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Background. Proper rRNA depletion is crucial for the successful utilization of FFPE specimens when studying gene expression.
We performed a study to evaluate two major rRNA depletion methods: Ribo-Zero and RNase H. RNAs extracted from 4 samples
were treated with the two rRNA depletion methods in duplicate and sequenced (𝑁 = 16). We evaluated their reducibility, ability to
detect RNA, and ability tomolecularly subtype these triple negative breast cancer specimens.Results. Both rRNAdepletionmethods
produced consistent data between the technical replicates. We found that the RNase H method produced higher quality RNAseq
data as compared to the Ribo-Zero method. In addition, we evaluated the RNAseq data generated from the FFPE tissue samples
for noncoding RNA, including lncRNA, enhancer/super enhancer RNA, and single nucleotide variation (SNV). We found that the
RNase H is more suitable for detecting high-quality, noncoding RNAs as compared to the Ribo-Zero and provided more consistent
molecular subtype identification between replicates. Unfortunately, neither method produced reliable SNV data. Conclusions. In
conclusion, for FFPE specimens, the RNase H rRNA depletion method performed better than the Ribo-Zero. Neither method
generates data sufficient for SNV detection.

1. Background

Formalin-fixed paraffin-embedded (FFPE) tissue is the most
common method of tissue preparation used in clinics. FFPE
preservation was developed to maintain morphology with-
out any special considerations of preserving nucleic acids.
Therefore, the difficulty of evaluating gene expression levels
in FFPE samples remains one of the biggest disadvantages
of FFPE preservation because the process of fixing the tissue
samples and embedding them in paraffin often leads to
RNA degradation and chemical modification. Furthermore,
a nucleic acid can be cross-linked with a protein during the
formalin fixation process, andmost of the RNA isolated from
FFPE tissues is highly degraded and reduced to a much lower
yield than that of RNA isolated from the same amount of fresh

tissues. To that end, RNA isolated from recently embedded
tissues will be of better quality than RNA isolated from older
embedded tissues. As a result, when amplifying RNA with
oligo-dT primers, there is an overrepresentation of 3󸀠 data
due to the fragmented nature of RNA isolated from FFPE
tissues.

Given the aforementioned reasons, gene expression anal-
ysis based on FFPE samples has been historically challenging.
The most critical step in a FFPE sample based study is
tissue preparation, as it ensures the integrity of the yield and
data quality. It has been greatly emphasized that improper
FFPE tissue preparation can diminish the quality of the
nucleic acids from the tissue, limiting their use for gene
expression profiling [1]. Yet, FFPE samples are often sought
after due to their in-depth retrospective records. The success
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of a FFPE sample based study often depends on several
steps: RNA isolation, reverse transcription, qPCR primer
design, and preamplification. With carefully designed prepa-
ration protocols, FFPE samples have been proven to be an
invaluable source for gene expression studies. The potential
applications of FFPE samples in biomedical research are
substantial.

The vast majority of cellular RNA (>80%) is composed
of noninformative ribosomal RNAs (rRNAs, 28 S, 5.8 S, and
18 S rRNAs) that require removal prior to cDNA synthe-
sis for a RNA-seq library. For high-quality RNA samples,
polyadenylated RNA is enriched from intact RNA using
oligo-dT primers. Since the rRNA does not have a poly-A tail,
it is removed prior to cDNA synthesis along with other infor-
mative, non-polyA RNA species. RNA samples isolated from
FFPE tissues have two features that are not compatible with
oligo-dT primer selection: fragmented RNA that produces
3󸀠 bias from oligo-dT selection, and, the degradation of the
poly-A tail, thereby impacting the yield of recovered mRNA.
Currently, there are two major rRNA depletion methods
used for RNA isolated from FFPE samples: the Ribo-Zero
rRNA removal kit (Epicentre/Illumina) and the RNase H
method (also known as SDRNA) [2–4]. The Ribo-Zero kit
uses a biotinylated antisense set of DNA capture probes that
preferentially bind to rRNA. Magnetic beads are then used to
capture the rRNA:DNA capture probe duplex. The resulting
non-rRNA is left for cDNA synthesis. The RNase H method
uses a similar initial depletion strategy by annealing 50–
80 bp antisenseDNAprobes to the rRNA forming RNA:DNA
hybrids.TheRNA:DNAhybrids are treatedwith endoribonu-
clease RNase H that specifically degrades the phosphodiester
bonds of RNA hybridized to DNA. This step is followed by
a DNase I treatment to degrade the excess DNA probes. The
resulting RNA is then ready for cDNA synthesis.

