

Results

Next, we describe how we construct a series of correlation networks of investors investing in

Nokia stock around the dot-com bubble (1998–2002) and report the basic statistics related to

the changes in these networks. We then continue to investigate the minimal and maximal

spanning trees we extract from these fully connected networks. We report the results of our

analysis separately for Finnish households, financial institutions, and non-financial

institutions.

Nodes in the networks: Active investors

Investors form the nodes of the network we construct, and to estimate the correlations

between pairs of them, we need to have enough data on their trading behavior. Fig 1a depicts

the distributions of investors divided into three categories in the period 1998–2002. Many

investors traded for only a few days but relatively few traded for many days, making the data

sparse. We take two steps to alleviate the problems related to sparse data in the network con-

struction: First, we only consider active investors who have traded for a minimum of 20 days in

a given time period. Second, daily net volumes of each active investor are averaged over a week

(that is, we apply investor-specific simple moving averages).

We investigate our total sample period 1998–2002 with six-month sliding time windows

using a one-month rolling window on it. Using the above definition for active investors for

Investor spanning trees
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each six-month time window, Fig 1b depicts the evolution of the number of active financial

institutions, households, and non-financial institutions within these time windows. We see

that the numbers of active households and non-financial institutions showed positive trends

over the sample period, while the number of active financial institutions remained rather sta-

ble. Importantly, the bubble “burst” did not have clear effects on the number of active traders.

Even when the number of investors in each time window is relatively stable, the set of inves-

tors can vary significantly. This is indeed the case, as shown by Fig 1c which displays the num-

ber of investors overlapping in every subsequent time window measured by the Jaccard index

defined as:

JðtÞ ¼
jntþ1 \ ntj

jntþ1 [ ntj
; ð1Þ

where nt and nt+1 represent the sets of nodes in the networks with time windows ending in

months t and t + 1. For example, for households, the Jaccard index can get values as low as 0.6,

which means that 40% of investors in two subsequent time windows were only present in one

of them. To put this percentage into perspective, it is worth noting that out of the total of seven

months spanned by the two windows, there is a five-month overlap. That is, one could expect

Fig 1. The number of investors in Nokia stocks during the period 1998–2002 and the change in the number of investors across the six-

month time windows. (a) The number of investors N>(T) who traded the Nokia stock at least on T different days during the whole time period

1998–2002 (i.e., a non-normalized complementary cumulative distribution). (b) The evolution of the number of investors trading Nokia in the

six-month time windows for households, non-financial institutions, and financial institutions. The numbers of investors in each category |nt|

vary widely across categories, and they are normalized by the average numbers of investors in the full time period h|nt|i. (c) The change in the

number of investors is measured using the Jaccard coefficient for different investor categories. The value of J(t) is higher (lower) the more (less)

similar the consecutive networks are in terms of nodes in them (see Eq 1). Results for each time window in panels (b) and (c) are plotted at the

end of the window. That is, each point is estimated with data over the previous 126 trading days (6 months). The estimation windows are rolling

by one month, and the resulting points are joined by solid lines. In panels (b) and (c), the green dotted vertical line in the figures represents the

highest stock price of Nokia in the sample period, and the blue curves (with axis on the right) represent the Nokia stock price. In all panels, the

lime-green curve corresponds to financial institutions, the cyan curve to households, and the orange curve to non-financial institutions.

https://doi.org/10.1371/journal.pone.0198807.g001
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a high Jaccard index even if there are major changes in the sets of investors. Note that the

activeness criterion (at least 20 observations in six months) is applied for each estimation

period with a displacement of one month, and this filtering has an effect on the Jaccard index

values. We observe that the networks of households have lower similarity to each other com-

pared to financial institutions, meaning that the turnover of active household investors is rela-

tively high over time. Thus, especially for the relatively inactive household investors, the

networks in different time windows are bound to be very different, and any stability observed

in network statics cannot be solely explained by the stability of the networks; other organizing

principles in the system also have an effect.

