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Abstract

The results of genetic studies suggest a possible role for SNAP-25 polymorphism in the development of autism spectrum
disorders (ASDs); however, there are no data available on whether changes in SNAP-25 expression also affect animals in rodent
models of ASD. The aim of the present study was to explore this issue. The studies included 1-month-old rats representing
valproic acid (VPA)- and thalidomide (THAL)-induced models of autism. Their mothers received single doses of VPA
(800 mg/kg) or THAL (500 mg/kg) per os on the 11th day of gestation. SNAP-25 protein content in the cerebellum, hippocam-
pus, and frontal lobe was determined using Western blotting, while changes of mRNA levels of Snap25 gene were determined
using real-time polymerase chain reaction. Compared to controls, SNAP-25 content was decreased by approximately 35% in all
brain structures tested, in both males and females, exclusively in the VPA group. In contrast to this, Snap25 expression, studied in
males, was increased in the hippocampus and cerebellum in both, VPA- and THAL-treated rats. We discuss the compliance of
these results with the hypothesized role of SNAP-25 in the pathophysiology of ASD and the adequacy of the experimental
models used.
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Introduction

Autism belongs to a group of neurodevelopmental diseases
known as autism spectrum disorders (ASDs) (Krzysztofik
and Otrebski 2018), which are characterized by impairments
in social interactions with restricted and repetitive behaviors
and interests (Lai et al. 2014; Stepanova et al. 2017). The role
of the genetic component(s) together with epigenetic modifi-
cations and environmental factors in the still unknown etiolo-
gy of ASD has been considered (Bjorklund et al. 2018;
Dall'Aglio et al. 2018; Eissa et al. 2018; Lord et al. 2018,
Woodbury-Smith and Scherer 2018). Abnormalities in
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neuronal connections and in neurotransmission play key roles
in the pathophysiology of neuropsychiatric disorders, includ-
ing ASD (Aida et al. 2015; Dickinson et al. 2016; Eissa et al.
2018; Gao and Penzes 2015; Giovedi et al. 2014).

Synaptic transmission is mediated by neurotransmitters re-
leased from presynaptic nerve terminals via calcium-
dependent exocytosis of synaptic vesicles (Lin and Scheller
2000). The protein complex SNARE (soluble N-
ethylmaleimide-sensitive factor attachment protein receptor),
which consists of syntaxin, VAMP (vesicle-associated mem-
brane protein), and SNAP-25 (synaptosomal associated pro-
tein) plays a crucial role in the mechanism of presynaptic
vesicular transport (Hepp and Langley 2001; Rizo 2018).
The 25 kDa protein SNAP-25 seems to be attractive candidate
proteins for the genetic components of ASD pathogenesis
(Cupertino et al. 2016; Ghezzo et al. 2009; Homs et al.
2016; Safari et al. 2017; Wang et al. 2015). Recent genetic
studies may suggest a role for SNAP-25 polymorphisms in the
development of ASD (Guerini et al. 2011; Safari et al. 2017).
Moreover, studies using a SNAP-25 mutant mouse demon-
strated anxiety-related behavior (Kataoka et al. 2011), indicat-
ing that alterations in SNAP-25 gene structure, expression,
and/or function may result in changes in the regulation of
emotional behavior and the development of symptoms similar
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to those observed in neuropsychiatric and neurological disor-
ders (Corradini et al. 2009).

Epidemiological studies in humans demonstrated that ex-
posure to thalidomide (THAL) or valproic acid (VPA) during
the first trimester (between the 20th and 24th days of gesta-
tion, i.e., at the time of neural tube closure) causes an in-
creased incidence of autism in the offspring (Rodier et al.
1997; Stromland et al. 1994). The corresponding critical peri-
od for the exposure of rats to THAL or VPA is on the day 9th
to 12th of gestation. The offspring of pregnant female rats
treated with THAL or VPA at that time show brain and be-
havioral abnormalities resembling those found in autistic pa-
tients (Ergaz et al. 2016; Narita et al. 2010; Sadamatsu et al.
2006). Based on this data, useful models of chemically in-
duced autism-like behavior in rodents have been developed.
In our previous study, using the same VPA and THAL rat
models of autism, we also observed behavioral changes sim-
ilar to autism and neurochemical disruption in the brains of
these animals, suggesting disturbances in glutamatergic neu-
rotransmission (Zieminska et al. 2018). We hypothesize that
these abnormalities may be a reflection of dysfunction in syn-
aptic vehicle trafficking that result from the altered expression
of genes encoding some members of the protein complex
SNARE, in particular the SNAP-25 protein and could be im-
plicated in the causation of the behavioral deficits in ASD.
However, this hypothesis could not be verified based on the
literature because, to our knowledge, there have been no com-
plex studies examining SNAP-25 expression using VPA and
THAL rat models of autism.