In the 2000s, microarray technology dominated high-
throughput gene expression profiling but has since been re-
placed by RNAseq technology [5–9]. Successful gene expres-
sion studies based on FFPE samples by microarray technol-
ogy [10–12] are much more abundant than studies using the
relatively newer RNAseq technology. Here, we apply both
RNA depletionmethods, Ribo-Zero and RNase H, to isolated
RNA from FFPE specimens to compare the overall qualities
of data.

Furthermore, based on the premise that sequencing data
offers exciting opportunities for additional data mining [13,
14, 16], we examined the data mining practicability of three
types of supplementary information: SNVs, lncRNAs, and
enhancer RNAs. SNVs are traditionally identified through
DNA samples. SNV detection through RNAseq data has
been historically challenging, although, with careful quality
control, SNVs are detectable in RNAseq data [17–20]. Long
noncoding RNAs (lncRNAs) are arbitrarily defined as longer
than 200 nucleotides in length and do not encode proteins.
Recent findings have suggested that lncRNAs play important
roles in various diseases [21–28], and lncRNAs are detectable
through the total RNAseq preparation method by the Ribo-
Zero RNA rRNA removal kit [29]. Enhancer RNAs are a
type of RNA that regulate spatiotemporal gene expression
and impart cell-specific transcriptional outputs [30]. Recent

advancements in RNAseq technology have enabled the ready
detection of enhancer RNA [15, 30]. Super enhancer RNAs
are a subset of enhancer RNA that are associated with cell
identity and genetic risk of various diseases [31–33]. Our
unique set of FFPE RNAseq data allows us to answer the
question of whether a FFPE sample based RNAseq can
be used for these types of data mining and determine
which RNA isolation kit produces data most ideal for data
mining.

2. Methods

2.1. Sample Description. To evaluate the practicability and
effectiveness of gene expression profiling using FFPE sam-
ples, we designed a study using four triple negative breast
cancer (TNBC) FFPE tumor tissue samples. The H&E slides
were reviewed by a study pathologist and tumor tissues were
dissected from an unstained FFPE tissue section for total
RNA extraction. The tumor tissue sections were stored in
a vacuum chamber at 4∘C for eight to nine years before
RNA isolation was performed. Total RNA was extracted and
purified using aQiagen’smiRNeasy FFPEKit, a kit specifically
designed for purifying the total RNA and microRNA from
FFPE tissue sections. The input RNA amount for both
Ribo-Zero and RNase H rRNA depletion methods was
200 ng each. The quantity and quality of the RNA samples
extracted from tumor tissue FFPE sections were checked by
Nanodrop (E260, E260/E280 ratio, spectrum 220–320 nm)
and by separation on an Agilent BioAnalyzer. Total RNA
extracted from each of the four tumors was split into two
samples (for a total of eight samples). Two rRNA depletion
methods were used: Ribo-Zero and RNase H. Each of the
eight samples was treated with the two rRNA depletion
methods, prepared for library usingTruSeqRNA sample Prep
Kit v2 (Illumina), and sequenced by BGI Americas. In total,
16 RNAseq libraries were generated following manufacture
protocols and sequenced on two lanes (for a total of eight
samples per lane). The qualified libraries were amplified on
cBots to generate the cluster on the flow cell. The amplified
flow cell was sequenced paired-end on theHiSeq 2000 at read
length of the 90 base pairs.

2.2. Data Processing. RNAseq data was thoroughly quality-
controlled atmultiple stages (raw, alignment, and expression)
following the recommendation by Guo et al. [34]. Raw data
and alignment were quality-controlled using QC3 [35], while
expression data was quality-controlled using MultiRankSeq
[36]. Alignments were performed using Tophat 2 [37] against
the HG19 human reference genome. Read counts for protein
coding RNAs, lncRNAs enhancer RNAs, and super enchanter
RNAs for each sample were obtained using HTSeq [38]
against the collective General Transfer Format (GTF) file
build fromEnsemblHumanGTF v74, Gencode lncRNA v 1.9,
and enhancer RNA coordinates provided in [15]. Read count
data for each type of the RNA was normalized to the total
read counts of each sample. Cluster analysis was performed
using Heatmap3 to identify similarities among samples [39].
Spearman’s correlation coefficients were used to denote the
distance between any two samples.
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Table 1: Sample description and alignment statistics.