Links in the networks: Correlations in trading patterns

We use the Pearson correlation of trading patterns of investor pairs inside each time window

to construct links between the investors (for details, see Methods). The Pearson correlation

coefficient has been used extensively in the network analysis of time series of stock prices [8],

and it also has some clear advantages in the analysis of individual investor trading. Observa-

tions of exceptionally high trading volumes can represent days on which important informa-

tion has arrived. It is of interest to analyze whether investors react to these information in the

same way, and therefore it is desirable that the measure is sensitive to exceptionally large val-

ues. In contrast to the Pearson correlation, Kendall and Spearman correlations consider rank-

order as opposed to metric information, and thus they do not weight these outlier days

appropriately.

The nodes change between the different time windows, and the weights of the links (the

correlations) are also relatively unstable. To quantify this, we show the average absolute change

in correlations between nodes that remain in two consecutive time windows (see Eq 2 in Meth-

ods) and the average correlation between all pairs of nodes in Fig 2. The change in correlations

between two consecutive time windows is on average lower (0.04–0.12) than the standard devi-

ation of the correlations inside the time windows (0.14–0.23), but it is still very clearly within

the same order of magnitude. That is, the network is relatively unstable in its links, but, as we

Fig 2. The change in investor correlations of Nokia stock trading across the six-month time windows during 1998–2002. (a) The average

change in correlations between two consecutive time windows Jedges(t) (see Eq 2 in the Methods section). (b) The average edge weight, or

correlation, in each time window. The green dotted vertical line represents the highest stock price of Nokia in the sample period, and the blue

curves (with axis on the right) represent the Nokia stock price. The lime-green curves correspond to financial institutions, the cyan curves to

households, and the orange curves to non-financial institutions.

https://doi.org/10.1371/journal.pone.0198807.g002
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will see below, the global organization of the network and related statistics are still rather

stable.

Minimum/Maximum spanning trees

The correlation matrices of investors’ net trading volumes can be interpreted as weighed

networks where all node pairs (i.e., investors) are connected. Specifically, investors i and j are

connected by a weight of ρij 2 [−1, 1], which is the Pearson correlation coefficient between

investors’ daily net volumes. Clearly, the topological structure of these fully connected graphs

is trivial, and all the information is in the weights. To analyze the structure, one needs to filter

out parts of the edges, and there are various approaches for doing so [23, 24, 25, 33]. Following

the literature on the analysis of stock prices [8, 9], we employ one of the simplest filtering

methods and construct maximum (and minimum) spanning trees of correlation networks.

The idea of maximum spanning tree analysis is to filter out as many edges as possible so

that the network is still connected and the highest possible weights (or, correlations) are not fil-

tered out (for details, see the Methods section). According to ref. [17], information links may

be identified from realized trades, and thus traders identified with similar trading behavior can

have an (private) information channel. In light of this idea about the inference of information

transfer in investor networks, the maximum spanning tree would reflect the smallest set of

interactions that connect all investors and still have the strongest information flow between

them. The interpretation of the empirical investor network as the information network, how-

ever, can be questioned, as two investors could certainly trade in the same directions without

even knowing each other if they just follow the same investment strategies with the same pub-

lic information channels. Generally speaking, the maximum spanning tree picks the most sim-

ilar trading strategies while keeping the graph connected, whether or not it reflects the actual

information channels. The average weight of maximum spanning tree shows how investors,

on average, are pulled together or dispersed in a connected graph, and this quantity has been

previously shown to react to crisis in stock price correlations [9]. The minimum spanning tree,

on the other hand, reflects distant trading strategies, and its average weight can be used to ana-

lyze divergent trading strategies in a connected graph of investors. Particularly, with the mini-

mum spanning trees, we investigate low, or even negative, correlations between investors’ net

volumes. Conversely, the negative correlations reflect the fact that investors net volumes are

negatively related, and thus they indicate divergent trading.

