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Abstract Partial Least Squares-Discriminant Analysis

(PLS-DA) is a PLS regression method with a special binary

‘dummy’ y-variable and it is commonly used for classifi-

cation purposes and biomarker selection in metabolomics

studies. Several statistical approaches are currently in use

to validate outcomes of PLS-DA analyses e.g. double cross

validation procedures or permutation testing. However,

there is a great inconsistency in the optimization and the

assessment of performance of PLS-DA models due to

many different diagnostic statistics currently employed in

metabolomics data analyses. In this paper, properties of

four diagnostic statistics of PLS-DA, namely the number of

misclassifications (NMC), the Area Under the Receiver

Operating Characteristic (AUROC), Q2 and Discriminant

Q2 (DQ2) are discussed. All four diagnostic statistics are

used in the optimization and the performance assessment of

PLS-DA models of three different-size metabolomics data

sets obtained with two different types of analytical plat-

forms and with different levels of known differences

between two groups: control and case groups. Statistical

significance of obtained PLS-DA models was evaluated

with permutation testing. PLS-DA models obtained with

NMC and AUROC are more powerful in detecting very

small differences between groups than models obtained

with Q2 and Discriminant Q2 (DQ2). Reproducibility of

obtained PLS-DA models outcomes, models complexity

and permutation test distributions are also investigated to

explain this phenomenon. DQ2 and Q2 (in contrary to NMC

and AUROC) prefer PLS-DA models with lower com-

plexity and require higher number of permutation tests and

submodels to accurately estimate statistical significance of

the model performance. NMC and AUROC seem more

efficient and more reliable diagnostic statistics and should

be recommended in two group discrimination metabolomic

studies.
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1 Introduction

The goal of systems biology is to explore the interaction

between various components in a biological system. Met-

abolomics measurements provide quantitative information

on the metabolic level of the system. This metabolic level

has proven an important area of systems biology with the

aim to pinpoint putative metabolites related to disease,

genetic variation or nutritional interventions (Weckwerth

et al. 2004; Yang et al. 2004; Kind et al. 2007; van Velzen

et al. 2008; Bernini et al. 2009).

In metabolomics studies different analytical platforms

are often used to provide information on large groups of

metabolites. Most metabolomics studies result in complex

multivariate datasets with varying correlations between the

measured metabolite levels so that multivariate data anal-

ysis methods are needed to explore these complex datasets.
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In the search for metabolic biomarkers, multivariate

discrimination models between two classes of subjects/

samples are used. One of the most used methods is Partial

Least Squares-Discriminant Analysis (PLS-DA) (Barker

and Rayens 2003; van Velzen et al. 2008). If a statistically

significant discrimination between two classes e.g. the

cases and controls classes can be found, then the model

parameters can be interpreted for their discriminating

power and metabolic biomarkers can be found. In PLS-DA

models, a relationship between the metabolomics data and

the categorical variable y is developed in such a way that

categorical variable values can be predicted for samples of

unknown origin given the metabolomics data. Here, the

categorical variable y is a vector which values indicate

class membership of each sample included in the study e.g.

a vector with values of -1 and 1 where -1 represents each

sample belonging to the class of controls and 1 represents

each sample belonging to the class of cases. However, due

to the properties of regression models, the prediction ŷi of

the i-th element of y can take any value, not necessarily

exactly -1 or 1. Translation of these values of ŷ to class

membership (classification procedure) is a critical point of

PLS-DA analysis and can be done, e.g. by applying a

threshold above which the sample will be assigned to the

cases class and below to the control class.

Another challenge of PLS-DA analysis is the accurate

estimation of the quality of the obtained models and

thereby differences between two classes. Many diagnostic

statistics have been introduced over the time to convert

values of ŷ obtained for all the study samples into a single

number representing the overall quality of the discrimina-

tion model. In this paper we investigate the performance of

the four different diagnostic statistics which are usually

used for this purpose in metabolomics when PLS-DA is

applied. They are: the number of misclassifications (NMC),

the Area Under the Receiver Operating Characteristics

(AUROC), Q2 and Discriminant Q2 (DQ2). The natures of

these diagnostic statistics are very different. Whereas the

Q2/DQ2 are derived directly from the (ratio-scaled) model

predictions ŷ of y, the NMC/AUROC are derived from the

(nominal-scaled) class memberships translated from ŷ. It is

debatable which measurement scale should be used for

diagnostic statistic of PLS-DA (Stevens 1946).

The power of each of diagnostic statistics is investigated

in terms of its ability to provide a statistically significant

measure of the discrimination between two classes of

subjects (e.g. the cases and the controls) when known

multivariate effects of different magnitudes are present in

the data. This is accomplished by superimposing known

multivariate effects of increasing magnitude on the meta-

bolic profiles of subjects from the cases class and calcu-

lating the PLS-DA models: one PLS-DA model per each

data set with different magnitude of superimposed effect

and diagnostic statistics used. In order to obtain unbiased

estimates of model performance, PLS-DA is applied in a

double cross validation scheme. This means that the four

diagnostic statistics are used not only to assess the final

quality of the PLS-DA models but also for the optimization

of the model, e.g. to select the optimal complexity of model

(optimal number of latent variables, #LV). Statistical sig-

nificance of each PLS-DA model is estimated by compar-

ing the value of the diagnostic statistics (Q2, DQ2, NMC or

AUROC) to values of its null reference distribution H0

obtained by permutation tests.

Datasets obtained by two different analytical platforms

commonly used in the metabolomics studies: UPLC-MS

and NMR were used to evaluate properties of the four

diagnostic statistics. The multivariate effects superimposed

into data sets were intended to represent two situations that

can occur in real life metabolomics data analysis: investi-

gating a nutritional effect (in the case of the UPLC-MS

data set) and investigating an effect of exposure to a

chemical pollutant (in the case of the NMR data set).

