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The growth of digital pathology over the past decade has opened new research pathways and insights in
cancer prediction and prognosis. In particular, there has been a surge in deep learning and computer
vision techniques to analyse digital images. Common practice in this area is to use image pre-
processing and augmentation to prevent bias and overfitting, creating a more robust deep learning
model. This generally requires consultation of documentation for multiple coding libraries, as well as trial
and error to ensure that the techniques used on the images are appropriate. Herein we introduce
HistoClean; a user-friendly, graphical user interface that brings together multiple image processing mod-
ules into one easy to use toolkit.
HistoClean is an application that aims to help bridge the knowledge gap between pathologists, biomed-

ical scientists and computer scientists by providing transparent image augmentation and pre-processing
techniques which can be applied without prior coding knowledge.
In this study, we utilise HistoClean to pre-process images for a simple convolutional neural network

used to detect stromal maturity, improving the accuracy of the model at a tile, region of interest, and
patient level. This study demonstrates how HistoClean can be used to improve a standard deep learning
workflow via classical image augmentation and pre-processing techniques, even with a relatively simple
convolutional neural network architecture. HistoClean is free and open-source and can be downloaded
from the Github repository here: https://github.com/HistoCleanQUB/HistoClean.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The growth of digital image analysis in clinical pathology and
its subsequent case for use in clinical medicine has been sup-
ported by the conception of open-source digital image analysis
(DIA) software [1-3]. Use of machine learning from predeter-
mined features allows for the development of DIA algorithms
within these software environments. This allows bio-image ana-
lysts and consultant histopathologists to answer difficult, specific
research questions in human tissue [4]. The subsequent introduc-
tion of deep learning has revolutionised the development of DIA
algorithms [5]. This has enabled potential solutions to tumour
and biomarker detection, as well as tumour subtyping [6,7]. How-
ever, these solutions require domain-specific knowledge relating
to the deep learning methodology, as well as the awareness of
hardware acceleration [8].
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Consequently, open-source software to aid bio-image analysts
without a background in computer vision to develop deep learning
models have evolved [9,10]. Deep learning methodologies learn
feature representations from the data without requiring prede-
fined feature extraction. The resultant models can therefore be sig-
nificantly more sensitive to dataset specific attributes, such as
irregularities in staining, batch effects and the quality of the digital
slide [11,12]. Use of image pre-processing and augmentation prior
to developing deep learning models can regularise the input
images, thereby, mitigating the potential for bias in the training
of the CNN, or other deep learning models, and its independent val-
idation [13-16]. Among these, the most common techniques
include class-balancing [17], image normalisation [18], and image
augmentation [19]. These techniques often involve the use of mul-
tiple coding libraries, which in turn requires knowledge of the doc-
umentation before implementation. Herein we present HistoClean;
an open-source, high-level, graphical user interface (GUI) for image
pre-processing. HistoClean aims to complement other open-source
software and deep-learning frameworks in the bio-image analysis
ecosystem [9,10,20]. HistoClean’s image pre-processing toolkit is
divided into five functional modules based on computational
methods frequently used in histological image pre-processing;
image patching, whitespace thresholding, dataset balancing, image
normalisation and image augmentation (Fig. 1). These modules can
be used independently or in combination with each other as the
user requires. HistoClean brings together image pre-processing
techniques from across multiple Python libraries. This simplifies
the image preparation phase of deep-learning analysis in a way
that is transparent and maintains data integrity.

The process of developing deep learning models for histopatho-
logical analysis is a combined effort between computer scientists,
biomedical scientists and pathologists. HistoClean aims to help
bridge the knowledge gap between these domains by providing a
point-and-click alternative to computer programming for these
processes. The intended audience of this application are i) Biomed-
ical scientists and pathologists, who can use the tool to evaluate
how image pre-processing might influence visualisation of under-
lying biology. ii) Computer scientists who can apply the appropri-
ate changes in a rapid and reproduceable way, saving the time and
effort of developing coding scripts in the process.