Fig 3a shows the evolution of the average weight of the minimum spanning tree, Lmin, for

the merged network of investors in the three categories. There is an obvious, downward jump

in Lmin just before the tipping point, which is defined as the highest price of the Nokia stock

during the sample period. Importantly, Lmin is estimated using data from the past, and there-

fore no information about the forthcoming bubble burst was used. That is, the investors pre-

reacted to the impending decline in the stock price. Next, we focus on investigating which

investor groups are behind this reaction. We visualize the maximum spanning trees in Fig 3b,

3c and 3d. There does not seem to be any clearly visible clustering of categories similar to busi-

ness sectors in stock networks or geographical regions in currency networks [8, 47, 48]. How-

ever, we can see that there might be some local tendency for nodes from the same category to

be adjacent; however, this observation is not investigated further here.

Fig 4 displays the average weights of minimum and maximum spanning trees, Lmin and

Lmax, around the crisis for networks containing nodes only from one of the three investor cate-

gories. Again, every data point is estimated with data over the previous 126 trading days (six

months), and the estimation windows are rolling by one month. Fig 4a shows that the average

weight of the minimum spanning tree, Lmin, of the household network suddenly jumps down a

Investor spanning trees
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few months prior the turning point of the stock price evolution around the crisis. Particularly,

the value of Lmin was -0.32 on April 3, 2000, whereas it was -0.45 on June 6, 2000, after which

the stock prices started to burst. Importantly, the difference is considerably large in compari-

son to other changes in the data sample; however, the estimates, -0.32 and -0.45, are based on

partially overlapping estimation data (the length of the estimation period is six months, and

the analysis is run with a rolling window of one month). Another important observation is

that the level of Lmin does not recover back to its level as prior to the tipping point during the

following two years. For non-financial and financial institutions, we see no obvious patterns in

Lmin around the crisis. Overall, weights in the minimum spanning trees among households

are, on average, abnormally negative just around the turning point for households. This means

that households, on average, have neighbors in the minimum spanning tree who are trading in

an abnormally opposite way.

The dynamics of the maximum spanning trees in Fig 4b provide a slightly different story

compared to the minimum spanning tree dynamics. In particular, we see that the average

weight of the maximum spanning tree, Lmax, for households shows a clearly positive trend

Fig 3. The minimum and maximum spanning trees of all investors. (a) Backward looking average weight of the minimum

spanning tree, Lmin(t), for the merged set of investors with six-month time windows during 1998–2002 (brown line). The green

dotted vertical line in the figures represents the highest stock price of Nokia in the sample period, and the blue curves (with axis

on the right) represent the Nokia stock price. Maximum spanning trees between (b) July 8, 1999 and January 4, 2000 (before

the crisis), (c) January 5, 2000 and July 6, 2000 (during the crisis), and (d) July 7, 2000 and January 4, 2001 (after the crisis). The

cyan nodes represent households, the orange nodes non-financial institutions, and the lime-green nodes financial institutions.

The sizes of the nodes are based on the volume traded by the investor during the period. However, one should not compare the

sizes of nodes between different networks, as the sizes are not comparable across panels.

https://doi.org/10.1371/journal.pone.0198807.g003
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prior the spike of February 2000, after which it remains quite stable. Specifically, its value was

0.27 in 1998, increasing to almost 0.6 in two years in bull markets, which is an increase of

122%. This means that there are investors that were trading more similarly when the bubble

was building up. A positive pre-trend and rather stable post-trend can also be identified for

non-financial institutions, although it is weaker compared to households. Financial institu-

tions, however, behave differently regarding Lmax–there is a peak in Lmax for financial institu-

tions just before the tipping point, which lasts half a year, but otherwise Lmax is relatively stable

over the period. Note that the average weights of the networks displayed in Fig 2b do not dis-

play peaks at the same times or of the same magnitude.

In light of private information channels that investors use in trading in stock markets (see

[17]), our maximum spanning tree analysis results suggest that household investors’ connec-

tions to their most important neighbors in the connected graph became increasingly impor-

tant when the techno bubble was building up, which could indicate herding in the stock

market Moreover, the existing literature provides evidence that spanning trees for different

financial networks react around financial crises, although with different data sets (and thus

with different networks) compared to the present research (see [9, 49] with data on stock

returns, [13] with data on stock market indexes, and [50] with data on currency exchange

rates).