Moreover, datasets of different size were used to draw

general conclusions independent of data set size.

2 Theory

2.1 PLS-DA modeling with a double-cross validation

scheme

2.1.1 PLS-DA

Partial least squares discriminant analysis (PLS-DA) and

its extensions like multilevel PLS-DA (MPLS-DA, (van

Velzen et al. 2008)) and orthogonal PLS-DA (OPLS-DA,

(Trygg and Wold 2002)) are the most used classification

methods in metabolomics. PLS-DA consists of a classical

PLS regression where the dependent variable y is cate-

gorical and represents samples class membership e.g. y can

be a vector with values of -1 and 1 where -1 represents

each sample belonging to the class of controls and 1 rep-

resents each sample belonging to the class of cases (Barker

and Rayens 2003). By making use of class information,

PLS-DA tends to improve the separation between the (two)

groups of samples.

2.1.2 PLS-DA with double cross validation schema

Two steps are critical when building a PLS-DA model: the

selection of the optimal model complexity e.g. optimal

number of latent variables (#LV) and the assessment of the

overall quality of the model. In the PLS-DA context, the

#LV needs to be optimized in such a way that a suitable

number of latent variables is used to build the model.
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Suitable means that it provides the best description of data

thus the best discrimination between samples from two

different classes.

Model optimization (i.e. selection of the optimal #LV)

and model quality assessment should be always carried out

in a double cross validation schema because then assess-

ment of model quality and the model optimization are

independent. Samples which are used in final model

assessment are not used in the model optimization (cali-

bration): moreover the calibration of the model is carried

on in a similar unbiased way (Smit et al. 2007; Westerhuis

et al. 2008).

A double cross validation scheme consists of two nested

loops CV1 and CV2, (see Smit et al. 2007). The aim of

CV1 is to optimize complexity of the PLS-DA model and

the aim of CV2 is to assess final model performance. In the

outer loop (CV2) the complete dataset is split into a test set

and a rest set: the test set is set aside and the rest set is used

in a single cross validation (inner loop, CV1). In the CV1

the rest set is again split into a validation (sometimes called

optimization) set and a training set. Then, training set is

used to develop a series of PLS-DA models with 1 to n

latent variables (#LVs) and these PLS-DA models are used

to calculate a series of ŷin for validation set samples which

is further used in the selection of an optimal #LV (Fig. 1a).

The selection depends on the values of the diagnostics

statistics used: #LV with the highest values of AUROC, Q2

and DQ2 and the lowest values of NMC are selected. The

CV1 procedure is repeated until all samples from rest set

have been in the validation set once and only once. For

each rest set a separate PLS-DA model with optimal #LV is

obtained and this model is further used in CV2 loop to

predict ŷi for each test set sample. The CV2 procedure is

repeated until each sample has been in test set once and

only once. On the basis of the ŷi obtained for all the

samples vector ŷ is obtained and used in assessment of the

overall PLS-DA model quality (see Fig. 1b).

Training, validation and test sets (in both CV1 and CV2

loops) are defined by partitioning the samples in k disjoint

subsets. In this study, k = 8 was chosen for the outer loop

Fig. 1 Graphical illustration of use of diagnostic statistics: NMC,

AUROC, Q2 and DQ2 in double cross validation procedure of PLS-

DA. a Use of diagnostics statistics in selection of optimal number of

latent variables in CV1, b use of diagnostics statistics in assessment of

overall PLS-DA model quality after double cross validation procedure

(CV2)
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(CV2) and k = 7 for the inner loop (CV1). This is the most

commonly used partition in double cross validation pro-

cedure applied to metabolomic data sets. Samples of both

classes were always represented in a 1:1 ratio in test, val-

idation and training sets.

As many different disjoint partitions of a data set are

possible, the overall procedure was repeated M times (30 in

the case of the UPLC-MS dataset and 20 in the case of the

NMR data set) resulting in M submodels. That gives

M repetitions of the ŷ vector: ŷ1,…, ŷM. (Fig. 1b). This

procedure enables to track the reproducibility of the PLS-

DA output (see Sect. 4.2.3). The final measures of quality

are given as average values over the M values of chosen

diagnostics statistics. The choice of an 8:7 data split and

M = 30 (20) is a tradeoff between accuracy and compu-

tational time.

2.2 Diagnostic statistics

2.2.1 The Q2 statistic

The Q2 is de facto the default diagnostic statistic to validate

PLS-DA models in metabolomics included in commercial

or academic statistical packages like SIMCA (Umetrics

Inc, Kinnelon NJ), the PLS-toolbox for Matlab (Eigen-

vector Research Inc, Wenatchee WA), SAS (SAS Institute

Inc, Cary NC) or Metaboanalyst (Xia et al. 2009).

The Q2 is based on the evaluation of the error between

the predicted categorical variable ŷ and the known y. The

prediction error is summed over all the samples (PRESS)

and referred to the total sum of squares (TSS) (Cruciani

et al. 1992):

PRESS ¼
X

i

ðyi � ŷiÞ2 ð1Þ

TSS ¼
X

i

ðyi � �yiÞ2 ð2Þ

Q2 is then defined as:

Q2 ¼ 1� PRESS

TSS
ð3Þ

In a PLS regression the values of ŷi are not bounded in

the range [-1, ?1] but, in principle, can assume any value

in the range [-?, ??]. Any deviation of ŷi from yi

contributes to the PRESS: for instance, a prediction of

ŷi = -2 for a sample with yi = -1 will result in a

contribution of 12 to the PRESS even if this corresponds to

a correct classification when the discrimination border is

set at ŷi = 0. The same happens if a prediction of 0 (ŷi = 0)

is given to this sample, then the contribution to the PRESS

is still 1 = (-1)2. This drawback is (partially) overcome

by the so called Discriminant Q2 (DQ2).