In this study, a practical example of how HistoClean can opti-
mise input images for training a simple CNN to predict stromal
maturity is described (Fig. 2). In evaluating these models, we
demonstrate the benefit of image pre-processing for deep learning,
even in relatively simple CNN architecture, and introduce Histo-
Clean as an open-source software solution to quickly implement
and review these techniques.

The main contribution of this paper is the development of a
novel, easy to use, point-and click application for the rapid pre-
processing and augmentation of image datasets for use in deep
learning, image analysis pipelines.
2. Materials and methods

2.1. HistoClean application development

HistoClean was developed using Anaconda3 and Python 3.8.
Code was written using the PyCharm integrated developer envi-
ronment. The GUI was developed using the Tkinter toolbox
(v8.6). Initial development and testing of the software was per-
formed on an Octane V laptop with an Intel Core i7-9700F
3.0 GHz processor and 32 GB Corsair 2400 MHz SODIMM DDR4
RAM, with a Windows 10 operating system. The application was
converted to a .exe program using the Pyinstaller Python package
[21]. All testing was performed in the Windows 10 operating sys-
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tem. For ease of use it is recommended that images should be
organised within directories corresponding to each image class.
The application runs all processes on the CPU. No GPU is required.
The application makes prominent use of multithreading, which
scales to the number of cores in the CPU. The application has 160
user interaction points, all of which have exception handling for
input characters and data types. The application is designed to
allow the user to have complete control over the techniques
applied. The modules outlined here can be used together or sepa-
rately as the user requires.

2.1.1. User interface design
The HistoClean user interface was created utilising established

simple-design principle, minimising the amount of on-screen text
and interaction points while maintaining functionality [22]. The
interface features a modular, single-window design with a focus
on minimalism and displays clear categorisation of the applica-
tion’s functions [23]. Icons were added to the module selection
buttons to allow for quicker and easier identification of module
functionality [24]. Upon selecting a module, users are walked
through the process using the concept of procedural instruction
[25] with a natural progression from the top of the screen to the
bottom. We enhanced the principles of clarity and comprehensibil-
ity, with reduced focus on aesthetics [26]. The primary colouration
of black on light grey/white was chosen not only for visual clarity,
but for accessibility for colour-blindness. A wayfinding feature has
been implemented into the module selection buttons, which dar-
ken according to which module is active at the time.

HistoClean features extensive error handling which follows the
principles of prevention, correction and recovery [27]. Examples of
how each of these principles is utilised is as follows: HistoClean
will prevent the user from entering non-numeric values if these
are not appropriate. HistoClean will also automatically correct for
one-channel images in the Normalisation module by converting
to RGB beforehand. Finally, throughout the entirety of the program,
user-interaction points that have been accidentally overlooked can
be recovered via the use of feedback tools such as popups and wid-
get highlighting.

HistoClean is designed to be a standalone application. As such,
the application was compiled as an executable file using Pyin-
staller. All dependencies are included at download, with the user
only needing to click on the application to begin.

2.1.2. Image patching module
CNN’s require input image tiles to have consistent dimensions

[28]. For this reason, HistoClean includes an image patching mod-
ule that utilises the Python library Patchify [29]. This module inter-
face allows the user to create image tile subsets from a larger input
image to their specification and provides real-time feedback of the
output to the user, facilitating straightforward evaluation and
adjustment (Fig. 1a). This module can be used for block processing
of n images organised within a common file directory. The user can
select an output destination wherein the directory structure and
naming conventions of the original images will be retained and
populated with the requested image patches. The file names of
these new image tiles are suffixed with their patch co-ordinates
from the original image for reproducibility. Maintaining trans-
parency in the pre-processing stages ensures that results can ulti-
mately be traced back to their source ensuring that HistoClean
does not damage original source data or impede data integrity
and reproducibility.