Discussion

This paper examines the behavior of Finnish investors using shareholding registration records

for Nokia stock on the Helsinki stock exchange from 1998–2002, which includes the period

of the dot-com bubble. Analyses for households, non-financial institutions, and financial insti-

tutions are conducted using minimum and maximum spanning trees constructed from corre-

lations between investor-specific net-volumes. We find that the spanning tree measures

reflected the bubble with the data for households, and, in fact, they pre-reacted to forthcoming

bear markets, whereas non-financial and financial institutions show no equally clear reactions.

In particular, the average correlations of households’ minimum spanning trees clearly jumped

down a couple of months before the Nokia price started to show a negative trend. Conversely,

the average correlation in households’ maximum spanning tree dynamics did not jump

Fig 4. Backward looking average weight of the (a) minimum spanning tree, Lmin(t), (b) maximum spanning tree, Lmax(t) for different

investor categories with six-month time windows during 1998–2002. The green dotted vertical line in the figures represents the highest stock

price of Nokia in the sample period. The lime-green curve corresponds to the plot for Finnish financial institutions, the cyan curve corresponds

to the plot for Finnish households, and the orange curve corresponds to the plot for Finnish non-financial institutions.

https://doi.org/10.1371/journal.pone.0198807.g004
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suddenly right before the burst of the bubble—rather, the average correlation had a consider-

ably large upward trend in bull markets, increasing from 0.27 to almost 0.60 in the two years

before the stock price crash, after which it remained quite stable. The analysis was also con-

ducted with 12-month rolling windows, and the results were the same (the results for this

robustness check are available upon request). This result on maximum spanning trees could

reflect information channels between individual household investors—investors’ connections

to their most important neighbors in the connected graph becoming increasingly important

when the techno bubble was building up, which could indicate herding in stock markets, espe-

cially among household investors. Based on our results, it could be argued that households

were mainly responsible for the bubble and its burst. This question, however, needs more

research with alternative approaches. For example, agent-based models estimated with actual

transaction data could be used to elaborate the role of households in more detail.

There are some restrictions in our research on correlated investor networks, which are

mainly related to how the networks are constructed. We used data on investors’ transactions

with only one stock, as the other stocks in the our data set were too illiquid to have enough

data estimating investor-specific networks. In future studies, multiple similar stocks could be

pooled together or methods that function better with sparse data could be used. Another limi-

tation is the way the Pearson correlation was used between the investment time series to calcu-

late the similarities between nodes. There are more sophisticated ways of inferring the latent

relationships between the nodes in the literature [29, 30, 31, 32], but the particular challenge in

investor networks is the high variation in the transaction frequencies between investors. High-

frequency nodes can be analyzed with much higher temporal resolution than low-frequency

ones, and choosing a single resolution level involves a compromise between these two

extremes. Finally, the spanning tree analysis discards valuable data in a very aggressive way to

make the system less complex, and there are multiple alternatives in the literature where more

data is kept [23, 24, 25, 33]. In future research, we aim to build the network in a more sophisti-

cated way, which will allow us to analyze a large number of stocks with alternative methods.

The network of investors is changing dynamically, and the approach taken here—which is

in line with the literature on stock correlation networks—was intended to calculate various

static network metrics on snapshots of the network and then inspect how those metrics change

over time. Methods that do not rely on static networks but measure the dynamics of networks

have been developed in the field of temporal networks [34, 35], but most of these approaches

have been constructed for networks where the links change dynamically but the nodes are rela-

tively stable. There are, of course, other systems with long temporal data and large changes in

the set of nodes, such as citation networks and collaboration networks [51, 52, 53]. In some

systems, such contact networks of customers, the patterns of nodes’ leaving and entering the

system can even be of primary interest [54, 55, 56]. However, there are relatively few methods

for analyzing networks in which both nodes and links change, and the temporal investor net-

works introduced here could serve as a good example for network analysis in future research.

To faciliate this we have made the investor correlation matrices public (see the Methods

section).