2.2.2 Discriminant Q2 statistics, DQ2

Discriminant Q2, DQ2 (Westerhuis et al. 2008), is based on

the fact that the prediction error is disregarded when the

prediction is beyond the class label (i.e. [1 or \-1).

PRESS is then redefined as PRESSD:

PRESSD ¼
X

�1\ŷi\þ1

ðyi � ŷiÞ2 ð4Þ

and the definition of DQ2 straightforwardly follow from

(3):

DQ2 ¼ 1� PRESSD

TSS
ð5Þ

This correction is effective only when the prediction is

in the direction of the true class label, for instance when a

sample with yi = -1 is predicted to be ŷi = -1.5. If this

sample is predicted with ŷi = 0 or ?1, the prediction error

contributes to the PRESSD. It is then clear that the larger

the prediction error, the larger the PRESSD which in turn

implies a smaller value of DQ2.

2.2.3 Number of misclassifications (NMC)

In the PLS-DA predicted values of ŷi can be transformed

into a class membership (i.e. cases/controls) by relating

them to a set discrimination threshold (classification

boundary). This threshold is usually set at 0 when two

classes have similar size and variance and when y is a

vector of -1 (for samples from class of controls) and 1 (for

samples from class of cases). If these conditions are not

met the discriminative threshold can be adjusted to other

values (Lloyd et al. 2009). The predicted values ŷi for the

i-th sample is related to the 0 threshold: the sample is

assigned to class of cases if ŷi C 0 or to class of controls if

ŷi \ 0. The assigned class is then compared with the true

class membership and classified either as a True Positive

(TP), a True Negative (TN), a False Positive (FP) or a False

Negative (FN). When all samples have been predicted and

assigned to a class, the total number of True Negatives,

False Positives, False Negatives, and True Positives can be

computed to create a Confusion Matrix (Broadhurst and

Kell 2006) (see also Supplementary Fig. 1) which sum-

marizes the prediction ability of the model.

The number of misclassification (NMC) is calculated as

the sum of False Positive and False Negative:

NMC ¼ FPþ FN

The NMC is the most intuitive of all diagnostic statistics

as it simply indicates the number of samples which are

wrongly classified by the model.
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2.2.4 Area under the receiver operator characteristic

Apart from the NMC, several criteria can be derived from

the confusion matrix (Lloyd et al. 2009) and the specificity

(Sp) and the sensitivity (Se) (Altman and Bland 1994) are

two of the mostly used, especially in assessing the per-

formance of diagnostic tests.

The specificity and the sensitivity are defined as

Sp ¼ TN

TN þ FP
ð6Þ

Se ¼ TP

TPþ FN
ð7Þ

The sensitivity is a measure of how well the model is

able to correctly classify samples of the class of cases,

while the specificity measures how well the model can

predict samples from the class of controls. The Receiver

Operator Characteristic (ROC) (Fawcett 2004; Davis and

Goadrich 2006) combines these two parameters. By

plotting the sensitivity against 1-specificity for different

values of the discrimination threshold a ROC curve can be

defined. The ROC curve provides a spectrum of

performance assessments and the area under the ROC

(AUROC) is commonly used as diagnostic statistics of

PLS-DA models. The AUROC values range from 1 (perfect

discrimination between classes) and 0 (0.5 and lower

usually means no discrimination at all).

2.2.5 Differences between NMC/AUROC and Q2/DQ2

Class membership can be coded as 1 and -1 in categorical

variable y: a sample belongs either to class 1 (e.g. cases) or

-1 (e.g. controls). These classes could also have been

indicated by class A and B showing that the numerical

values 1 and -1 are irrelevant (they are only used as

dummy variables). Predicted class memberships (ŷ) are

also categorical variables and the NMC/AUROC statistics

are directly derived from these memberships and are so-

called permissible statistics (Stevens 1946). For instance,

the interpretation of means and variances are problematic

for categorical variables while they are well-defined for

ratio-scaled variables.

The Q2 and Discriminant Q2 are derived from predic-

tions (ŷi) and are allowable statistics if we assume that the

ŷi values are ratio-scaled variables. It is interesting to note

that the definition of Q2 and DQ2 relies on the calculation

of the mean of the categorical vector y (Eq. 2), a statistic

which is not permissible for categorical variables (Stevens

1946). This is a fundamental problem of using these sta-

tistics in the PLS-DA.

Errors in the class membership predictions (i.e. devia-

tions from the values -1/?1) have a different impact on

the behavior of the four diagnostic statistics Q2, DQ2, NMC

and AUROC. This can be shown by means of a simple

simulation. We simulated the prediction

ŷ ¼

�1

�1

�1

1

1

1þ e

0
BBBBBB@

1
CCCCCCA

of a vector

y ¼

�1

�1

�1

1

1

1

0
BBBBBB@

1
CCCCCCA

containing the class memberships of six samples. A plot of

the four diagnostic statistics as a function of the error e on

the prediction of the first sample is shown in Fig. 2. The

error e ranges from -10 to 10 with e = 0 corresponding to

a perfect prediction, and an increment of 0.25. A value of 0

was used as the discrimination threshold in the simulation.

This means that if the prediction (1 ? e) of a sample of

class 1 is B 0, the sample is wrongly classified.

It appears that NMC and AUROC are not sensitive to the

magnitude of the error e while Q2 and DQ2 strongly depend

on the magnitude e. For example an error e = 6 gives a

lower Q2 than an error e = 2 where NMC is equal to 1 for

both errors. Values of Q2 (and DQ2) are sensitive to out-

liers with high errors e.

2.2.6 Permutation test

Although an NMC = 0 or a Q2 = 0.99 can be thought to

correspond to good models with a high discriminating

power, these values of the diagnostic statistics can be

attained purely by chance due to a lucky random choice of

samples in the test, validation and training sets. This means

that it is not known which value of these diagnostic sta-

tistics really corresponds to a good discrimination between

groups (Westerhuis et al. 2008). To overcome these prob-

lems and to give a measure of the statistical significance of

the diagnostic statistics (P-value), a permutation test was

introduced (Lindgren et al. 1996; Golland et al. 2005;

Mielke and Berry 2007; Pesarin and Salmaso 2010). Per-

mutation tests assume that there is no difference among

two groups that are randomly formed (Westerhuis et al.