Thus, the aim of this project was to investigate whether the
fetal exposure of rats to VPA or THAL, which are known to
induce behavioral deficits similar to ASD and represent the
two established animal models of autism, can also mod-
ify the expression of SNAP-25 in the brain of juvenile
animals. Using Western blotting (WB) and RT-qPCR,
we examined the level of SNAP-25 protein, and the
expression of Snap25 gene, respectively, in the cerebel-
lum, hippocampus, and frontal lobe.

Methods
Animal Models of Autism

Experiments were performed using male Wistar rats (Cmd:
(WDWU). Rats were bred in the Animal Colony of the
Mossakowski Medical Research Centre, Polish Academy of
Sciences in Warsaw. The animals were provided water, fed ad
libitum, and kept in an air-conditioned room at 20 °C with a
constant humidity of approximately 60%, on a 12-h dark-light
cycle. All procedures involving animals were in accordance
with the Directive 2010/63/EU on the protection of animals
used for scientific purposes and with adherence to the

@ Springer

national regulations. All of the procedures in animal
experiments were approved by the Fourth Local Ethics
Committee for Animal Experiments in Warsaw (resolu-
tion no. 43/2015 of May 22, 2015).

The procedure of inducing two chemical teratogenic
models of autism in rats was performed exactly as previously
described (Zieminska et al. 2018). In brief, female rats on the
11th day of gestation were fed by intragastric tube one dose of
800 mg/kg b.w. VPA or 500 mg/kg b.w. THAL. VPA was
mixed with 1 ml saline solution, THAL was mixed with veg-
etable oil, and both were administered orally. Control animals
were fed 1 ml of a mixture of oil and saline, 1:1 v/v (Kolozsi
et al. 2009; Narita et al. 2010). A random control ultrasonic
vocalization test was carried out on PND 9 rats from all ex-
perimental and control groups. The results, i.e., a significantly
reduced level of ultrasonic vocalization emitted by pups from
the VPA- and THAL-treated groups after separation from the
mothers, which is considered to be a reliable indicator of pa-
thology similar to autism in rats, did not differ from those
described previously (Zieminska et al. 2018).

Newborn rats were bred along with their mothers in indi-
vidual litters. After 21 days from birth, the pups were separat-
ed from their mothers and divided into study groups: control,
VPA, and THAL, 3—4 individuals of the same sex per cage.
For each test group in our study, the animals came from two
litters. At the onset of our experiments, we started with 73 rat
pups. Out of the initial number, 1 pup from the control group
was excluded from further analysis because of his delay in
growth. In the final analysis, there were 24 control animals
(9 females—F + 15 male—M), 24 VPA-treated animals
(10F + 14 M), and 24 THAL-treated animals (9F + 15 M).

Western Blotting Analyses

The 35-day-old Wistar rats of both sexes were used for the
WB analyses. The animals were sacrificed by decapitation,
and the brains were removed from the skull and plated in
ice-cold PBS. The frontal lobes (FL), cerebella (CE), and hip-
pocampi (HPC) were isolated from the rat brain, inserted sep-
arately into tubes with ice-cold PBS and frozen (— 80 °C) until
further analyses. The level of SNAP-25 was determined by the
Western Blot performed as described previously (Gamdzyk
et al. 2016). Membranes were probed with the anti-SNAP-
25 primary antibodies (1:1000; Synaptic Systems GmbH,
Gottingen, Germany) and anti-f3-actin (1:1000; Sigma-
Aldrich) as inner control. Sigma-Aldrich antibodies coupled
with alkaline phosphatase were used as secondary antibodies
(1:1000). The results are expressed in arbitrary units (arb.u.) as
mean + SD. Statistical analysis of blot data was performed
using Kruskal-Wallis ANOVA tests followed by Dunn’s
method applying SIGMAPIot 12.5 software package (Systat
Software, Inc.). P values lower than 0.05 were considered as
significant.
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Gene Expression Analyses

For the RT-qPCR gene expression analysis, RNA from three
male rats brain region (FL, CE, HPC) was isolated (Total
RNA Mini Kit, A & A Biotechnology, Gdynia, Poland), and
cleaned (Clean-Up RNA Concentrator kit, A&A
Biotechnology, Gdynia, Poland). FL, CE, and HPC brain parts
were obtained from the animals based on the method de-
scribed by Spijker (Spijker 2011).