ID Library Raw data Alignment
Total reads BQ GC CR Non-CR CRMQ Non-CR MQ

1 Ribo-Zero 17.8M 31 71.4% 27.7% 72.3% 32 47
2 Ribo-Zero 16.1M 30 76.8% 31.4% 68.6% 23 47
3 Ribo-Zero 16.8M 31 70.7% 31.6% 68.4% 28 46
4 Ribo-Zero 14.0M 31 72.3% 46.0% 54.0% 34 47
1 Ribo-Zero 16.1M 31 70.4% 27.4% 72.6% 31 47
2 Ribo-Zero 14.9M 31 75.4% 37.9% 62.1% 21 47
3 Ribo-Zero 17.6M 31 71.1% 29.8% 70.2% 29 47
4 Ribo-Zero 15.6M 31 70.0% 46.1% 53.9% 36 47
1 RNase H 20.2M 35 51.6% 79.9% 20.1% 46 33
2 RNase H 20.5M 36 39.8% 42.6% 57.4% 45 41
3 RNase H 20.4M 35 51.6% 78.9% 21.1% 45 33
4 RNase H 21.4M 35 48.6% 58.0% 42.0% 45 37
1 RNase H 22.1M 35 52.5% 80.3% 19.7% 46 35
2 RNase H 22.4M 34 55.1% 74.7% 25.3% 44 33
3 RNase H 20.6M 35 52.0% 78.5% 21.5% 45 31
4 RNase H 24.0M 34 53.6% 80.1% 19.9% 45 30
CR: coding region; BQ: base quality; MQ: mapping quality; GC: GC content.

2.3. TNBC Subtype. Triple negative breast cancer (TNBC) is
known to bemolecularly and transcriptionally heterogeneous
and can be classified into one of six subtypes (basal-like 1, BL1;
basal-like 2, BL2; immunomodulatory, IM; mesenchymal,
M; mesenchymal-stem like, MSL; and luminal AR, LAR)
based on centroid correlations using gene expression [40].
In order to determine if RNAseq data originated from FFPE
specimens can be used for clinical subtyping, we performed
TNBC subtyping on each of the samples using TNBCtype
[41] and compared the repeatability of TNBC subtyping
consistency between the Ribo-Zero and RNase H methods.

2.4. NanoString. NanoString nCounter data was obtained on
302 genes using the same samples. The detailed processing
and normalizationmethod is described in [42].We computed
Spearman’s correlation coefficients to evaluate the concor-
dance between RNAseq and NanoString technology.

2.5. SNV Detection. We conducted advanced data mining
on our FFPE RNAseq data to extract SNV. We inferred
SNVs using Varscan 2 [43]. SNV quality was assessed by
the transition/transversion (Ti/Tv) ratio and the pairwise
heterozygous genotype consistency rate between any two
samples. The Ti/Tv ratio is commonly used as a quality
control measurement [44–46]. The Ti/Tv ratio of SNVs
residing in coding regions should be between two and three
and slightly lower for SNVs residing outside of the coding
regions [47]. Higher Ti/Tv ratios, without exceeding the
upper bound, usually indicate better overall quality. SNVs
were annotated with ANNOVAR [48]. The heterozygous
consistency rate of a pair of samples A-B is defined as the
number of consistent genotypes between samples A and
B, divided by the number of total heterozygous genotypes
within B. A SNV is qualified as part of a consistency rate

computation if it is detected by both samples and if the read
depth for that SNV is at least 10 on both samples.