Additionally, in the present paper, the set of investors was organized based on the status of

household, financial institution, or non-financial institution and activeness, which is a rather

arbitrary way to classify investors. Also, one could argue that the observations of investor trad-

ing events are just realizations of a non-observable (psychological) process, making the identi-

fied temporal network unstable. In our future research, we will develop sampling methods to

overcome these potential problems. In addition, filtering and community-detection methods

[57] as well as alternative inference techniques for the estimation of network edges are

expected in our future research.
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Materials and methods

Data

The data used in this study come from the central register of shareholdings for Finnish stocks

from the Finnish central depository, provided by Euroclear Finland. The data set includes all

the major publicly traded Finnish stocks from 1995. It consists of shareholdings of all Finnish

and non-Finnish investors traded in the Helsinki stock exchange on a daily-level basis. The

data contain investors’ trades and portfolios, including all Finnish household investors, Finn-

ish institutions, and foreign institutions. The records are exact duplicates of the official certifi-

cates of ownership and trades, and hence they are very reliable. The Book Entry System entails

compulsory registration of holdings for Finnish individuals (referred to as households) and

institutions. Foreigners are partially exempt from registration, as they can opt for registration

in a nominee name, and thus they cannot be separated from each other. Thus, data about for-

eigners’ trades is excluded in the present paper. A more detailed descriptions of the data set is

provide in [1, 18].

Our sample data consist of marketplace transactions of Nokia stock, consisting of investor

transactions from January 1, 1998 to December 2002. Each data record contains the following

information: stock ticker, owner id, trading date, transaction registration date, number of

shares traded, the price of trade, buy/sell transaction type, and other investor-specific fields,

such as investors’ sector code, language code, gender, date of birth, and postal code. We have

considered investors from different categories who have traded actively with Nokia in our

analysis. Information about having the status of household, financial institution or non-finan-

cial institution was directly available from the data provider. Each investor has a unique inves-

tor ID, and for each ID, certain attributes are assigned, such as category. This information is

self-provided by identifiable investors.

Links in the network

Net volume traded by an investor i on day t is given as Vi;t ¼ Vb
i;t � Vs

i;t, where Vb
i;t is the num-

ber of Nokia shares bought by investor i on day t, and Vs
i;t is the number of Nokia shares sold

by investor i on day t. In comparison to the inference method introduced in [18], we do not

scale the net volumes by Vb
i;t þ Vs

i;t , as the scaled approach does not measure the magnitude of

trades; that is, the level of the scaled variable does not reflect exceptionally high or low traded

net volumes. For example, suppose that on a given day for a given stock, investor A buys one

share and sells zero while investor B buys exceptionally many shares, say, 1,000,000 and sells

zero. Then, both investors’ scaled net volumes would equal +1, although their trading behavior

has been very different. The dependency between two investors, i and j, is measured with the

Pearson correlation for M different time windows of fixed width W. In our study, W is set to

126 trading days (six months), and the analysis is run with six-month sliding time windows

using a one-month (21 trading days) rolling window. As the total number of days in our data

is 1252, these choices give us M = 54 time windows for the overall six-month time window.

Note that the data studied here are very sparse in the sense that, for many investors, most

days are without any activity (see Fig 1a), although these silent days are here considered as

intentional decisions not to trade. That is, the inactive days are not considered as missing data

in our calculation of the Pearson correlation coefficient. In our notation, r
ðijÞ
t denotes the Pear-

son correlation coefficient between investors i and j estimated from daily net volumes of W
days, counted backwards from the day t. That is, the correlations between nodes at time t are
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defined as,

rðijÞt ¼
Covð ~Vi;t ;

~Vj;t Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð ~Vi;t ÞVarð ~Vj;t Þ

q ;

where ~Vi;t ¼ fVi;tg
t
t¼t� W

. One could also use the daily net volumes of W/2 days in the past and

W/2 days in the future, but we prefer to use the data in the past instead of using the data in the

future in order to analyze pre-reactions in the networks so that no information about the

forthcoming bubble burst is unused.

