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Objectives: We investigated the potential role of cingulum and uncinate fasciculus integrity in trauma-related
neural hypervigilance, indexed by less discrimination between amygdala activation to novel and familiar affec-
tive images.
Participants: 22women (mean age 21.7± 3.9 years) with a history of trauma, and 20 no-trauma controls (mean
age 21.9 ± 4.8 years).
Measures: Trauma exposure and trauma-related symptoms were assessed during structured clinical interview.
White matter integrity in the anterior cingulum, parahippocampal cingulum, and uncinate fasciculus was mea-
sured using diffusionweighted imaging. Amygdala response to novel and familiar affective sceneswasmeasured
with functional magnetic resonance imaging.
Results: Trauma-exposed women showed less discrimination between novel and familiar negative images in the
amygdala compared to no-trauma controls. In trauma-exposed women, less amygdala discrimination between
novel and familiar affective images was associated with less structural integrity in the anterior cingulum, but
was not associated with structural integrity of the parahippocampal cingulum or the uncinate fasciculus.
Conclusions: The anterior cingulummight play an important role in impaired novelty discrimination for affective
information in the amygdala. This impairment is potentially driven by inefficient habituation and could contrib-
ute to persistent behavioral hypervigilance following trauma exposure.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Cingulum
White matter
Amygdala
Hypervigilance
Diffusion imaging
Trauma
1. Introduction

Exposure to traumatic events can lead to lasting changes in how
people respond to affective information in the environment. Many trau-
ma survivors experience chronic hypervigilance, which behaviorally
and physiologically is a state of elevated arousal, increased alertness,
and constant visual scanning of the surroundings for potential threat
(e.g., Dalgleish et al., 2001; Kimble et al., 2010). Hypervigilance can
cause significant distress, impair functioning by reducing the attentional
resources to focus on the task at hand, and contribute to the mainte-
nance or onset of other symptoms of posttraumatic stress disorder
(PTSD) such as re-experiencing and avoidance (e.g., Chemtob et al.,
1988; Constans, 2005). Previous neuroimaging work has suggested
that abnormal amygdala activation to salient affective information
(e.g., Etkin andWager, 2007; Yoon andWeierich, 2016) and diminished
cognitive control by the medial prefrontal cortex (e.g., Bishop et al.,
2004) underlie such a hypervigilant state. However, affective and cogni-
tive processes depend on the organization and functional coordination
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of interconnected brain regions, rather than isolated neural activity. Al-
though a number of studies have investigated variations in the structur-
al connectivity of affective brain regions in trauma-exposed people (e.g.,
Daniels et al., 2013), as well as beginning to integrate structural and
functional connectivity (e.g., Fani et al., 2016), the potential relation be-
tween white matter structure and a neural signature of behavioral hy-
pervigilance is still unknown. Taking a multi-method approach that
combines structural and functional neuroimaging, we tested a more
comprehensive neural model of trauma-related hypervigilance, or
over-alertness for threat in the absence of threat.

In hypervigilant states, people show impaired habituation of the af-
fective response to information encountered in daily life, and they re-
main in a tonic alert and ready state even in the absence of threat.
Behaviorally, this state is characterized by heightened attention to the
environment, including visual scanning behavior, and heightened phys-
iological readiness to act. Because novel information is affectively sa-
lient, by virtue of constituting potential threat, novel information
initially activates the brain regions involved in the affective response
and anchored by the amygdala (e.g., Balderston et al., 2011; Weierich
et al., 2010). However, with repeated presentation of stimuli, this
alerting response quickly habituates in healthy people. For example,
fMRI studies show that the amygdala response to affective stimuli
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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decreases quickly – regardless of valence (i.e., unpleasant, neutral, or
pleasant) – when stimuli are presented repeatedly (e.g., Breiter et al.,
1996; Fischer et al., 2003; Weierich et al., 2010). This normative reduc-
tion in amygdala response to familiar affective information is impaired
in hypervigilant and other stress-related states (e.g., Andreano et al.,
2014; Blackford et al., 2011; van den Bulk et al., 2016). Similarly and re-
latedly, peoplewith trauma-related symptoms also fail to showdiscrim-
ination between novel and familiar negative information in the
amygdala (e.g., Protopopescu et al., 2005; Shin et al., 2005; Tuescher
et al., 2011), as less habituation to familiar stimuli results inwhat essen-
tially is a persistent novelty response. Further, PTSD is associated with
abnormally persistent responses to familiar trauma-related stimuli in
the lateral occipital complex, which is implicated in object recognition
and is modulated by the amygdala response (Hendler et al., 2001).

Structurally, the amygdala is connected to the major white matter
pathways implicated in affective processing, and in particular the cingu-
lum and the uncinate fasciculus (e.g., Catani et al., 2012). The cingulum
is a medial association pathway that connects the frontal, parietal, and
temporal lobes (e.g., Beevor, 1891; Schmahmann and Pandya, 2006).
Due to its many short fibers, the cingulum is composed of distinct
sub-regions that are associated with different neural functions
(Heilbronner and Haber, 2014; Jones et al., 2013a; Schmahmann and
Pandya, 2006). Heterogeneity within the tract is further shown bymin-
imal correlation between indices of structural integrity (e.g., fractional
anisotropy) and cellular composition in distinct cingulum sub-regions
(Jones et al., 2013a; Vogt et al., 2001).