3. Results

3.1. Raw Data Quality Assessment. On average, the Ribo-
Zero rRNA removal method produced 16.1 (range: 14.0–
17.8) million reads per sample, and the RNase H produced
21.4 (range: 20.2–24.0) million reads per sample. The RNase
H method consistently produced more reads than Ribo-
Zero. Given that the same amount of RNA was used and
the same number of samples was pooled per lane, a higher
RNA capture efficiency is probable for RNase H than that of
Ribo-Zero. On average, the guanine-cytosine (GC) content
of Ribo-Zero was 72.3% (range: 70.0–76.8%), which was
above the expected value (50%), whereas the GC content
of the RNase H method was 50.6% (range: 39.8–55.1%).
The GC content of the reference genome is roughly the
expected GC content for the sequenced data.The GC content
is 39.3% for the entire human genome, 48.9% for protein
coding RNA, 39.7% for lncRNA, and 50.2% for rRNA. The
sequenced reads of total RNAseq data are amixture of protein
coding RNA, lncRNA, and other species of RNA. With the
expected GC content around 50%, RNase H produced data
with GC content closest to the expected value. The raw data
quality control only provided partial quality assessment of the
samples.

3.2. Alignment Quality Assessment. Next, we examined the
percentage of the reads that aligned to the coding region
(Table 1). For the Ribo-Zero, on average, 34.7% (range: 27.4–
46.1%) of the sequenced reads aligned to coding regions, and
for the RNase H, on average, 71.6% (range: 42.6–80.3%) of
the sequenced reads aligned to coding regions. An interesting
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Figure 1: (a) Unsupervised cluster using all detected RNAs. Samples were clustered first by replicates then by rRNA depletion method. (b)
Pairwise Spearman correlation heatmap between all samples. Ribo-Zero produced higher correlation between repeats than RNase H. The
samples RN4 and RN4r produce low correlations with other samples compared to other random pairs. This could be the result of variation
in the sample or variation introduced by the RNase H kit.

observationwasmade in regard to themapping quality (MQ).
Ribo-Zero produced higher mapping quality data in the
noncoding region, whereas the RNase H method produced
higher mapping quality in the coding region. For the Ribo-
Zero, the average MQ for the coding region was 29 (range:
23–36) and 47 (range: 46-47) for the noncoding region. For
the RNase Hmethod, the average MQwas 45 (range: 44−46)
for the coding region and 34 (range: 33–41) for the noncoding
region. One of the repeats of sample two, which used the
RNase H, is a potential outlier because it had the lowest GC
content (39.8%) and the lowest coding region alignment rate
(42.6%) of all the RNase H based samples. RNase H also
produced less percentage of rRNA reads compared to Ribo-
Zero (paired 𝑡-test 𝑝 = 0.03).

3.3. Cluster Analysis. Cluster analysis showed that, regardless
of which RNA isolation kit was used, the repeated sample
clustered together based on gene expression.Within repeated
samples, the rRNA depletion kits were clustered separately.
The cluster analysis results provided additional evidence of
quality concern for the RNase H sample two repeat one, as

it was the only sample that did not perfectly cluster with
its pair within the same RNA isolation kit (Figure 1(a)). The
correlation heatmap (Figure 1(b)) showed similar results as
presented in Figure 1(a). Essentially, we observed a higher
pairwise correlation between repeated samples than between
random samples.

3.4. TNBC Subtype Comparison. Overall, correlations to the
TNBC subtypes were similar in replicates (Figure 2). RNase
H samples had more consistent TNBC subtype calls between
replicates (3/4 matching) than the Ribo-Zero samples (2/4
matching). The nonmatching replicate in the RNase H sam-
ples is sample 2 where we have previously noted its quality
issue. This result suggests that RNase H produces RNAseq
data with more consistent TNBC subtyping.

3.5. NanoString Comparison. We computed Spearman’s cor-
relation coefficients using the gene expression levels between
RNAseq. The correlation dot plot (Figure 3) shows that the
average correlation between Ribo-Zero and NanoString is
0.59 (range: 0.53–0.67), and the average correlation between
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Figure 2: TNBC subtype results from TNBC type. The results show that RNase H samples produced better TNBC subtype consistency than
Ribo-Zero samples.

0.4

0.5

0.6

Ribo-Zero RNase H
Library

C
or

re
la

tio
n

Sample
1
2

3
4

Figure 3: Spearman’s correlation coefficients between RNAseq data
and NanoString data. The Ribo-Zero samples produced slightly
higher correlation with NanoString data then RNase H samples.