2008). In a permutation test the labels of the samples are

randomly permuted and a new classification model is cal-

culated (Lindgren et al. 1996). The performance of the

model obtained with is assessed by one of the four diag-

nostic statistics and the values of diagnostic statistics are

Diagnostic statistics for PLS-DA models S7
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expected to be higher than for original (unpermuted) data

for NMC and lower for Q2, DQ2 and AUROC. By repeating

this procedure N times, a null distribution of H0 for each of

four diagnostic statistic is obtained. H0 is then a distribu-

tion of diagnostic statistics of models that are expected to

be insignificant (Fisher 1937).

Statistical significance of the PLS-DA model is then

assessed by relating the values of the diagnostic statistics

for this model calculated with the original data set to the H0

distribution of the diagnostic statistics values obtained for

models calculated with the permuted data sets. In case of

NMC the upper threshold P for the P-value is calculated as

P ¼ 1þ#ðNMCp�NMCÞ
N

ð7Þ

where #(NMCp B NMC) is the number of element in the

null distribution which are smaller or equal to the NMC for

the original data set. It is worthy to note that the estimation

of P depends, apart N, on the value of NMC which is

actually estimated by averaging the M values obtained by

M different submodels (Fig. 1b), that is P is also sensitive

to the distribution of the values of NMC. In the case of

AUROC, Q2 and DQ2, P is calculated with a similar for-

mula but inequality B must be replaced with C and similar

considerations do apply.

When using the permutation distribution to infer P-

values, the left tail (in the case of NMC) and right tail (in

the case of of Q2, DQ2 and AUROC) are of interest. This

means that the number of permutations needs to be ‘‘large

enough’’ to sample the tails of the distribution. The lower

limit of the number of permutations is dictated by the

required statistical significance: for instance, to attain a P-

value \0.01 at least 100 permutations are necessary but

cannot be sufficient to a proper sampling of the distribu-

tions tails. An optimal number is difficult to be inferred:

(Churchill and Doerge 1994) suggested that to estimate a

permutation P-value of 0.01 as many as 104 permutations

are needed in genetics applications. The true permutation

P-value can be calculated by taking into account all the

possible permutations (Sun and Wright 2010) which is

actually dictated by the number of samples: with N sam-

ples, N! are permutations possible. With N = 60 (the size

of a typical small metabolomics dataset) there are [1080

possible permuted data sets that obviously cannot all be

screened. On the other hand, a limited number of samples

can hamper the sampling of the tails because extreme

values of the distribution may not be detected. This issue is

discussed further in Sect. 4.1.

3 Materials and methods

3.1 Data sets

3.1.1 UPLC-MS data set

The UPLC-MS data set consists of 96 samples 9 101 lipids

levels measured at the Demonstration and Competence

Fig. 2 Behavior of the diagnostic statistics NMC, AUROC, Q2 and DQ2 as a function of the error e on the simulated prediction ŷ = [-1 -1 -1 1

1 1 ? e] of a vector y = [-1 -1 -1 1 1 1] containing the class membership of six samples
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Laboratory, Netherlands Metabolomics Centre at Leiden

University, Leiden, The Netherlands. Technical details of

the UPLC-MS lipidomics platform are described in (Hu,

van Dommelen et al. 2008) and in the Supplementary

Material. 96 samples are serum samples collected from

healthy subjects before the start of the nutritional inter-

vention study in the frame of BCL study (more information

available on request). To 48 randomly selected samples

nutritional effects were added as described in Sect. 3.1.3.

3.1.2 NMR data set

Ten different data sets, each consisting of 60 NMR spectra

(small NMR data sets), have been constructed by randomly

selecting the spectra from a pool of 256 homogenous NMR

serum spectra of subjects of the DiOGenes study (Larsen

et al. 2009). Technical details of 1H NMR spectra acqui-

sition are presented in the Supplementary Material. Each

small NMR dataset was composed of 60 spectra (samples)

each with 420 data points. A multivariate effect has been

subsequently added to the 30 spectra randomly selected

from 60 spectra (the case group). Using the same strategy,

ten larger NMR data sets (large NMR data sets), consisting

of 200 NMR spectra (100 ? 100) have also been

generated.

3.1.3 Superimposed multivariate effects

3.1.3.1 Nutritional effects Original multivariate nutri-

tional effects were changes in levels of 101 lipids calcu-

lated for each of 33 healthy subjects participating in the

nutritional study (group of 33 subjects with the largest

nutritional effect in BCL study). For each of the 33 subjects

changes between lipid levels before and after nutritional

intervention were calculated. On that basis 33 different

original multivariate nutritional effects were derived. Ten

different magnitudes of these effects were obtained by

multiplication of the original effects by constant numbers:

1 (original effects), 0.75, 0.626, 0.55, 0.5, 0.375, 0.25, 0.15,

0.1, 0.05. To each of 48 samples (randomly selected from

UPLC-MS data set) one of these 33 multivariate nutritional

effects (randomly selected) or their magnitudes were

added. In that way ten different data sets with different

magnitudes of superimposed nutritional effects were

obtained. Each of them consisted of 48 lipid profiles with

superimposed effects (the class of cases) and 48 lipid

profiles without superimposed effects (the class of

controls).

3.1.3.2 Exposure to a chemical pollutant Aldrin, an

isomer of hexachlorohexahydrodimethanonaphthalene,

C12H8Cl6 (Martin 1958; Younos and Weigmann 1988) is

an organochlorine pesticide whose use is severely limited

in most countries and banned within the EU (http://www.

pesticides.gov.uk/approvals.asp?id=55). Despite the strict

regulation, the presence of this compound, as well of other

organochlorine pollutants, has been reported in the sera of

healthy subjects, suggesting that exposure to some orga-

nochlorine compounds is strongly related to environmental

contamination (Lino and Silveira 2006; Carreño et al.