The cingulum bundle can be divided into the cingulate part of the
cingulum (CGC; also “anterior cingulum”) and the parahippocampal
part of the cingulum (PHC; also “posterior cingulum”, although note
that some studies parcellate the PHC and the posterior cingulum sepa-
rately). The CGC fibers extend through the dorsal and ventral prefrontal
cortices, the subgenual anterior cingulate cortex (sgACC), and the dorsal
anterior cingulate cortex (dACC). Only a small portion of the fibers from
the amygdala and other temporal regions terminate in the CGC. On the
other hand, the majority of the PHC fibers contain axons projecting to
and from the amygdala, parahippocampal gyrus, and other regions in
themedial temporal lobe, with fewer fibers connecting to the prefrontal
cortex or the sgACC (e.g., Heilbronner and Haber, 2014). Additionally,
the uncinate fasciculus (UF) associationfiber bundle carries information
to and from the limbic affective regions by connecting the temporal lobe
with the medial orbital frontal cortex (e.g., von Der Heide et al., 2013).
The CGC and UF both are involved in affect regulation, including top-
down modulation of affective responses, whereas the PHC is involved
in memory creation and recall of visual scenes (e.g., Keedwell et al.,
2016; Suzuki, 1996).

Basic structural studies using diffusion weighted imaging (DWI)
in trauma-exposed people have been inconsistent. Some show
lower structural integrity in the CGC (e.g., Daniels et al., 2013; Hu
et al., 2016; Kim et al., 2006; Sanjuan et al., 2013; Schuff et al.,
2011), although increased CGC integrity also has been reported
(e.g., Abe et al., 2006; Kennis et al., 2015). In addition, several studies
have reported that trauma exposure is associated with decreased
(Choi et al., 2009; Fani et al., 2014) or increased (Zhang et al.,
2012) structural integrity in the PHC. There also have been mixed
findings regarding UF integrity, with some evidence for decreased
UF integrity in people with trauma-related symptoms (e.g.,
Costanzo et al., 2016; Eluvathingal et al., 2006) and some evidence
for no association (e.g., Fani et al., 2012). These inconsistencies
might be attributed to the wide range of post-trauma symptom pro-
files, the developmental stage of the brain at the time of first trauma
exposure, self-report response biases in symptom assessments, and
variation among trauma types (e.g., Naifeh et al., 2008). More recent-
ly researchers have begun to test the associations between structure
(i.e., white matter integrity) and function (i.e., neural activation pat-
terns) in the affective circuitry of trauma-exposed people. For exam-
ple, people with PTSD were shown to have less structural integrity of
the cingulum, and a genetically-differentiated sample subset also
showed poorer hippocampus – anterior cingulate functional connec-
tivity at rest (i.e., Fani et al., 2016). Existing DWI studies have not yet
tested the relation between structural integrity in the cingulum and
task-based function that is consistent with over-alertness or hyper-
vigilance in the brain.

Given that the CGC and the UF are extensively connected to prefron-
tal cortices and the sgACC, which are implicated in top-down cognitive
control (e.g., Shin et al., 2004;Williams et al., 2006), lower structural in-
tegrity in the CGC and the UF might be associated with less habituation
to affective information as the amygdala response persists for familiar
information rather than habituating to repeated stimulus presentation
(e.g., Wright et al., 2001). On the other hand, increased structural integ-
rity in the PHC might reflect greater functional connectivity between
the amygdala and the adjacent limbic areas (e.g., parahippocampal
gyrus, hippocampus), which has been linked to increased threat sensi-
tivity (e.g., Hahn et al., 2010).

Taken together, prior research shows that that normatively the
amygdala responds to novelty in much the same way as to other af-
fective properties (e.g., Balderston et al., 2011, Weierich et al., 2010),
and also that trauma exposure can be associated with an overly alert
salience response. This overactive salience response is anchored in
large part by abnormally persistent amygdala activation in the ab-
sence of threat, such as when viewing familiar neutral information
(Yoon andWeierich, 2016). Our primary objective was to test the re-
lation between novelty discrimination in the amygdala, as one po-
tential neural index of behavioral hypervigilance, and the structural
integrity of relevant white matter tracts. We thus integrated diffu-
sion weighted imaging (DWI) to measure cingulum and UF integrity,
and task-based functional magnetic resonance imaging (fMRI) to
measure of trauma-related “neural hypervigilance”, indexed by less
discrimination between novel and familiar affective images in the
amygdala. We tested two primary structure-function hypotheses.
First, given the need for prefrontal cognitive control in the process
of habituation we hypothesized that novelty discrimination for af-
fective information in the amygdala would be associated with less
structural integrity in the CGC, and greater integrity in the PHC. Sec-
ond, we hypothesized that less amygdala habituation to affective in-
formation would be associated with less structural integrity in the
UF.

2. Method

2.1. Participants

We recruited 22 trauma-exposed (TE) women and 20 women with
no trauma exposure (see Table 1 for participant characteristics) from a
large urban university in the northeast US. Given known sex differences
in affective processing, we restricted our sample to one sex. The pres-
ence or absence of trauma exposure was assessed using the trauma ex-
posure criterion (Criterion A) of the posttraumatic stress disorder
(PTSD)module of theDiagnostic and StatisticalManual ofMental Disor-
ders IV. All 42 participants were right-handed and eligible for an MRI
scan when assessed with a standard MRI safety screen (e.g., no metal
in the body, no history of claustrophobia).

2.2. Procedure

Two study sessions were conducted on two separate days. The first
study session included the Structured Clinical Interview for DSM-IV
(SCID) and a brief set of questionnaires. The second session was sched-
uled within a week of the first session and included the MRI scan. The
MRI scan sequence consisted of T1-weighted structural scans, BOLD
T2*-weighted task fMRI scans, and a diffusion-weighted structural
scan. All procedures were approved by the Institutional Review Board



Table 1
Participant characteristics (N = 42).