Expression profiling of the custom gene panel was per-
formed using 10 ng cDNA obtained in RT (iScript advanced
reserve transcription supermix (Bio-Rad, Hercules, CA) per
reaction. RT-qPCR reactions were performed in 3 replicates
by using Sso Advanced Universal SYBR Supermix (Bio-Rad,
Hercules, CA) and LightCycler® 96 (Roche Diagnostics
GmbH) in the following steps: initial denaturation step at
95 °C for 2 min, followed by 40 cycles of denaturation at
95 °C for 5 s and annealing/elongation at 60 °C for 30 s.
The specificity of target amplification was confirmed by
melting-curve analysis. RNA integrity was assessed by the
3'/5" RT-qPCR integrity assay. RNA integrity index was cal-
culated as difference between the 3'Cq (3" UTR (SDHA3'))
and 5'Cq (5’ end (SDHAS5")), ACq = |3'Cq-5'Cq|. RNA with
RNA integrity index ACq< 1 have been classified as high
quality. The primers for this assay were designed and checked
by using PrimerQuest Tool (http://eu.idtdna.com) and Primer-
BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/)
respectively (Table 1). For RNA index quantification, RT re-
action was performed by using TranScriba kit (A&A
Biotechnology, Gdynia, Poland).

Actb (Actin), B2m (Beta-2-microglobulin), Gapdh (glycer-
aldehyde-3-phosphate dehydrogenase), Gusbh
(betaglucuronidase), Hmbs (Porphobilinogen deaminase),
Hprtl (hypoxanthine-guanine phosphoribosyltransferase),
Rpli3a (60S ribosomal protein L13a), Sdha (Succinate dehy-
drogenase [ubiquinone] flavoprotein subunit), 7hp (TATA-
box-binding protein), Ppia (peptidyl-prolyl cis-trans isomer-
ase A), Ubc (Polyubiquitin-C precursor), and Ywhaz (14-3-3
protein zeta/delta) were chosen as reference housekeeping
genes (Augustyniak et al. 2019; Lenart et al. 2017).

The results were analyzed with PrimePCR™ Analysis
Software (Bio-Rad, Hercules, CA). Data were presented as
fold of changes (FC) of relative normalized expression,

assuming that > 4-FC as upregulation and < —4-FC as down-
regulation (Fig. 2).

Results

The results of WB analysis examining the SNAP-25 protein
levels in the CE, HPC, and FL of'rats of both sexes belonging
to the VPA and THAL groups are presented in Fig. 1. No
significant differences were observed between male and fe-
male in analyzed brain structures regardless if we analyzed all
groups or each group separately except in FL in control group,
where SNAP-25 level was higher in the male group by 9%.
There were no changes in the SNAP-25 content in any of the
three examined structures of the THAL-treated group.
However, in VPA-treated male rats, the SNAP-25 protein lev-
el significantly decreased in the CE, HPC and FL compared to
the control by 32, 38, and 32%, respectively (Fig. 1). In fe-
males from the VPA-treated group, the reduction of SNAP-25
protein levels in the same brain regions was 35, 34, and 29%,
respectively.

After performing RT-qPCR using 96-well plates, the differ-
ences in mRNA expression between the control group and rats
from the VPA and THAL groups in particular areas of the
brain were evaluated. Significant differences in the mRNA
levels of Snap25 between the control and both experimental
groups were found in the cerebellum and hippocampus only.
In VPA-treated male rats, a 10-fold and 12-fold increase was
noticed in the CE and HPC, respectively. In THAL-treated
rats, the increase in Snap-25 expression was lower than in
the VPA group; in the former group, a 4-fold and 6-fold in-
crease was found in the CE and HPC, respectively (Fig. 2).