2.1.3. Tissue thresholding module
Most pathology-orientated CNN’s are developed to address

questions within the tissue, therefore, an excess of whitespace in
the input images may impair model development [30]. In order



Fig. 1. HistoClean (a), an all-in-one toolkit for the pre-processing of images for use in deep learning. Modules include (b) whitespace estimation and filtering, implemented in
the white space removal module, (c) tools for generation of image tiles from larger images, which are executed within the image patching module. (d) Image normalisation,
which standardises the colour grading of the images. (e) Quick balancing, which balances the number of images in different classes by classic image augmentation, and (f)
image pre-processing/ augmentation, which provides further methods to expand an image set, add noise and accentuate image data.
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to address this issue and improve the quality of input image tiles,
HistoClean includes a tissue thresholding module that allows the
user to remove image tiles from their dataset based on a minimum
threshold of approximate tissue coverage. The method outlined in
this paper uses binary thresholding to determine the percentage of
positive pixels, representing tissue, and null pixels, representing
whitespace (Fig. 3). Tissue coverage and relative intensity of the
staining can vary significantly depending on any number of predis-
posing factors. Therefore, HistoClean’s module interface allows the
user, in real time, to explore different thresholds for dichotomising
these pixels into tissue vs whitespace. In addition, adaptive thresh-
olding is available for each image as well as Otsu binarization [31].
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All of these thresholding options come courtesy of the OpenCV
Python library [32]. These processes generate a binary mask for
each image which the GUI presents alongside the original image
for review. Users can view five images simultaneously. Upon
approval of an arbitrary threshold, images are removed or relo-
cated based on user preference.
2.1.4. HistoClean: Class balancing module
Class balancing is essential to prevent class bias of data when

developing deep learning models [33]. For this reason, HistoClean
includes a class balancing module that enables the user to equalise
the number of images per class prior to training of the CNN



Fig. 2. Use of HistoClean in the development of histology based convolutional neural networks. Slides are scanned at high-resolution, normally 20-40x (0.025 mm/px)
magnification and are virtually annotated (as outlined in red) by a pathologist on a digital platform (a). Tiles of equal size are extracted from the virtual annotations (b). These
tiles are independently sorted into training, test and validation datasets at a patient level (c). Image pre-processing and augmentation is conducted on the tiles using
HistoClean where appropriate in the training, test and validation datasets in order to prepare tiles for use in a convolutional neural network (d). Within a typical convolutional
neural network, each tile is fed through a series of convolutional and pooling layers in order to create feature maps to differentiate between the two classes (e). These feature
maps are then fed through several fully connected layers which determine which class the images belong to (f). Each tile is assigned a value used for class prediction; the
prediction values for each tile are then aggregated in order to provide an overall class prediction per patient (g). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Four representative images demonstrating use of the positive pixel classifier method to estimate tissue coverage. All images were given the same cut-off (0.8). The top
row contains the original images, with the bottom row showing the binary mask for tissue (black = tissue, white = whitespace). The bottom row shows the estimated tissue
coverage within the image tile.
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(Fig. 1c). This requires that each class of images be provided in a
separate directory by the user. The user can then decide to balance
using three options: reducing the number of image tiles in each
class to the smallest class, increasing the number of image tiles
in each class based on the largest class, or balance the number of
images in each class based on the average number of images in
each class. The pre-requisite for using this functionality is that no
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class contains less than one eighth of the samples of the largest
class. This pre-condition is reinforced through exception handling.
This is to prevent duplicate images arising from repeated augmen-
tations. If the user balances the samples through class reduction,
the image tiles in the larger class-specific dataset are then relo-
cated to a new directory, denoted as ‘Removed Images’, or are per-
manently deleted based on user preference. If class-size is balanced
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by the addition of image tiles, then a random assortment of image
tiles equal to the difference between the largest class-specific
image dataset are selected without replacement from within the
smaller dataset(s). The random selections of image tiles are then
augmented thus balancing the number of image tiles in that class
by addition of ‘new’ image data. Image augmentation techniques
are randomly selected from mirroring, clockwise rotation at 90�,
180� or 270�, or a combination of mirroring and a single rotation.
This can create up to 7 unique images from a single image as
required. A random number generator, seeded to the date and time
of dataset balancing, determines the augmentation applied.