Variable Trauma-exposed
(n = 22)

Control
(n = 20)

Age in years, M (SD), range 21.7 (3.9), 18–34 21.9 (4.8),
18–37

Race/ethnicity, n (%)
White, non-Hispanic 4 (18.2) 9 (45.0)
Black, non-Hispanic 3 (13.6) 4 (20.0)
Asian/Pacific Islander 8 (36.4) 4 (20.0)
Hispanic 1 (4.5) 2 (10.0)
Multiple 2 (9.1) 0 (0.0)
Other 4 (18.2) 1 (5.0)

PSS, M (SD) 22.3 (6.6)⁎ 17.4 (7.0)
STAI-S, M (SD)

Session 1 46.5 (13.0)⁎ 36.5 (10.9)
Session 2 41.9 (9.5)⁎ 35.5 (9.9)

BDI II, M (SD)
Session 1 15.5 (7.1)⁎⁎ 9.6 (6.4)
Session 2 11.8 (7.3)⁎⁎ 5.7 (5.5)

Number of trauma types, M (SD) 2.4 (1.0)
Trauma type, n (%)

Natural disaster 1 (4.5)
Fire/explosion 3 (13.6)
Motor vehicle accident 6 (27.3)
Other serious accident 5 (22.7)
Physical assault 10 (45.5)
Sexual assault 8 (36.4)
Other unwanted sexual experience 1 (4.5)
Life-threatening injury/illness 3 (13.6)
Witness violent death 2 (9.1)
Sudden, unexpected death of loved
one

6 (27.3)

Caused serious injury/death of
another

1 (4.5)

Other very stressful event 6 (27.3)
Total number of PTSD symptoms, M
(SD), range

6.7 (5.0), 0–15

Re-experiencing symptoms 2.5 (1.7), 0–5
Avoidance symptoms 2.5 (1.8), 0–6
Hyperarousal symptoms 1.7 (1.9), 0–5

Total n meeting DSM-IV PTSD criteria 5

Group differences.
⁎ p b 0.05.
⁎⁎ p b 0.01.
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andwere conducted in accordancewith The Code of Ethics of theWorld
Medical Association (Declaration of Helsinki).
1 The task difference was due to experimenter error. There were no differences by task
type in amygdala activation or in reaction time, which would be the two variables poten-
tially affected, ps N 05. In addition,whenweentered task type as a covariate in our planned
analyses, the results did not change. We therefore report analyses without task type as a
covariate.
2.2.1. Structured clinical interview
We conducted all modules of the SCID for all DSM-IV Axis I disorders

to exclude participants who met criteria for major disorders with the ex-
ception of PTSD. No participant met criteria for other major diagnoses, so
none were excluded. The TE participants represented the range of trau-
ma-related symptoms. Five of the 22 TE participants met DSM-IV criteria
for current PTSD. Of the remaining 17 TE participants, 4 endorsed subclin-
ical levels of current symptoms (in this case met re-experiencing and hy-
perarousal criteria but did not meet avoidance criteria), 9 endorsed at
least some symptoms, and 4 endorsed zero current symptoms. Three par-
ticipants reported current use of prescription medications: one trauma-
exposed participants reported prescription medication (Prozac), as did 2
control participant (Wellbutrin & Lexapro; 1 unspecified non-psychoac-
tive medication). The structural and functional imaging data from these
participants did not differ from the data of the other participants in each
group when we conducted independent sample t-tests within groups.
For the TE group ts ranged from −0.925–0.003, corresponding p-values
from 0.366–0.998, and all 95% CIs of the mean difference included zero.
For the no trauma controls, ts ranged from−1.751–0.124, corresponding
p-values from 0.097–0.903, and all 95% CIs of themean difference includ-
ed zero. Given the absence of differences on the critical data, we retained
the participants on medication in the analyses.
2.2.2. Questionnaires
Following the SCID, participants completed a set of questionnaires,

which included the Perceived Stress Scale (PSS, Cohen et al., 1983),
the State-Trait Anxiety Inventory – State Version (STAI-S, Spielberger
et al., 1983), and the Beck Depression Inventory II (BDI-II, Beck et al.,
1996). During the second study session, participants completed STAI-S
and BDI-II before the MRI scan.
2.2.3. FMRI task
The fMRI task consisted of 4 event-related functional runs. These

runs began approximately 20 min into the scan session. This timing
minimized the potential for a confounding influence of scanner-related
stress on the BOLD response, as the runs began after the 15-min win-
dow during which normative scanner-related stress has been shown
to occur and then subside (Muehlhan et al., 2011). During each run,
participants viewed 60 full-color images of randomly presented
complex scenes that were positive, negative, or neutral in valence.