Discussion

The results of this study revealed differential changes in the
level of SNAP-25 protein and the expression of Snap-25 gene.
We noticed a significant reduction in the level of SNAP-25
protein in all three tested structures of the brain only in the
group treated with VPA. In both experimental groups, a sig-
nificant increase in Snap25 mRNA levels in the hippocampus
and cerebellum was observed. These results are consistent

Table 1 Primer sequences (and amplicon characteristics) used the 3'/5" integrity assay
Gene symbol Gene name NCBI reference Primer Sequences (5'-3') Amplicon Product
sequence (forward/reverse) length (bp) efficiency E(%)
SDHAS’ Succinate dehydrogenase NM 13042 8 TGGCTTTCACTTCTCTGTTGG 69 2.06
complex flavoprotein subunit A TGGGTAGAAATCGCGTCTGA
SDHA3’ Succinate dehydrogenase NM_13042 8 AAGAAGCCATTTGCGGAACA 71 1.89
complex flavoprotein subunit A GTAACCTTCCCAGTCTTGGT G
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with data from human genetic studies indicating the associa-
tion of proteins involved in synaptic vesicle trafficking, par-
ticularly of SNAP-25, with behavioral deficits characteristic
for ASD and some other neurodevelopmental diseases.
Collectively, these results seem to be consistent with hypoth-
eses suggesting the role of SNAP-25 protein in the pathogen-
esis of ASD. Moreover, they provide new arguments for the
adequacy of the VPA model of autism.

Both, the VPA and THAL groups, represent recognized rat
models of chemically induced behavioral disorders similar to
autism (Narita et al. 2002; Nicolini and Fahnestock 2018;
Schneider and Przewlocki 2005; Schneider et al. 2008;
Zieminska et al. 2018). Although repeated epidemiological
studies have shown that autism is diagnosed approximately
four times more often in boys than in girls (Fombonne
2002), studies on animal models of autism, especially using
VPA-exposed animals, have produced varied results, depend-
ing on the tests used (Nicolini and Fahnestock 2018). In our
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Fig. 1 Western blot analysis of SNAP-25 protein content in homogenates
of'the cerebellum, hippocampus, and frontal lobe of male (M) and female
(F) rats in control, VPA- or THAL-treated group. The bar graph shows the
densitometric values for SNAP-25, normalized to 3-actin, and expressed as
arbitrary units (arb.u.). Differences statistically significant vs. * M/F within
group or # control/VPA, n=24 (9F + 15 M) in control-, n =24 (10F +
14 M) in VPA-, n=24 (9F + 15 M) in THAL-treated group, p <0.05.
Below the histograms are presented photos of the full length of blots show-
ing the content of SNAP-25 and (3-actin. On these exemplary blots, each
group is represented by material from three different male animals
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previous studies on rats prenatally treated with both VPA and
THAL, we also noticed a variable sex dependence of behav-
ioral and neurochemical results (Zieminska et al. 2018). In our
current study, we analyzed SNAP-25 protein levels in the
experimental and control groups, both in males and females,
but we did not find differences between the sexes. Therefore,
for ethical reasons, to reduce the number of animals used in
experiments, further studies of changes in expression of the
Snap25 gene encoding this protein were performed only in
males from VPA and THAL groups. This is in line with the
tendency to use only males in most studies on the rodent
model of autism induced by VPA (Nicolini and Fahnestock
2018). Although most researchers consider statistically signif-
icant at least twofold change in the gene expression, in the
present study, using the RT-qPCR method, a fourfold cut-off
was used to minimize background noise in the examined an-
imal models of ASD.

This work has focused on the expression of the protein
SNAP-25, which belongs to the protein complex SNARE
and plays a key role in the mechanism of synaptic vesicle
exocytosis and in the modulation of calcium homeostasis in
synaptic terminals by regulating the activity of voltage-gated
calcium channels (Corradini et al. 2009). SNARE expression
changes are suggested to be involved in neurodevelopmental
disorders including ASD (Cupertino et al. 2016). More spe-
cifically, it has been hypothesized that the Snap25 polymor-
phism can be assigned roles in the sex-associated differences
in behavioral deficits of patients with ADHD and ASD
(Ghezzo et al. 2009). Genetic studies confirmed the associa-
tion of Snap25 with ADHD, schizophrenia, and major depres-
sive disorder (Houenou et al. 2017; Wang et al. 2018; Wang
etal. 2015); however, apart from the report on the relationship
between the Snap25 polymorphism and ASD in the Iranian
population (Safari et al. 2017), the direct association between
SNAP-25 and ASD has never been shown in humans.
Nevertheless, SNAP-25 is known to play a role in cognitive
functions and regulation of locomotor activity, and conse-
quently, associations of this protein with cognitive disorders
and hyperactivity have been demonstrated (Guerini et al.
2011; Karmakar et al. 2018; Wang et al. 2018). Other genetic
studies investigating autistic children, supported by experi-
ments using the heterozygous Snap-25(%) mouse model, have
shown a significant association of the Snap25 polymorphism
with reduced cognitive scores in ASD and indicated that the
reduced expression of Snap25 could be responsible for the
cognitive deficit (Braida et al. 2015; Braida et al. 2016).
Studies using the mouse model with single amino acid muta-
tions in Snap25 showed the induction of strong anxiety-
related behavior (Kataoka et al. 2011). The results of our stud-
ies on VPA- and THAL-treated rats showed an approximate
35% decrease in the SNAP-25 protein content in the hippo-
campus, cerebellum, and in the frontal lobe, exclusively in the
former group (Fig. 1). This particular result seems to be
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consistent with the literature quoted above concerning the
pathophysiological role of SNAP-25 (Braida et al. 2015;
Houenou et al. 2017; Wang et al. 2018). However, it was
surprising to find a very significant increase in the expression
of the Snap25 gene in the hippocampus and cerebellum in
both experimental groups (Figs. 1 and 2), whereas based on
data from the literature, a reduction in Snap25 gene expression
in ASD animal models could be rather expected.