2007). (Lino and Silveira 2006) reported levels of Aldrin in

the blood of healthy subjects ranging from \5 to 400 lg/l

with an average concentration of 13 ± 42 lg/l.

The Aldrin spectrum was simulated for the average

concentration of this compound in blood (13 lg/L) and was

the linear combination of Lorentzian peaks as previously

described (Günther and Gleason 1980; Cloarec et al. 2005).

Aldrin resonance positions where retrieved from the SDBS

online database (SDBSWeb: http://riodb01.ibase.aist.go.jp/

sdbs/ (National Institute of Advanced Industrial Science

and Technology, accessed in August 2010). A simulated

NMR spectrum of Aldrin contains 53 out of 420 data points

which are not equal to zero.

Exposure to this pollutant was introduced by superim-

posing the simulated NMR spectrum of Aldrin to the NMR

spectra of serum samples of healthy subjects from the

group of cases (randomly selected subjects: 30 out of 60 for

small NMR data sets and 100 out of 200 for large NMR

data sets). For the small NMR data sets the magnitudes of

pollutant levels were chosen to range from 0 (no exposure

to pollutant) to 50 times (0, 10, 15, 20, 25, 30, 35, 40, 45,

50) of the average observed concentration of Aldrin in

blood. For the large NMR data sets, the exposure intensity

ranged from 0 to 20 times (0, 2, 2.5, 5, 7.5, 10, 12.5, 15,

17.5, 20) of average concentration of Aldrin in blood.

3.2 Data analysis procedure and software

PLS-DA with a double cross validation procedure and four

different diagnostic statistics was used. This procedure was

applied M-times to each of UPLC-MS and NMR data sets

with superimposed nutritional or exposure effects (10

UPLC-MS data sets, 100 small NMR data sets and 100 large

NMR data sets). That resulted in M submodels for each data

set (M = 30 for each of UPLC-MS data set and M = 20 for

each of NMR data set). The performance of the PLS-DA

model of each data set was evaluated on the basis of means

of diagnostic statistics calculated across M submodels (see

Fig. 1b) and related to means of diagnostic statistics of

permutation tests using Eq. 7 to obtain P-value (for more

information see Supplementary Material). A number of

3000 permutation tests for each of UPLC-MS data sets and

2000 permutation tests for each of NMR data sets were

calculated using the same procedure as described above but

with permuted y. All analyses were done in Matlab 2010a

(The Mathworks Inc., Natick, Massachusetts, USA), using
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in-house routines, partly based on the PLS Toolbox

(Eigenvector Research Inc, Wenatchee WA). Permutation

tests have been performed on the LISA-SARA Dutch super-

computer (www.sara.nl).

4 Results and discussion

4.1 Statistical significance of PLS-DA models vs.

magnitudes of superimposed effects and used

diagnostic statistics

Performance of PLS-DA model depends not only on the

data set used, thus differences between two classes (e.g.

magnitude of nutritional effects present in lipid profiles of

subjects from the class of cases). It can also depend on

values of diagnostic statistics used in optimization and

performance assessment of the PLS-DA model (see Fig. 1).

When differences between two classes are becoming very

small, the power of each of the diagnostic statistics can be

easily investigated in terms of their ability to provide a

statistically significant measure of the discrimination

between the two classes. This is accomplished by super-

imposing known multivariate effects of decreasing mag-

nitude onto data of subjects from the class of cases and

calculating a series of PLS-DA models. In this series, a

single PLS-DA model is obtained for each of many data

sets with different magnitudes of superimposed effects and

one of four diagnostic statistics used in optimization and

performance assessment. The most powerful diagnostic

statistic is the one which provides a statistically significant

PLS-DA model calculated for data with the smallest

superimposed effect.

4.1.1 UPLC-MS data sets with superimposed nutritional

effects

10 PLS-DA models were calculated for UPLC-MS data

sets with different magnitudes of superimposed effects and

each of four diagnostic statistics (Q2, DQ2, NMC or AU-

ROC) as described in Sect. 3.2. Each of 10 PLS-DA models

contained 30 submodels. The ranges of the 30 values of

each of the diagnostic statistics (obtained by 30 PLS-DA

submodels for each PLS-DA model, see Fig. 1b) are pre-

sented in Table 1. It should be notified that (i) the quality

of the PLS-DA models decreases when the magnitude of

the effects decrease: the values of Q2, DQ2 and AUROC

decrease and value of NMC increases and (ii) the range of

the values of the diagnostic statistics increases when the

magnitude of the effect decreases.

As already mentioned in the introduction section, the

values of diagnostic statistics do not alone indicate if

quality of model is good or bad and if differences between

two classes are statistically relevant or not. Statistical sig-

nificance of diagnostic statistics values of any (sub)model

can be assessed by comparing them or their means (see

Fig. 1b) to values of their null reference distributions H0

obtained by permutation tests (see Sect. 2.2.6). A plot of

the P-values for each of the four diagnostic statistics as a

function of the effect magnitude (statistical significance

profile of each diagnostic statistics) is presented in Fig. 3a.