RNase H and NanoString is 0.49 (range: 0.32–0.66). The
lowest correlation was produced by RNase H sample two

repeat one which is likely to be a sample with a sequencing
quality issue.

3.6. RNA Detection. We examined four kinds of RNAs:
mRNA (Figure 4(a)), lncRNA (Figure 4(b)), enhancer RNA
(Figure 4(c)), and super enhancer RNA (Figure 4(d)). After
normalization by total read count, we used four detection
thresholds (>0, >2, >5, and >10) to compare the RNA
detection rates between the two RNA isolation kits. For all
four types of RNAs, the Ribo-Zero rRNA depletion method
detects more RNA at detection thresholds >0 and >2. When
higher detection thresholds were used, the RNaseHmanaged
to detect more RNAs. RNA detected with low expression
values could be the result of noises and is therefore less trust-
worthy than RNA detected with higher levels of expression.
Based on these results, the RNase H rRNA depletion method
detected more potentially reliable RNA as compared to the
Ribo-Zero.

3.7. SNV Detection. We inferred SNVs from the FFPE RNA
data using VarScan 2. After filtering for high quality SNVs
(depth > 20), on average, the Ribo-Zero samples identified
525 SNVs per sample (range: 73–1862), and the RNase H
samples identified 57747 SNVs per sample (range: 21932–
87146). The RNase H samples clearly identified more SNVs
than the Ribo-Zero prepared samples. This is caused by the
difference of number of callable sites between the two kits.
We defined a callable site to be a genomic position with
coverage depth ≥ 20. RNase H produced substantially more
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Figure 4: Detected RNA using thresholds: normalized reads count > 0, 2, 5, and 10. (a) Protein coding RNA. (b) lncRNA. (c) Enhancer RNA.
(d) Super enhancer RNA. At lower thresholds (more noise), Ribo-Zero samples detected more RNAs. At higher thresholds (more reliability),
RNase H method detected more RNAs.

callable sites than Ribo-Zero (Figure 5). The callable site
analysis result shows that the coverage of Ribo-Zero is more
spread out than RNase H. High variations in the number
of SNVs were observed for both RNA isolation kits. For

SNVs identified in coding regions, on average, the Ti/Tv ratio
for Ribo-Zero was 3.51 (range: 2.42–8.00) and 2.08 (range:
1.34–2.47) for RNase H. For SNVs identified in noncoding
regions, on average, the Ti/Tv ratio for Ribo-Zero was 2.84
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Figure 5: Callable site is defined as a genomic position with depth
coverage ≥ 20. The number of callable sites indicates the number of
genomic positions that are suitable for SNV inference. RNase H had
substantially more callable sites than Ribo-Zero. The percentage of
difference in callable site is significantly more than the percentage of
difference in number of total reads sequenced by the two kits.𝑌-axis
is plotted in log

10
scale.

(range: 2.37–3.84) and 3.74 (range: 1.04–5.27) for RNase H.
The variation for the Ti/Tv ratio is large, indicating potential
problems with the SNVs identified.

Additional evidence for problematic SNV inferences was
observed in the results of the pairwise heterozygous genotype
consistency between samples. In DNA sequencing, we expect
the heterozygous genotype consistency rate for technical
replicates to be above 0.99. For RNAseq, the consistency rate
is expected to be lower but still yield above 80%. However, on
average, the consistency rates for both kits were less than 40%
which were substantially below expectation. Restricting SNV
pairwise heterozygous consistency computation to SNVs
with depth greater than 50x for both samples in the pair
increased the consistency slightly but still remained <50%.
The low heterozygous consistency rates indicate that SNVs
inferred from FFPE RNAseq samples contain high false
positive rates and are therefore not ideal sources for detecting
SNV.

4. Discussion

Utilization of FFPE specimens for gene expression studies
could open a new avenue for molecular epidemiological
and clinical research. Yet to date, the low quality of RNA
from FFPE specimens for gene expression analysis has been
a challenge. Several technologies have been developed for
quantifying gene expression from FFPE specimens, such as
NanoString [49] and quantitative Nuclease Protection Assay
[50].