2.1.5. Image normalisation module
Histological images possess unique image colour, contrasts, and

brightness profiles. Batch effects in staining (Fig. 4a) can signifi-
cantly influence model performance [13]. Image normalisation
can be used to bring uniformity to the images in the dataset by
adjusting the range of pixel values of an input image, according
to that of a target image [18]. For this reason, HistoClean includes
an image normalisation module based on histogram matching
from the Python library scikit-image [34]. Histogram matching
works by comparing the cumulative histogram of pixel intensities
from a target and an input image, before adjusting the pixel values
of the input image according to the target image [35] (Fig. 4b). His-
toClean’s module interface allows the user to select a target image
to normalise to and to review examples of the histogram-matched
images before committing to image normalisation to n images
organised within a folder. This gives the user complete control over
the normalisation process. These can be either be for tiles for a sin-
gular slide or a cohort of slides. These are saved to a separate user-
defined folder, or can replace the original images at the user’s dis-
cretion. If saved in a separate folder, the directory structure of the
original is replicated.

2.1.6. Image augmentation and Pre-processing module
It is not always possible to source large collections of histolog-

ical images in the pursuit of developing deep learning models [36].
Image augmentation is a technique which that can be used for the
artificial expansion of image datasets to provide more training
examples. In addition, image pre-processing can be used to
enhance features already present in an image dataset in order to
provide more specific features for the CNN training [37]. By provid-
ing deep learning models with augmented data, the user can
reduce the risk of overfitting and improve the generalisation ability
of the CNN [36]. For this reason, HistoClean includes an image
augmentation/pre-processing module based on the Python library
Imgaug [38]. This allows the user to select, review and apply the
most popular image augmentation techniques used in the develop-
ment of CNNs to their image dataset in real-time (Fig. 1e). These
include adjusting the colour range, contrast, blur and sharpness,
noise, pixel and channel dropout and more.

There are over 50 pre-processing options available that can be
used individually or in combination. Generated images files from
augmentation are identifiable by their name, which incorporates
the name of the root file from which the image derived so as to
maintain data integrity. If a new image set is created, the directory
structure is replicated from the original.

2.2. Patient samples

Ethical approval and access to diagnostic H&E stained slides
from a retrospective cohort of oropharyngeal squamous cell
carcinomas (OPSCC) for stromal maturity prediction by artificial
intelligence was granted via the Northern Ireland Biobank (OREC
16/NI/0030; NIB19/0312) [39]. Briefly, patients with a primary
oropharyngeal cancer diagnosed between 2000 and 2011 were
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identified and their diagnostic H&E retrieved from the Belfast
Health and Social Care Trust courtesy of the Northern Ireland Bio-
bank. All slides were digitised using a Leica Aperio AT2 at 40x mag-
nification (0.25 lm / pixel). Virtual slides were saved in a .svs file
format and imported into the open-source image analysis tool
QuPath (v0.1.2) [1] to enable image annotation by a qualified
histopathologist.

2.3. Classification of stromal maturity

Using DIA software QuPath (v0.1.2), a trained pathologist
reviewed all the diagnostic H&E slides from each case before iden-
tifying and annotating ROIs for classification of stromal maturity
on the slide that most represented malignant OPSCC. QuPath was
used due to the presence of the built-in tools available for the
annotation of the ROIs. Classification of mature stroma was defined
by the presence of fine, regular, elongated collagen fibres organised
with approximately parallel orientation. Conversely, immature
stroma was defined by disorganised, random orientation of colla-
gen fibres with and without the presence of oedema and
myxoid-like degeneration [40,41]. Stroma maturity was deter-
mined as being either mature or immature for each ROI by visual
review. This was conducted by the pathologist, along with two
other blinded independent assessors based on previously pub-
lished criteria [40,41]. Stromal maturity is a prognostic factor in
cancer, with immature stoma associated tumour patients exhibit-
ing significantly worse survival. The exact mechanisms behind
why this is the case are not fully understood, but theories have
emerged citing stromal gene expression and the influence the
desmoplastic reaction has epithelial to mesenchymal transition
[42,43]. Representative images of mature and immature stroma
were created and used as reference criteria for all assessors prior
to classification (Fig. 5).