The significance threshold a is usually set to 0.05 in the

majority of metabolomics applications. That means that P-

value smaller that 0.05 indicates that the null hypothesis H0

(no difference between the two classes) can be rejected and

observed difference between groups is assumed to be sta-

tistically significant at a = 0.05. By inspection of Fig. 3a it

Table 1 Performance of PLS-DA models of UPLC-MS data sets (96 samples and 101 metabolites) with different magnitudes of superimposed

effects

Effect magnitude/diagnostic statistics NMC AUROC DQ2 Q2

Min Max Min Max Min Max Min Max

1 30.4 32.8 0.7125 0.7484 0.0914 0.1258 -0.0091 0.0020

0.75 35.7 37.1 0.6387 0.6809 -0.0227 0.0199 -0.1845 -0.0965

0.625 38.4 40.0 0.5961 0.6361 -0.1046 -0.0474 -0.291 -0.1238

0.55 39.4 41.4 0.5731 0.6142 -0.1547 -0.074 -0.36 -0.1508

0.5 40.1 43.2 0.5532 0.5973 -0.1873 -0.0949 -0.4047 -0.1671

0.375 42.5 48.0 0.5053 0.5695 -0.2518 -0.1302 -0.5131 -0.1973

0.25 44.5 51.1 0.4742 0.5382 -0.3045 -0.1411 -0.5767 -0.1994

0.15 46.5 52.5 0.4608 0.5161 -0.3187 -0.1410 -0.6311 -0.2074

0.1 46.3 52.6 0.4571 0.5153 -0.3314 -0.1380 -0.6676 -0.1996

0.05 46.5 52.5 0.4573 0.5096 -0.3248 -0.1370 -0.6921 -0.2041

Performance of each model is assessed on the basis of 30 values obtained by 30 PLS-DA submodels. Minimum and maximum of 30 values of

each diagnostic statistics is presented. Better model performance is associated with higher values of AUROC, DQ2 and Q2 and with lower values

of NMC
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appears that, given an effect magnitude, different diag-

nostic statistics give different P-values. To infer a statis-

tically significant discrimination between the two classes

(P-value B 0.05), the effect magnitude need to be about 1,

0.85, 0.55 and 0.55 when Q2, DQ2, AUROC or NMC are

used, respectively. Models using NMC and AUROC clearly

outperform those based on Q2 and DQ2. NMC/AUROC

based models give significant discrimination for an effect

magnitude (D effect C0.55 9 original effects) which is

half of that required for models based on Q2 and DQ2 (D
effect C1 9 original effects).

Interestingly, the DQ2 and Q2 P-values for very small

effects are not equal to 0.5. This fact may be related either

to inadequate number of PLS-DA submodels or to an un-

dersampling of the DQ2 and Q2 H0 distributions due to a

limited number of permutations. The number of PLS-DA

submodels (30 in our case) can be insufficient to obtain a

representative mean value of the DQ2 and Q2 statistics.

That is highly probable when distribution of 30 values is

not symmetric. On the other hand, distributions of diag-

nostic statistics in permutation tests can also be essential in

estimating P-value. Distributions of permutation tests of ŷi

and diagnostic statistics for models of UPLC-MS data set

with 0.75 9 effect were plotted in Supplementary Fig. 2.

Shapes of distributions of permutation tests of NMC and

AUROC are symmetric in contrary to DQ2 and Q2 distri-

butions which are left-side skewed. Distributions of per-

mutation tests of DQ2 and Q2 should be chi-square

distributions because they are distributions of sum of

squares (Eqs. 3 and 5) but there are not many values of

permutation tests in the right tail of those H0 distributions

when 3000 permutation tests are used. That makes an

accurate estimation of the P-value of diagnostic statistics

such as DQ2 and Q2 of the original models difficult and

raises a question about the number of submodels and per-

mutation tests required to properly estimate P-values.

Another solution can be to apply resampling methods such

as bootstrap in combination with permutation testing.

4.1.2 NMR data sets with superimposed exposure effect

The multivariate effects added to the NMR data sets were

intended to mimic the exposure to a chemical pollutant.

The overall strategy of superimposing known multivariate

effects was an analogue to strategy applied to the UPLC-

MS data sets (see Sect. 4.1.1) but for each magnitude of

superimposed effects, 10 different data sets have been

randomly generated for a grand total of 100 data sets.

Therefore, the results presented for each magnitude of

superimposed effects refer to the average values over the

10 data sets. This extended strategy was chosen to take into

account the intrinsic variability when a data set is build by

sampling subjects from a larger population. The ranges of

the four diagnostic statistics for the different PLS-DA

models of small NMR data sets are given in Table 2.

Presented ranges show a similar behavior to that observed

for the UPLC-MS data sets (Table 1). Figure 3b presents

the P-values (averaged over the 10 data sets) as a function

of the effect magnitude (statistical significance profile of

each diagnostic statistics) for small NMR data sets. Here

also, NMC and AUROC outperform Q2 and DQ2 in term of

providing a statistically significant discrimination between

classes. With the a = 0.05, significant statistical discrimi-

nation is obtained for effect magnitude C20 for NMC/

AUROC optimized models. Magnitude C35 and 40 is

required for PLS-DA models optimized with DQ2 and Q2,

respectively. Again an effect magnitude ratio 1:2 is

observed as in the case of PLS-DA models of UPLC-MS

data sets. Similar results and conclusions also apply to the

large NMR data sets (see Supplementary Fig. 3).

Interestingly, the averaging over ten different data sets

leads to P-values &0.5 for the Q2 and DQ2 when no effect

Fig. 3 Statistical significance profiles for PLS-DA models of UPLC-

MS data set (a) and NMR data set (b) when NMC, AUROC, Q2 and

DQ2 are used. Profiles show ability of each diagnostic statistics to

provide a statistically significant measure of the discrimination

between two classes (P-value) as a function of the magnitude of the

multivariate effects added on the data (D effect)
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is present, as it should be when no differences between

classes is expected. That was not the case for the UPLC-

MS data sets where only one data set is used for each effect

magnitude. There number of PLS-DA models and permu-

tation tests was not enough to properly estimate P-values.

4.2 Properties of PLS-DA models and diagnostic

statistics

In order to explain observed differences in the perfor-

mances of the models optimized and assessed by different

diagnostic statistics, other properties of obtained models

were evaluated further. Models complexity, distributions

and reproducibility of models predictions were studied.