Since gene expression data can yield both molecular
subtype classification and predicative markers of risk, efforts
have been made to use RNA extracted from FFPE tissue on
NanoString andmicroarray platforms [51, 52]. Triple negative
breast cancer has been shown to be transcriptionally hetero-
geneous, with several molecular subtypes with differing biol-
ogy [40, 53, 54]. The ability to identify TNBC subtypes from
RNA isolated from FFPE tissues will provide opportunities
for future clinical trial designs and retrospective evaluations
of previously failed clinical trials by individual subtypes. To
determine if RNA extracted from FFPE tissue that has been
stored for eight to nine years could yield gene expression
profiles by RNAseq sufficient enough to subtype TNBC, we
compared the efficiencies of both the Ribo-Zero and the
RNase H methods for rRNA depletion.

Through thorough quality control and analyses, we found
that expression profiling of coding and noncoding RNA is
possible for aged FFPE samples with RNAseq technology.
The Ribo-Zero and RNase H method each had strengths
and weaknesses in different areas. Our analyses suggested
that RNase H is more suitable for studies that target protein
coding RNA. On the other hand, Ribo-Zero offered more
consistency between repeated samples, which is of pivotal
importance, especially for low quality RNA extracted from
FFPE tissues. Under the same amount of library input and
same multiplexing scenario, RNase H consistently produced
more reads than Ribo-Zero. Many reasons could have caused
this read counts difference, including batch effect of the
cluster on the flow cell, and library efficiencies.The evidences
of more total reads sequenced under the same input amount
and better rRNA depletion efficiency for RNase H support
that RNase H has better library efficiency than Ribo-Zero.
RNase H hybridizes directly to the sequences of rRNAs
without the requirement of perfect match. The Ribo-Zero
uses bait strategy which is similar to enrichment like exome
capture with baits and beads. Thus it does not remove
degraded, fragmented rRNAs as efficient as RNase H. Our
study confirms previous finding that RNase H performed
better than Ribo-Zero for low quality RNAs [55].

Furthermore, genes quantified fromRibo-Zero processed
RNAseq data also had a slightly higher correlation with
genes quantified by NanoString technology. This suggests
that Ribo-Zero might offer better repeatability, although the
correlation (50–60%, FFPE) with NanoString data (FFPE)
did not reach the high correlation (80–90%, fresh frozen)
between microarray and RNAseq [56]. We suspect this is
primarily due to the variation introduced by the degraded
quality of the RNA extracted from FFPE samples.

The subtyping of gene expression profiles obtained by
both methods demonstrated that RNA isolated from stored
FFPE samples can be used to determine distinct TNBC sub-
types. While TNBC subtypes were similar among replicates,
RNase H samples had more consistent TNBC subtype calls
between replicates than that of the Ribo-Zero samples, which
is potentially due to the more efficient capture of protein
coding RNA.

By performing SNV detection analysis, we found that
SNV detected by FFPE RNAseq data is subjected to quality
concerns. It has been suggested that the SNV data inferred
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from RNAseq data has a high false positive rate [57]. Several
factors can contribute to the high false positive rate of SNV.
First, alignment on RNAseq data can be more complicated
than DNA sequencing data [19]. Processes such as RNA
editing, alternative splicing, gene fusion, and polyadenylation
introduce additional complications in RNAseq alignment.
The step that reverse-transcribes RNA to cDNA can also
introduce random errors. We have found that the number of
SNVs inferred from RNAseq data can be several folds higher
than that from the exome sequencing data on the sample. In
our study, the lower quality of RNA isolated from FFPE tissue
will result in an even higher number of false positive SNVs.
The low consistency rate of SNVs identified between paired
samples suggests that RNAseq data from FFPE tissues are not
suitable for SNV inference.

5. Conclusion

Recent studies have shown remarkably high consistency
between RNAseq data generated from paired freshly frozen
and FFPE tissue samples [58–60]. Our study provides addi-
tional evidence for the practicability of conducting gene
expression RNAseq with FFPE tissues. There is no denying
that there are technical and quality limitations for FFPE
RNAseq data. However, the majority of the issues can be
overcome through thorough quality control and careful
bioinformatics analyses. Our study supports the notions that
RNAseq on FFPE samples can be used as an unbiased and
comprehensive assessment of gene expression in biomedical
studies, and RNase H method provides more efficient rRNA
depletion than Ribo-Zeromethod for low quality fragmented
RNAs.
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