2.4. Image set preparation

Image tiles of size 250X250 pixels at x40 (0.025 mm/pixel) mag-
nification were extracted from the ROIs, that had been previously
annotated in QuPath by the pathologist, using the built-in scripting
functions. These dimensions and resolution were chosen to be
large enough to allow the images to capture the intricacies of the
stromal structure, but small enough to reduce computational
expense and allow for larger training batch sizes. Tiles were organ-
ised in separate directories for mature and immature stroma as
determined by manual assessment. These were further grouped
into directories representing each patient. Images were divided
at a patient level into three sets. First, the training set, which con-
sisted of 70% of the patients was used to train the CNNs. Second,
the test set, which consisted of 15% of the patients was used to
evaluate model performance during training. Lastly, the indepen-
dent validation set consisting of the remaining 15% of patients. This
did not influence the training of the model and was instead used to
evaluate model performance. This produced the baseline ‘‘Unbal-
anced” image set. Images were organised in this way to account
for intra-patient heterogeneity of stromal maturity. An entire
heterogenous patient existed within the training, test or indepen-
dent validation set and was not split among the three. This is to
prevent the CNN from ‘‘recognising” patients between the three
sets.

2.5. Image pre-processing using HistoClean

In order to demonstrate the benefit of image pre-processing for
the development of robust CNN’s, seven independent image data-
sets were produced from the baseline image set. These utilised a



Fig. 4. Image normalisation in histological images. Batch effects in haematoxylin and eosin staining and different staining protocols often leads to an inconsistent colour
range in histological images as demonstrated by images taken from the TCGA head and neck diagnostic dataset (a). Demonstration of histogram normalisation to correct for
the inconsistent colour range between samples while preserving histological architecture (b). The top row shows a selection of original un-normalised tiles, the middle row
shows the target image and preferred colour range being normalised to and the bottom row shows the result of that normalisation.

Fig. 5. Reference images for mature (top row) and immature (bottom row) stroma randomly selected from the dataset. Images taken at 40x magnification and used as
reference criteria during the manual classification of stromal maturity by the independent assessors in the study.

Table 1
Summary table of HistoClean modules used in each dataset. Columns denoted with an
‘‘X” show which modules were used.

Dataset Balancing Normalisation Augmentation

Unbalanced
Unbalanced Normalised X
Unbalanced Embossed X
Unbalanced Normalised X X
Embossed
Balanced X
Balanced Normalised X X
Balanced Embossed X X
Balanced Normalised

Embossed
X X X
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combination of class balancing, image normalisation and pre-
processing (Table 1).

Class balancing augmented the smaller image class to provide
the same number of images as the larger class. This option was
chosen as reducing the larger class down, would have resulted in
a lesser volume of images for training, harming model accuracy.
Balancing the classes was done with the aim of reducing training
bias towards a single class. Image pre-processing was limited to
embossing of the images (Intensity = 2, Alpha = 1) (Fig. 6). Emboss-
ing was chosen with the aim of accentuating the differences in the
features between mature and immature stroma outlined in Sec-
tion 2.3. The same target image was used in all normalised sets.
Normalisation was done with the aim of removing any potential
colour bias in the model. In particular, the histogram matching
technique was chosen here as it offered less computational over-
heads than other more advanced stain normalisation methods such
as the Reinhard [44] and Macenko [45] methods, with the under-
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standing that this may cause image artefacts [18]. All image
manipulation was conducted prior to input in the CNN. The pro-
cesses for creating all these image sets were timed. Augmentations