4.2.1 Complexity of PLS-DA models in CV1

As illustrated in Fig. 1a, the Q2, DQ2, NMC, and AUROC

were used in the CV1 loop of the double cross-validation

procedure to optimize the number of latent variables of

each PLS-DA model generated in the CV1 loop. The use of

a particular diagnostic statistic in this place is a critical

point for differences in PLS-DA models performances

presented in Fig. 3. The type of diagnostic statistics can

strongly influence the model complexity, i.e. the number of

latent variables used in the model. That becomes even

more evident when complexity of models (ranging from 1

to 6 latent variables) is evaluated (Fig. 4a). It can be

observed that NMC/AUROC optimized models have usu-

ally more latent variables (#LVs: 4–6) than Q2/DQ2 opti-

mized models (#LV: 1–3). Moreover, this tendency is even

more prominent when differences between classes are

getting smaller and performance of models is getting worse

(Supplementary Fig. 4). This means that models selected

by Q2 and DQ2 are usually more simple and conservative

than those selected by NMC/AUROC. Taking into account

that NMC/AUROC selected models are more powerful in

detecting small differences between groups it can be con-

cluded that NMC/AUROC select models which use infor-

mation about these differences more extensively and for

that a higher number of latent variables is required. How-

ever, the higher number of latent variables makes inter-

pretation of results more difficult and the number of latent

variables should generally be limited to a few latent vari-

ables. A maximum number of 6 latent variables used in this

study was chosen on the basis of previous analysis of

UPLC-MS and NMR data sets where 4–5 latent variables

were usually enough.

The complexity of the PLS-DA models has a direct

impact on model interpretation. PLS-DA models can be

used for biomarker discovery, for instance by looking at the

relative importance variables used in the PLS-DA model.

This can done by ranking the variables according the value

of their PLS regression coefficients: the variable with the

largest (in absolute value) coefficient gets rank 1, the

second one rank 2 and so on (Breitling, Armengaud et al.

2004)

In case of NMR data sets where simulated Aldrin

spectra was added, 53 biomarkers associated with exposure

to Aldrin (non-zero data points of Aldrin spectrum) are

expected to be found by the PLS-DA models. Figure 4b

shows the ranks of those 53 variables (for small NMR

dataset with magnitude of added effects equal 45) for six

PLS-DA models with different model complexity (from 1

to 6 latent variables). Each horizontal line presents a rank

of one of 53 biomarkers. Minimal rank is in this case 1 (the

Table 2 Performance of PLS-DA models of small NMR data sets (60 samples and 420 data points) with different magnitudes of superimposed

effects

Effect magnitude/diagnostic statistics NMC AUROC DQ2 Q2

Min Max Min Max Min Max Min Max

50 5.05 6.35 0.9473 0.9581 0.6176 0.6380 0.4766 0.4892

45 6.75 8.60 0.9367 0.9569 0.5694 0.6023 0.4193 0.4595

40 7.80 10.75 0.8928 0.9273 0.4751 0.5035 0.2662 0.2946

35 10.80 14.75 0.8366 0.8886 0.3245 0.4100 0.0756 0.1612

30 13.75 20.90 0.7329 0.8544 0.1276 0.3304 -0.1191 0.0698

25 17.75 24.55 0.6286 0.7741 -0.0133 0.1441 -0.2698 -0.2122

20 20.00 27.50 0.5513 0.7341 0.1220 0.0154 -0.3809 -0.3427

15 24.75 28.70 0.5221 0.6341 -0.1393 -0.1259 -0.6830 -0.4046

10 27.50 29.00 0.5145 0.5767 -0.2625 -0.1226 -0.6690 -0.2124

0 29.25 30.60 0.4988 0.5169 -0.2901 -0.1581 -0.7567 -0.2423

Performance of each model is assessed on the basis of 20 values obtained by 20 PLS-DA submodels. Minimum and maximum of 20 values of

each diagnostic statistics is presented. Better model performance is associated with higher values of AUROC, DQ2 and Q2 and with lower values

of NMC
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123



most important variable out of 420 variables used in PLS-

DA model) and maximal rank is 420 (the least important

variable out of 420 variables used in PLS-DA model).

Statistical significance of presented ranks was assessed by

10000 permutation tests and the corresponding P-values

were calculated as detailed in Sect. 2.2.6. Ranks of bio-

markers which obtained a P-value \0.05 are marked in

blue and those with P-value [0.05 are marked in red.

Figure 4b shows that the complexity of the model does

influence ranks of variables but most importantly influ-

ences statistical significance of variables with low ranks

(see variables with rank 1–30). It appears that simple

models built with fewer latent variables (LV from 1 to 3, as

those usually selected by Q2/DQ2 in CV1) fail in providing

statistical significance for a great number of these low rank

variables, thus those variables will be omitted during bio-

marker selection. On the contrary, models built with more

latent variables (LV from 4 to 6, as those usually selected

by NMC/AUROC in CV1) are able to provide statistical

significance to those most important variables. In this light

it appears that more complex models (selected by NMC/

AUROC) provide not only better discrimination of case and

control group but also are more informative and accurate in

term of biomarker discovery.

4.2.2 Distribution of predicted class membership vs. model

complexity in CV1

In CV1 the diagnostic statistics are calculated on the basis

of the predictions of categorical variable ŷ for validation

set samples (Fig. 1a). Distributions of ŷi obtained for all

samples of validation sets in CV1 for all 30 submodels of

the PLS-DA model of UPLC-MS data set with 0.75 9

effect were investigated. They are plotted for 1–6 latent

variables (#LV) in Fig. 5. In a case of ideal discrimination

of two classes, half of ŷi should be equal to -1 (class of

controls) and other half to 1 (class of cases). This is hardly

true in metabolomics studies because of the inherent vari-

ation between the individuals within the same class. It was

also not the case in our data sets, where a majority of ŷi has

Fig. 4 Complexity of the PLS-

DA models. a dependency of

the number of latent variables

(#LV) upon the diagnostic

statistics (NMC, AUROC, Q2

and DQ2) used in the model

optimization in CV1 of double

cross validation procedure for

UPLC-MS data set with

magnitude of superimposed

effects equal 0.75, b Ranks of

53 biomarkers (variables

associated with superimposed

multivariate effect) obtained by

PLS-DA models with different

complexity (1–6 latent

variables). PLS-DA models

were obtained for small NMR

data set with magnitude of

superimposed effects equal 45.