The average absolute change in correlations between nodes that remain in two consecutive

time windows is defined as

JedgesðtÞ ¼
1

jet \ etþ1j

X

ði;jÞ2et\etþ1

jr
ðijÞ
tþ1 � rðijÞt j

� �
; ð2Þ

where et denotes the set of edges in the network at time t (i.e., all pairs of nodes et = {(u, v)|u,

v 2 nt, u 6¼ v} where nt represent the sets of nodes in the network where the time window ends

at month t). Data about correlations between investor pairs is available at https://doi.org/10.

5061/dryad.5b8n621.

Minimum and maximum spanning trees

For a network with |nt| nodes and edge set et, a maximum spanning tree is a connected sub-

network with the same nodes and a subset of |nt| − 1 edges emax
t � et such that the sum of the

edge weights (here correlations),
P
ði;jÞ2emax

t
r
ðijÞ
t , is maximized. Similarly, for a minimal spanning

tree, we find a set of edges emin
t such that the sum of the edge weights is minimized.

Note that we do not transform the correlations into distance using dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � rtÞ

p
, which

would turn minimal spanning trees into maximal ones and vice-versa—spanning tree struc-

ture is otherwise invariant to this transformation because this transformation only reverses the

rank-order of the edge weights. We also construct minimum spanning trees, which are com-

plementary to the maximum ones.

The average weights of maximum and minimum spanning trees are defined as:

LmaxðtÞ ¼
1

ðNt � 1Þ

X

ði;jÞ2emax
t

rðijÞt :

and

LminðtÞ ¼
1

ðNt � 1Þ

X

ði;jÞ2emin
t

rðijÞt ;

respectively.

The spanning trees were computed using Kruskal’s algorithm, which is a standard algo-

rithm for finding minimum and maximum spanning trees for graphs that have positive

weights. We used NetPython (available from https://github.com/CxAalto/netpython) network

analysis software for computations.
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References

1. Grinblatt M, Keloharju M. The investment behavior and performance of various investor types: A study

of Finland’s unique data set. Journal of Financial Economics. 2000; 55(1): 43–67. https://doi.org/10.

1016/S0304-405X(99)00044-6

2. Odean T. Are investors reluctant to realize their losses? The Journal of Finance. 1998; 53(5): 1775–

1798. https://doi.org/10.1111/0022-1082.00072

3. Brennan MJ, Cao HH. International portfolio investment flows. The Journal of Finance. 1997; 52(5):

1851–1880. https://doi.org/10.1111/j.1540-6261.1997.tb02744.x

4. Kaniel R, Saar G, Titman S. Individual investor trading and stock returns. The Journal of Finance. 2008;

63(1): 273–310. https://doi.org/10.1111/j.1540-6261.2008.01316.x

5. Barrot JN, Kaniel R, Sraer D. Are retail traders compensated for providing liquidity? Journal of Financial

Economics. 2016; 120(1): 146–168. https://doi.org/10.1016/j.jfineco.2016.01.005

6. Hoffmann AO, Post T, Pennings JM. Individual investor perceptions and behavior during the financial

crisis. Journal of Banking & Finance. 2013; 37(1): 60–74. https://doi.org/10.1016/j.jbankfin.2012.08.007

7. Chiang TC, Zheng D. An empirical analysis of herd behavior in global stock markets. Journal of Banking

& Finance. 2010; 34(8): 1911–1921. https://doi.org/10.1016/j.jbankfin.2009.12.014

8. Mantegna RN. Hierarchical structure in financial markets. The European Physical Journal B-Con-

densed Matter and Complex Systems. 1999; 11(1): 193–197. https://doi.org/10.1007/s100510050929

9. Onnela JP, Chakraborti A, Kaski K, Kertesz J. Dynamic asset trees and Black Monday. Physica A: Sta-

tistical Mechanics and its Applications. 2003; 324(1): 247–252. https://doi.org/10.1016/S0378-4371(02)

01882-4

10. Naylor MJ, Rose LC, Moyle BJ. Topology of foreign exchange markets using hierarchical structure

methods. Physica A: Statistical Mechanics and its Applications. 2007; 382(1): 199–208. https://doi.org/

10.1016/j.physa.2007.02.019
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