We selected task stimuli from a stimulus set currently being normed
in our lab. The set is designed to depict scenes (rather than discrete ob-
jects or single people/animals), and allows us to balance relevant affec-
tive elements such as social versus non-social content. Importantly,
because this stimulus set is designed to help assess how people respond
to information in typical daily life, the scenes have been selected to ap-
proximate the affective value of visual information typically encoun-
tered in daily life. This criterion means that the unpleasant scenes do
not include extreme or explicitly traumatic content such as mutilation
or interpersonal violence and the pleasant scenes do not include, for
example, highly erotic content. It follows that the ranges of arousal
and valence for this set are not as broad as those of, for example, the In-
ternational Affective Picture System (IAPS; Lang et al., 2008) set, which
was specifically designed to capture more of the affective range.We se-
lected scenes for this task based on valence and arousal ratings collected
froman initial sample of 748healthy adults. Valencewas rated from1 to
9, with 1 as most unpleasant and 9 as most pleasant. For the images in
this study, valence ratings were: unpleasant (M = 2.61, SD = 1.02),
neutral (M = 5.59, SD = 0.84), and pleasant (M = 6.85, SD = 0.86).
Arousal also was rated from 1 to 9, with 1 for low arousal and 9 for
high arousal. For the images in this study, arousal ratingswere: unpleas-
ant (M = 5.60, SD = 1.02), neutral (M = 3.88, SD = 0.65), pleasant
(M= 4.58, SD= 0.69). Although the arousal ratings for the unpleasant
images were slightly higher than arousal ratings for pleasant images,
they were not significantly different.

Runs 1 and 2 were novel; participants viewed each of the images in
each run for the first time. Runs 3 and 4 were familiar; the images from
Runs 1 and 2 were repeated in Runs 3 and 4. We used the Optseq2 se-
quence optimization tool (https://surfer.nmr.mgh.harvard.edu/optseq/
) to optimize trials within the rapid event-related runs. Inter-trial jitter
ranged from 1500 ms to 6000 ms and each run was 332 s long. During
each trial, participants viewed a fixation cross for 500 ms, followed by
an image for 3500 ms. Participants were asked to press a button on a
button box to indicate whether the scene was indoors or outdoors
(trauma-exposed n = 14; control n = 17) or to rate the arousal level
for each image (trauma-exposed n = 8; control n = 3).1 The task was
designed and presented using E-prime experimental software (Psychol-
ogy Software Tools, Pittsburgh, PA) on a PC. Images were rear-projected
to a screen in the magnet bore, and participants viewed images via a
mirror mounted on the head coil.

https://surfer.nmr.mgh.harvard.edu/optseq/


Fig. 1. Visualization of the reconstructed cingulate part of cingulum (red),
parahippocampal cingulum (blue), and uncinate fasciculus (yellow) from one
participant's diffusion data.
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2.2.4. MR image acquisition
We used a Siemens Magnetom Trio Tim 3 T fMRI scanner with a 32-

channel gradient head coil.We conducted a localizer scan, followed by a
whole brainmagnetization prepared rapid gradient echo (MPRAGE) se-
quence to acquire high-resolution T1-weighted images (TR/TE/flip
angle = 2.17 s/4.33 ms/7°, field of view (FOV) = 256 × 256 mm2, ma-
trix = 256 × 256, slice thickness = 1.2 mm, voxel size =
1 × 1 × 1.2 mm3).

FunctionalMRI imageswere acquired using a blood oxygen level de-
pendent (BOLD) echoplanar (EPI) T2*-weighted sequence (TR/TE/flip
angle = 2.0 s/30 ms/90°, FOV = 220 × 220 mm2, matrix = 64 × 64,
slice thickness = 4 mm, voxel size = 3.44 × 3.44 × 4 mm3). The T1-
and T2*-weighted images were collected in the same plane (30 axial
slices angled perpendicular to the AC/PC line) with an interleaved exci-
tation order and foot to head phase encoding.

We acquired whole brain diffusion-weighted images using a spin-
echo echo-planar sequence along 30 diffusion gradient directions and
with a b value of 1000s/mm2 (TR/TE/flip angle = 9.5 s/91 ms/90°, b
value = 1000s/mm2, FOV = 240 × 240 mm2, matrix = 96 × 96, slice
thickness = 2.5 mm, voxel size = 2.5 × 2.5 × 2.5 mm3). Two normali-
zation images with no diffusion encoding (b value = 0) were acquired
in the beginning of the sequence.

2.3. Data preparation

2.3.1. fMRI
Functional MRI data were analyzed using Freesurfer FS-FAST soft-

ware (version 5.3; http://surfer.nmr.mgh.harvard.edu). Functional im-
aging data were motion corrected to the middle time point of each
BOLD run, and inspected for gross motion. Slices were excluded if mo-
tion was N1 mm. In addition, BOLD data were intensity normalized
and spatially smoothed (full-width half-maximum = 4 mm) using a
3D Gaussian filter. The first three volumes in each run were discarded
to allow for T2* equilibration. Following preprocessing, functional im-
ages for each participant were registered to that participant's 3D
MPRAGE image.

We conducted a first-level analysis using a general linear model, in
which the blood oxygen level-dependent (BOLD) response to each
event was modeled using a SPM canonical hemodynamic response
function. Bilateral amygdalae were defined a priori based on the
Desikan-Killiany atlas (Desikan et al., 2006) using an automated seg-
mentation tool in Freesurfer. BOLD percent signal change in the amyg-
dala (threshold p b 0.05) was modeled for the following 3 contrasts:
novel negative versus familiar negative, novel neutral versus familiar
neutral, and novel positive versus familiar positive.