Ranks of biomarkers were

obtained over all 420 variables

in the data set according to the

corresponding absolute values

of their PLS regression

coefficients. Ranks of

biomarkers statistically

significant at a = 0.05 are

shown as dashed line and non-

significant as regular line
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values between -1 and 1. The distributions of ŷi vary

between models with different number of latent variables.

The range of values of ŷi increases and shape of distribution

is getting more flat when #LV is increasing. Smaller

number of samples with ŷi close to discrimination threshold

value (0 in this case) is observed for models with greater

complexity. That means smaller number of ambiguous

samples in the model and better model performance for

more complex models (usually selected by NMC and

AUROC).

When NMC and AUROC values are calculated it is only

important on which side of discrimination threshold value

is ŷi (\or[0) but not its value itself. In this way the values

of ŷi greater than 1 and lower than -1 do not influence

NMC and AUROC values more than the values of ŷi

between -1 and 1 do. This is in contrary to Q2 and DQ2

which do not base on threshold value but on prediction

error between values of ŷi and yi treating their values as

values of quantitative variable. In this case, the values of ŷi

greater than 1 and lower than -1 do increase prediction

error and decrease values of Q2 (DQ2) prominently.

Complex PLS-DA models (#LV [ 3) have wider ranges of

ŷi, greater prediction error and lower values of Q2 and DQ2.

That explains why when DQ2 and Q2 are used in the model

optimization in CV1 less complex models are selected.

When DQ2 and Q2 are used, the phrase ‘‘better safe than

sorry’’ is followed. Model with the smallest prediction

error e.g. the majority of ŷi in a ‘‘safe’’ range -1 to 1 is

selected and a number of samples with correctly predicted

class labels is not taken into account.

4.2.3 Reproducibility of predictions of PLS-DA models

in CV2

As detailed in Sect. 2.1.2 (see also Fig. 1b), for UPLC-MS

data set 30 different prediction vector ŷ of the original class

membership vector y are generated by 30 submodels after

CV2 procedure. That assures that the finally considered ŷ is

independent of random combinations of samples used in

double cross-validation procedure. Reproducibility of ŷs

across different submodels can be easily employed in

describing PLS-DA models stability. For each study sam-

ple the variance across 30 prediction values ŷi of different

submodels could be estimated and used in assessment of

PLS-DA model stability.

The variance of ŷi across each of the 96 samples in the

UPLC-MS data set was calculated. Obtained variances

were averaged to give one mean variance representative for

predictions of all samples. This procedure was applied

separately to ŷs obtained by the submodels with four dif-

ferent diagnostic statistics and 10 different effects super-

imposed. The results are graphically shown in Fig. 6. For

the largest effect magnitude (D effect = 1) UPLC-MS data

set all PLS-DA models show a significant (at a = 0.05)

discrimination between the two classes. Then the mean

variance of ŷ is &0.12 and it is independent on diagnostic

statistics used in model optimization. When the magnitude

of the effect is smaller than 0.55 and the discrimination

between the two classes is not significant for all of pre-

sented models (Fig. 3a) and mean variance of ŷ is depen-

dent on applied diagnostic statistics. Then, models

Fig. 5 Distributions of ŷi (ypred) of validation set samples in CV1 vs. number of latent variables (#LV) in the PLS-DA model
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optimized on the basis of NMC or AUROC statistics are

less reproducible than those optimized by Q2 or DQ2. The

reproducibility of ŷ by the models optimized by DQ2 and

Q2 decreases when the magnitude of the effect increases.

This is an opposite behavior to this of ŷ obtained by models

optimized with NMC and AUROC. The mean variance of ŷ

for models optimized with Q2 and DQ2 is ca. two times

smaller than this of models with large significant effects.

In conclusion, for small statistically insignificant effects

in data sets, Q2/DQ2 optimized models tend to give very

reproducible predictions what is in contrary to less repro-

ducible predictions NMC and AUROC optimized models.

That indicates that Q2/DQ2 optimized models are more

stable and conservative than NMC and AUROC optimized

models. This property can be associated with lower com-

plexity of those models described in Sects. 4.2.1 and 4.2.2.

5 Conclusion remarks

NMC, AUROC and DQ2, Q2 belong to two separate groups

of diagnostic statistics used in optimization and perfor-

mance assessment of PLS-DA models. Several theoretical

and practical differences between those diagnostic statistics

were presented in this paper.

PLS-DA models using NMC or AUROC as diagnostic

statistics are more powerful in detecting small differences

between two groups than models using DQ2 or Q2. This

phenomenon is related to two factors: complexity of PLS-

DA models optimized during CV1 and distributions of

submodels and permutation tests used to calculate P-value.

During CV1, due to assumptions of (D)Q2 diagnostics

statistics, models with lowest prediction error of class

membership are selected and these are not always the

models with best discrimination power. Additionally,

number of PLS-DA submodels as well as number of per-

mutation tests sufficient for estimation P-values of NMC

and AUROC is usually not enough to properly estimate

P-values of DQ2 or Q2. Finally, PLS-DA models with

NMC or AUROC as diagnostic statistics are more accurate

in finding biomarkers responsible for two classes discrim-

ination with PLS-DA method.

Our recommendation for metabolomic studies with two

classes discrimination problem is to use NMC or AUROC

as diagnostic statistics of PLS-DA models.
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