Fig. 6. Demonstration of embossing on mature and immature tiles. The top row consists of the original images and the bottom row shows the effects of embossing.
Embossing accentuates the difference between the two stroma maturities.
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were applied across the training, test and independent validation
sets, with the exception of balancing, which was done across train-
ing and test sets only. HistoClean offers the ability to save to any
servers connected to the computer operating system. As such these
separate image sets were saved to a local server
2.6. CNN design

The CNNs used in these experiments were designed using
PyTorch [46]. A core CNN architecture was established and trained
independently on each of the 8 datasets from scratch. This network
consists of five convolutional layers interlinked with five pooling
layers (Fig. 7). The output of the final pooling layer is then flattened
and fed into two fully connected layers wherein stromal maturity
is predicted using the softmax function in the final layer. The
Fig. 7. Workflow and architecture for the in-house convolutional neural network (CNN
tumour body (a). Image tiles of size 250x250 pixels were extracted from within strom
memory, and fed into a CNN consisting of five convolutional layers interlinked with five
within the five convolutional layers interlinked with five pooling layers of the CNN use
connected layers wherein stromal maturity is predicted using the softmax function in th
map dimensions were calculated.

4846
CNN architecture was kept relatively simple to reduce computa-
tional cost and training times, as well as highlight the impact of
image pre-processing using HistoClean. Training was carried out
for 200 epochs, with a batch size of 150. Adam Optimisation was
used with a learning rate of 1e-6. Test batch size was set to 150
images. The outcome of the softmax function in the CNN produced
a probability for each input image ranging from 0 (predicted
mature) to 1 (predicted immature). Stromal maturity of the input
images was classified as immature if the stromal maturity proba-
bility was greater or equal to 0.5, otherwise it was considered
mature. After training on every fifth batch, the neural network cal-
culated the accuracy and loss on a randomly selected test batch. If
the test accuracy was greater than or equal to 65%, the weights and
biases of the model were saved for further model evaluation. The
weights and biases of the top 10 test batch accuracies were applied
) used in the study. Regions of interest (ROI) are annotated and extracted from the
a annotations within each ROI (b). Tiles were converted to greyscale to conserve
pooling layers (c). A graphical representation of how these tiles are then processed
d in this study (d);the output of which is flattened before being fed into two fully
e final layer (e). (Avg = Average, Max = Maximum) Equations in grey show how feature
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to the entire test set to get an improved evaluation of in-model
performance. Only the model weights and biases that provided
the top test accuracy were carried forward. These were then loaded
to the CNN and applied to the independent validation image set.
Stromal maturity probabilities at a ROI level were produced by
majority voting of individual tile classifications. In patients with
heterogeneous ROI classification of stromal maturity, majority vot-
ing of the ROIs was used to determine classification at a patient
level. This was done to remain comparable with manual assess-
ment. If the number of predicted stromal immature and mature
ROI’s was equal the patient was considered to have mature stroma
overall. To enable comparison of how different input images
affected training of the CNN, batch size, learning rate, loss function
and optimiser were all kept constant through all experiments. Full
code for the CNN can be found at: (https://github.com/HistoClean-
QUB/HistoClean)
2.7. Statistical analysis

The pathologist stromal maturity scores were used as the
ground truth for development of the CNN. Model evaluation was
conducted against the ground truth (pathologist scores) for the
best-saved weights and bias in each of the image data sets at an
individual tile, ROI and patient level. Confusion matrices were cal-
culated to help determine the model’s precision, recall and F1-
scores. Receiver-Operator Characteristic (ROC) curves were gener-
ated for assessment of the area under the curve (AUC) using the
Scikit-learn library [34] in Python 3.8 at a tile and ROI level. Due
to the heterogenous nature of some of the patients and methods
of aggregation to predict outcome, ROC curves were not generated
at this level.