2.3.2. DWI
Diffusion weighted images were preprocessed using FMRIB's Soft-

ware Library (FSL; version 5.0.8; http://fsl.fmrib.ox.ac.uk). Images
were first skull-stripped using the brain extraction tool. We then
corrected for Eddy current-induced distortions and head motion using
an automated affine registration algorithm. Gradient directions
(bvecs) were adjusted according to image rotation done during the pre-
viousmotion correction step. Diffusion tensormaps and scalarmaps in-
cluding fractional anisotropy (FA), mean diffusivity (MD), radial
diffusivity (RD) maps were generated for each participant. FA is a sum-
mary measure of structural integrity and is highly sensitive to micro-
structural changes in the white matter tract. FA varies between 0
(isotropic diffusion) and 1 (anisotropic diffusion), thus higher FA indi-
cates greater structural integrity. MD represents the averagemagnitude
of diffusion in all directions, and RD reflects perpendicular diffusivity.
Higher MD and RD indicate decreased integrity (e.g., Alexander et al.,
2011; Jones et al., 2013b).

Probabilistic fiber tractography was performed using the FSL plugin
AutoPtx (De Groot et al., 2013; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
AutoPtx). The AutoPtx uses the Bayesian Estimation of Diffusion
Parameter Obtained using Sampling Techniques (BEDPOSTx) to fit
fiber orientation for each voxel (Behrens et al., 2007). Next, using the
nonlinear image registration algorithm in FSL (FNIRT), each
participant's FA maps were aligned to the FMRIB-58 template FA
image. The inverse of this nonlinear warp matrix was applied to prede-
fine seed, target, exclusion, and terminationmasks for CGC, PHC, and UF
provided by AutoPtx. Thesemaskswere thenwarped to native diffusion
space for each participant, and probabilistic tractography was conduct-
ed using PROBTRACKX in FSL. For each tract, we applied tract-specific
thresholds derived by deGroot et al. (2015) from a subsample of 30 par-
ticipants who each were scanned twice to test reproducibility (thresh-
olds at maximum reproducibility were CGC = 0.01; PHC = 0.02;
UF = 0.01) to filter voxels that could be incorrectly classified as part
of a tract (Fig. 1). We then computed average FA, MD, and RD.

2.4. Data analysis

We first tested group differences in amygdala activation for 3 con-
trasts (novel negative versus familiar negative, novel neutral versus fa-
miliar neutral, and novel positive versus familiar positive) with a priori
planned comparison t-tests for independent samples. We also tested
group differences in white matter integrity between trauma-exposed
participants and no-trauma controls in the CGC, PHC, and UF with a
priori planned comparison t-tests for independent samples. Next, to
test the relation between novelty discrimination in the amygdala and
white matter structural integrity, we conducted bivariate correlations
between the amygdala response and structural integrity indices (FA,
MD, RD) for the three tracts of interest. Correlation analyses were con-
ducted for each group separately. In addition, we tested the relation be-
tween white matter tract integrity, novelty discrimination, and PTSD
symptoms in the trauma-exposed group.

3. Results

3.1. Descriptive statistics and control variables

Descriptive statistics for functional activation in the bilateral amyg-
dalae and diffusion measures of cingulum and UF integrity are present-
ed in Table 2. The two groups did not differ in age (t(40)=−0.092, p=
0.927, Cohen's d=−0.03), and age was not associated with any of the
fMRI or DWI measures (ps N 0.05). Trauma-exposed people reported
greater perceived stress, state anxiety, and depressed mood,
(ps b 0.05; see Table 1 for descriptive statistics). The trauma-exposed
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Table 2
Amygdala peak magnitude by contrast category and diffusion parameters for white matter tracts.

Variable M (SD)
Trauma-exposed (n = 22) Control (n = 20)

Right Left Right Left

Amygdala response (% signal change)
Novel negative vs Familiar negative 0.30 (0.58) 0.11 (0.46)* 0.25 (0.60) 0.49 (0.70)*
Novel neutral vs Familiar neutral 0.06 (0.60) 0.13 (0.27) 0.28 (0.43) 0.30 (0.53)
Novel positive vs Familiar positive 0.16 (0.73) 0.31 (0.72) 0.12 (0.64) 0.45 (0.85)

Cingulate part of cingulum (CGC)
FA 0.40 (0.02) 0.43 (0.03) 0.38 (0.03) 0.41 (0.04)
MD 79E-05 (3E-05) 80E-05 (3E-05) 81E-05 (4E-05) 83E-05 (5E-05)
RD 63E-05 (3E-05) 62E-05 (4E-05) 65E-05(4E-05) 66E-05 (6E-05)

Parahippocampal cingulum (PHC)
FA 0.30 (0.02) 0.30 (0.02) 0.29 (0.02) 0.29 (0.01)
MD 104E-05 (6E-05) 103E-05 (6E-05) 108E-05 (6E-05) 103E-05 (6E-05)
RD 90E-05 (7E-05) 90E-05 (6E-05) 96E-05 (6E-05) 92E-05 (7E-05)

Uncinate fasciculus (UC)
FA 0.35 (0.02) 0.35 (0.02) 0.35 (0.02) 0.35 (0.03)
MD 85E-05 (3E-05) 87E-05 (4E-05) 86E-05 (3E-05) 87E-05 (4E-05)
RD 71E-05 (4E-05) 73E-05 (4E-05) 73E-05 (5E-05) 73E-05 (6E-05)

FA = Fractional anisotropy, MD = mean diffusivity, RD = radial diffusivity.
* denotes significant group difference at p b 0.05.

Fig. 2. Trauma-exposed women had higher structural integrity measured via fractional
anisotropy (FA) in bilateral PHC compared to no-trauma controls. *p b 0.05, **p b 0.001.
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participants who met criteria for current PTSD (n = 5) did not differ
from the other 17 participants in the TE group (t-values with equal var-
iances not assumed ranged from 1.243 to −0.161, with corresponding
p-values ranging from 0.232 to 0.879).