No positive correlation between mRNA level and encoded
protein content is not uncommon, and its mechanisms can be
very complex (Liu et al. 2016; Maier et al. 2009). Post-
translational modifications of the protein, affecting its rate of
degradation, are considered to be the main sources of the
absence of correlation between gene expression and protein
level (Greenbaum et al. 2003). SNAP-25 undergoes four ma-
jor post-translational modifications: phosphorylation (Pozzi
et al. 2008), palmitoylation (Gonzalo and Linder 1998), S-
nitrosylation (Connell et al. 2009), and N-terminal acetylation
(Huang et al. 2009). Both, phosphorylation and N-terminal
acetylation are currently indicated as most important sources
of difference between mRNA and protein contents (Nguyen
et al. 2018). Moreover, some types of post-translational mod-
ification leading to protein degradation can result from the
oxidative stress (Gianazza et al. 2007), and it is worth men-
tioning that this process occurs in the rat brain in an ASD
model induced by VPA exposure (Matsuo et al. 2020). We
believe that the mechanism of the difference in Snap25 ex-
pression and this protein level observed in our research can be
attributed to some of these phenomena.

The mechanism of increase in Snap25 gene expression
observed in the present study in both ASD models is also
unclear. The speculative explanation that this may be a com-
pensatory phenomenon resulting from a decrease in SNAP-25

protein content can only be referred to the group of VPA-
treated rats. In a previous in vitro study, we showed that acute
exposure of cerebellar granule cells in primary culture to VPA
decreased the content of SNAP-25, while THAL induced op-
posite alteration; moreover, these changes in protein content
were consistent with the direction of the mRNA changes
(Zieminska et al. 2016). These previous results suggested that
SNAP-25 expression may be a target for environmental mod-
ification. The changes in Snap25 expression and SNAP-25
protein levels observed in the current study in vivo could
therefore be a direct and persistent result of distant, one-time
exposure to both tested teratogens causing the alterations in
Snap25 gene structure, expression, and function. According to
an alternative explanation suggested by other authors
(Corradini et al. 2009), these may be rather secondary effects
of developmental disorders in the central nervous system,
caused by the use of teratogens in the critical embryonic peri-
od. Further research is needed to determine the exact mecha-
nism of changes in Snap25 expression and in the level of
SNAP-25 protein in the brain of rats treated in the embryonic
period with teratogens, particularly with VPA. The same ap-
plies to the explanation of the mechanism of differences in the
effect of fetal exposure on VPA and THAL on the content of
SNAP-25 protein in the rat brain.

Conclusions

Here, we report differential changes in the level of SNAP-25
protein and in the expression of Snap25 gene in the brain of
juvenile male rats in two chemical models of autism induced
by exposure in the critical period of fetal life to teratogens
VPA and THAL. This is the first use of rat chemical models
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of autism to verify the hypothesis that disturbances in SNAP-
25 protein expression may be involved in the pathophysiology
of ASD. We observed an approximately 35% decrease in this
protein content in the hippocampus, cerebellum, and frontal
lobe, only in the VPA model, while an increase in the expres-
sion of Snap25, which encodes the SNAP-25 protein, was
found in the hippocampus and cerebellum in both ASD
models. These observations are partly consistent with the re-
sults of genetic studies investigating children with ASD re-
ported in the literature. This compatibility with previous re-
sults was greater in the VPA model. The obtained results are
also consistent with the tested working hypothesis and indi-
cate the adequacy of the experimental models used, especially
of the VPA model. Further research is needed to explain the
mechanisms of the changes in Snap25 gene expression ob-
served in this work..
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