In the trauma-exposed group depressed mood reported during Ses-
sion 1was associated with greater left amygdala habituation to positive
images (r = 0.423, p = 0.050). In the no-trauma control group, de-
pressedmood (Session 2)was associatedwith greater left amygdala ha-
bituation to negative images (r = 0.593, p = 0.006). Additionally,
depressed mood (Session 1) was associated with less left amygdala ha-
bituation to positive images (r=−0.532, p=0.019).We report results
with andwithout depressedmood as a covariate in all subsequent anal-
yses with amygdala activation.

Unlike controlling for depressed mood, which is associated with
trauma exposure but does not overlap phenomenologically with hyper-
arousal symptoms including hypervigilance, we made the decision that
removal of the variance within the state anxiety (STAI) and perceived
stress (PSS) measures in the current study actually could remove a con-
siderable portion of the variance of interest. Thus although we report
the descriptives for full characterization of our sample, we do not con-
trol for STAI or PSS scores in our analyses.

3.2. Group differences between trauma-exposed women and controls

3.2.1. Novelty discrimination in the amygdala
Trauma-exposed women compared with no-trauma controls

showed a non-significant trend toward less novelty discrimination
(novel versus familiar) across all three valence categories in the left
amygdala, t(39) = −1.88, p = 0.067, d = 0.59 (medium effect). When
testing novelty discrimination for only negative and neutral (ambiguous
and therefore potentially threatening) scenes consistent with prior stud-
ies (e.g., Yoon andWeierich, 2016), trauma-exposed women compared
with controls showed less novelty discrimination across the two catego-
ries in the left amygdala, t(39) = −2.60, p = 0.013, d = 0.82 (large ef-
fect). Testing valence individually, trauma-exposed women compared
with controls showed less novelty discrimination in the left amygdala
for novel negative versus familiar negative images, t(39) = −2.04,
p= 0.048, d=0.65 (see also Table 2). The groups did not differ in nov-
elty discrimination for negative images in the right amygdala,
t(39) = −1.37, p = 0.178, d = 0.43. In addition the two groups did
not differ in amygdala novelty discrimination for neutral (novel neutral
versus familiar neutral) or positive images (novel positive versus familiar
positive; all ps N 0.05). This specific finding of less novelty discrimination
for negative scenes held when we conducted ANCOVAs controlling for
depressed mood scores; trauma-exposed women compared with no-
trauma controls showed less novelty discrimination in the left amygdala
for novel negative versus familiar negative images, F(2,38) = 8.24, p =
0.007, d = 0.91. The groups did not differ in novelty discrimination for
negative images in the right amygdala, F(2,38) = 0.014, p = 0.905,
d = 0.30), nor for the other functional contrasts (all ps N 0.05).

3.2.2. White matter integrity
Trauma-exposed women had higher fractional anisotropy (FA) in

the PHC bilaterally (right: t(40) = 3.32, p = 0.002, d = 1.04; left:
t(40)= 2.08, p=0.044, d=0.66) (Fig. 2). In addition, trauma-exposed
women had lower mean diffusivity (MD) (t(40) = −2.28, p = 0.028,
d = 0.72) and lower radial diffusivity (RD (t(40) = −2.51, p = 0.016,
d=0.79) in the right PHC compared to controls. The groups did not dif-
fer in the left PHC MD or RD (all ps N 0.05).

There were no group differences in FA, MD, or RD between two
groups in the CGC or the UF (all ps N 0.05), although there was a trend
toward greater left CGC FA (t(40) = 1.87, p = 0.069, d = 0.59) and
RD (t(40) = −1.70, p = 0.055, d = 0.54) in the trauma-exposed
group compared to controls.

3.3. Associations between white matter integrity and novelty discrimina-
tion in the amygdala

We tested the bivariate correlations between white matter tract in-
tegrity and amygdala activation, as well as the partial correlations con-
trolling for depressed mood.
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3.3.1. Trauma-exposed group
In the trauma-exposedwomen (n=22), decreased structural integ-

rity in the CGC was associated with less novelty discrimination in the
amygdala for affective images. Lower FA in the right CGCwas associated
with less discrimination between novel versus familiar neutral images
in the right amygdala, r = 0.447, p = 0.037 (Fig. 3). In addition, lower
FA in the left CGC was associated with less left amygdala novelty dis-
crimination for negative images (r=0.459, p=0.036) and positive im-
ages (r = 0.436, p = 0.043; Fig. 3). Higher RD in the left CGC was also
associated with less left amygdala novelty discrimination for positive
images (r = −0.475, p = 0.025).

Novelty discrimination in the amygdala for affective images was not
associated with structural integrity in the PHC or the UF (all ps N 0.05).
The pattern of results did not differ when we conducted partial correla-
tions with depressed mood scores as covariates.

3.3.2. No-trauma control group
In the no-trauma controls (n=20), decreased structural integrity in

the right UF was associated with less right amygdala novelty discrimi-
nation for negative images, indexed by lower FA (r = 0.487, p =
0.029) and higher MD (r=−0.460, p=0.042) in the right UF. Howev-
er, when controlling for depressed mood, although these associations
were of a medium effect size (FA partial r = 0.313; MD partial
r = −0.313), they were no longer statistically significant (ps N 0.05).

Novelty discrimination in the amygdala for affective images was not
associated with structural integrity in the CGC or the PHC in the control
group (all ps N 0.05).

3.4. Relation between white matter integrity and novelty discrimination
and trauma-related hyperarousal symptoms.

We conducted these analyses within the trauma-exposed group, as
the no-trauma control group did not endorse trauma-related symp-
toms. A greater number of hyperarousal symptoms (i.e., SCID PTSDClus-
ter D count) was associated with less structural integrity in the left CGC
(r=−0.450, p=0.036; Spearman's rho=−0.397, p=n.s. trend). All
other correlations were non-significant (all ps N 0.05). The overall hy-
perarousal (cluster D) count was not associated with novelty discrimi-
nation in the amygdala (largest Spearman's rho was −0.148, so
therefore not even a small effect). Neither total PTSD symptom count
nor individual symptom cluster counts were associated with novelty
discrimination in the amygdala.

4. Discussion

Consistent with prior evidence of persistent trauma-related amyg-
dala hyperactivity, trauma-exposed women showed less habituation
to familiar negative information, defined by less discrimination be-
tween novel and familiar negative information, compared to no-trauma
controls. Further, in trauma-exposed women, less discrimination be-
tween novel and familiar images and a greater number of self-reported
hyperarousal symptoms were associated with decreased structural in-
tegrity in theCGC, but unrelated to PHCorUF integrity. In addition, trau-
ma-exposed people showed greater structural integrity in the PHC
compared to no-trauma controls.

In line with the previous research, our data suggest that the brain's
alert systems in no-trauma controls are effective in encoding familiar
negative information as less threatening or ambiguous. However, the
ability to habituate to threat-relevant information, which would result
in greater discrimination between novel and familiar stimuli, is im-
paired in trauma-exposed people. This indiscriminative amygdala re-
sponse pattern might be a marker of ongoing behavioral
hypervigilance, which can interferewith the ability to focus on goal-ori-
ented information and tasks in everyday life.

Further, by integrating DWI and fMRI data, we tested our hypothesis
that diminished white matter integrity in affect-relevant tracts would
be associated with our index of neural hypervigilance, novelty discrim-
ination. Our data indicate that the anterior portion of the cingulum (i.e.,
CGC)might play a role in anover-alert amygdala response to familiar af-
fective information. The cingulum bundle is among themost frequently
identified white matter tracts showing structural abnormalities in peo-
ple with trauma exposure and trauma-related symptoms (e.g., Daniels
et al., 2013). A significant portion of prefrontal input travels through
the short fibers in the CGC before reaching the limbic brain areas, al-
though some long-range fibers directly connect the prefrontal cortex
and the PHC (e.g., Heilbronner and Haber, 2014). Therefore, decreased
CGC integrity might reflect inefficient communication between the
amygdala and the cognitive control regions, resulting in, or failing to in-
hibit, hypervigilant (i.e., overly alert) amygdala activity. Supporting this
notion, previous fMRI studies have shown decreased activity in the an-
terior part of the cingulate gyrus and the medial prefrontal cortex in
people with trauma-related symptoms (e.g., Hughes and Shin, 2011)
and other stress-related states and disorders (e.g., anxiety) (e.g.,
Bishop et al., 2004).

Less structural integrity of the UF was associated with less amygdala
novelty discrimination for negative images, but only in no-trauma con-
trol participants. This result supports the general hypothesis that great-
er UF integrity would be associated with more adaptive novelty
responses (i.e., supporting a role of the UF in habituation). However,
the absence of this relation in the trauma groupwas counter to our spe-
cific hypotheses. Given the lesser novelty discrimination for negative
images in the trauma group, the absence of a relationship could reflect
a floor effect, as there was less variability to associate with UF integrity.
In addition, if the UF is part of an effective downstreamnovelty discrim-
ination or habituation process, it might be impaired in trauma-exposed
people. To the degree that greater UF integrity represents efficiency in
PFC-limbic communication, although structurally intact, this tract
might not be recruited as efficiently (functionally) by trauma-exposed
brains when viewing affective information.

Although individual variation in novelty discrimination within the
trauma-exposed groupwas associatedwith differences in CGC integrity,
the group difference inwhitematter integrity between trauma-exposed
women and controls was observed in the PHC. Given that group differ-
ences were not observed in the CGC, trauma itself might not alter the
structural integrity of the CGC. Rather, the variations within the CGC
might reflect increased vulnerability to the development of hypervigi-
lance following trauma exposure. Moreover, our data add to the previ-
ous evidence that integrity of distinct parts of the cingulum might be
differentially associated with maladaptive affective processing (e.g.,
Jones et al., 2013a).

The observed greater structural integrity of the PHC in trauma-ex-
posed compared with no trauma-control women differs from several
prior studies showing lesser PHC integrity in trauma-exposed adults
(e.g., Choi et al., 2009; Fani et al., 2014), although it is consistent with
at least one other (Zhang et al., 2012). There are several potential expla-
nations for this result. First, becausewewere interested in trauma expo-
sure rather than PTSD diagnosis per se, our participants all were high-
functioning and represented a range of trauma symptom severity. Our
sample therefore might not be directly comparable to diagnosed PTSD
samples. Second, although the group difference was statistically signifi-
cant, the magnitude of the FA was within the normative range for both
groups. Although clearly further research that takes into account both
symptom severity and developmental stage (i.e., the cingulum con-
tinues to develop into later adulthood) is necessary, it is not unreason-
able that the tract that is implicated in episodic memory might be
more structurally developed based on habitual and intrusive over-re-
trieval of episodic memories post-trauma (e.g., re-experiencing). This
idea is further supported by the literature showing that the inverse of
such episodic memory retrieval strength is observed in the prodrome
to diseases of memory such as Alzheimer's (e.g., Ito et al., 2015).

Further, although the cross-sectional nature of the current study de-
sign does not allow testing of the causal relation between trauma



Fig. 3. In trauma-exposedwomen (n=22), fractional anisotropy (FA) in the cingulate part of cingulum(CGC)was inversely associatedwith less novelty discrimination in the amygdala for
affective information. Dotted lines (blue) indicate 95% CI of best-fit line (solid; red).
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exposure and differences in PHC integrity, growing evidence from cellu-
lar and molecular studies suggests that trauma exposure might aug-
ment the structural integrity of the PHC. One potential mechanism
might be changes in PHCmyelination caused by increased neuronal ac-
tivity in the affective limbic region, asmore frequent electrical impulses
have been shown to facilitate myelination action by nearby oligoden-
drocytes (Ishibashi et al., 2006; Markham and Greenough, 2004;
Wang and Young, 2014). Given that people with trauma exposure
show greater neuronal activity in the parahippocampal region
(Bremner, 1999; Liberzon et al., 1999; Shin et al., 2001), the amygdala
(e.g., Shin et al., 2005), and the posterior cingulate gyrus (Bremner,
1999; Lanius et al., 2001; Shin et al., 2001), trauma exposure might re-
sult in increased myelination of the axons that constitute the PHC.

Another possible explanation for increased PHC integrity in the trau-
ma-exposed group could be related to heightened levels of stress hor-
mones, such as cortisol, following trauma, which in turn also facilitate
oligodendrogenesis. A number of rodent studies have shown that severe
stress promotes the production and differentiation of oligodendrocytes
in the hippocampal region of the adult brain via the actions of cortisol
and glucocorticoid receptors (e.g., Chetty et al., 2014; Matsusue et al.,
2014). Consistent with these data from animal studies, one recent
cross-sectional study in humans showed that post-traumatic stress is
associated with greater hippocampal myelin content (Chao et al.,
2015). However, future prospective studies are necessary to test trauma
exposure as a mediator of changes in PHC myelination and structural
integrity in humans.

The structural integrity of the UF, on the other hand, was not associ-
ated with trauma-exposure or neural hypervigilance to familiar infor-
mation in trauma-exposed women. Although diminished tract
integrity in the UF has been consistently reported in people with de-
pression (e.g., Carballedo et al., 2012; de Kwaasteniet et al., 2013;
Murphy et al., 2012; Steele et al., 2005) and anxiety (e.g., Hanson et
al., 2015; Kim and Whalen, 2009; Tromp et al., 2012), the reports on
the association between trauma exposure and UF integrity have been
mixed (e.g., Costanzo et al., 2016; Fani et al., 2012). Given our data
and previous evidence, the neurological insults from a traumatic expe-
rience (i.e., extreme stress) or the neural processes underlying trau-
ma-related hypervigilance might be more specific to the cingulum
bundle, but less pronounced in the UF.

There are several potential limitations to the current study that
should be addressed in future work. First, our PTSD symptom assess-
ment was a simple symptom count by cluster derived from the Struc-
tured Clinical Interview for DSM (SCID). Such a measure cannot
differentiate between a person who experiences a particular symptom
once per week from a person who experiences that symptom daily. A
more nuanced measure that assesses symptom frequency and severity,
such as the Clinician Administered PTSD Scale (CAPS), will be essential
for a clearer understanding of the relation between behavioral hyper-
vigilance, novelty discrimination as an index of neural hypervigilance
or impaired habituation to affect, and structural integrity of relevant
tracts.

Second, our stimulus set does not permit an independent test of the
role of stimulus arousal level, as the stimuli were intentionally selected
to represent scenes commonly encountered in daily life, which usually
are less extreme on the arousal spectrum. In our view this limitation
to our analyses does not hinder our results, as the phenomenon of inter-
est (hypervigilance, or readiness for threat that does not exist) must be
measured in the absence of threat (e.g., highly arousing information),
rather than as a reaction to clear and present threat. Nonetheless, future
work might test the full range of both the arousal and valence parame-
terswith a goal toward better understandingwhat constitutes threat for
trauma-exposed people.

Third,wedid not assess use of hormonal contraceptives normenstrual
cycle phase, although sex hormones have an influence on affective pro-
cessing as well as trauma-related symptoms. Based on our experience
with recruitment for studies inwhichwe do assess OC use andmenstrual
phase, it is not likely that the distribution of women using OCs in our cur-
rent sample varies by group and therefore would impact group results.
Further, because most of the key analyses involved within subjects con-
trasts (e.g., novel versus familiar), within group effects are likely to have
been minimized. However, assessment of these factors is important for
experimental control and will enhance the precision of future results.

Our results expand upon and integrate prior work by testing the in-
teractions between structural and functional candidate neurobiological
mechanisms of behavioral hypervigilance. In so doing, this work con-
tributes to an integrated neuralmodel of maladaptive affective process-
es in trauma-exposed people. Our results suggest that the anterior
cingulum might play an important role in diminished discrimination
between novel and familiar affective information in the amygdala,
therefore, potentially contributing to tonic and exhausting behavioral
hypervigilance following trauma exposure. Impaired habituation to af-
fective information is a likely mechanism underlying less novelty dis-
crimination (e.g., Wright et al., 2001). Although habituation to the
second presentation of a stimulus is very fast, the literature support
that the amygdala in particular does not respond as robustly on the sec-
ond presentation of affective information (e.g., Balderston et al., 2011).
On the other hand, the second presentation is unlikely to represent
complete habituation, thus future studies might test the trajectory of
habituation to affective images normatively and in trauma exposure.
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