Comparability between the best CNN model and the manual
evaluation method was also assessed. Sensitivity, specificity, accu-
racy and their 95% confidence intervals were also calculated in the
two additional independent manual stromal maturity classifica-
tions. For the purpose of this analysis, the model was considered
a fourth evaluator. Inter-evaluator concordance was conducted
using Fleiss’ Kappa. All bio-statistical analyses were performed
using R v3.6.1 [47].
Fig. 8. Histograms Showing breakdown of the image dataset for image tiles (A), ROIs (
balanced at a tile level. NB The patient counts treat stromal heterogenous cases as both a
are denoted in the parenthesis in (c).
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3. Results

3.1. Patient images

Classification of stromal maturity in digitally annotated ROI’s
was conducted on H&E stained slides for 197 patients with OPSCC.
From these patients, 636 ROIs were annotated and evaluated man-
ually. In total, 9.91% (63/636) ROIs had insufficient stroma to pro-
duce tiles, resulting in 4.06% (8/197) patients being excluded from
further analysis in the study. Of the remaining patients, 33.86%
(64/189) were found to have immature stroma in all ROIs assessed
and 45.50% (86/189) patients were found to have mature stroma
present in all ROIs assessed. Classification of stromal maturity
across ROIs was heterogeneous in 20.64% (39/189) of patients
assessed. There were 29 heterogenous patients in the training
group, 4 in the test group and 6 in the independent validation
group (Fig. 8). A complete breakdown of tiles, ROIs and patients
can be found in Supplementary Figure 1.
3.2. Image set times

The time taken to perform each of the adjustments outlined in
Table 1 were recorded for each image set. HistoClean balanced the
baseline training data in 3.34 s with a difference of 2601 images
translating to a rate of 778.74 images per second. Normalisation
of all 15,148 images in unbalanced training data took 62.49 s
equating to a rate of 242.40 images per second. Embossing the
unbalanced data took 33.73 s, a rate of 449.10 images per second.

The use of multithreading allowed for the processing of the
images in a rapid timeframe. As mentioned previously, the number
of threads used scales with the CPU cores, allowing the user to
carry out other tasks while HistoClean produces the new images.
3.3. Evaluation of image data sets in robust CNN development

The CNN was trained eight separate times from scratch using
the eight separate image sets summarised in Table 1. Use of image
pre-processing techniques were found to consistently improve
upon model performance when compared to the baseline ‘‘unbal-
B) and at patient level (C) before and after dataset balancing. Datasets were only
mature an immature patient in these figures. The number of heterogenous patients

https://github.com/HistoCleanQUB/HistoClean
https://github.com/HistoCleanQUB/HistoClean
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anced” dataset across all levels of prediction assessed; from prob-
ability of individual image tiles to aggregation of probability at the
patient level (Table 2). Image pre-processing conducted in the
Balanced Embossed set provided the best overall accuracy at a tile,
ROI and Patient level (0.774, 0.835 and 0.857 respectively) as well
as a superior f1-score (0.820, 0.844 and 0.846 respectively). From
these results, the balanced embossed set was determined to be
the best preforming image set overall. In addition, the Balanced
Embossed image set provided the best area under curve (AUC)
scores (0.839 and 0.963 at a tile and patch level; Fig. 9).

The ability to predict stromal maturity using the CNN trained on
the balanced embossed images was developed using the ground
truth for stromal maturity in that ROI as provided by a single
pathologist. Therefore, the sensitivity and specificity of manual
classification of stromal maturity by two independent assessors
to predict the pathologist scores was conducted and compared to
results from balanced embossed image trained CNN in order to
determine how reproducible the original pathologist scores were.
Both independent manual assessors and the balanced embossed
image set trained CNN demonstrated comparable sensitivity
(100%; 95% CI, 77%–100%, for Assessor 1; 93%; 95% CI, 68%–100%,
for Assessor 2 and 80%; 95% CI, 52%–96%, for the CNN) and speci-
ficity (86%; 95% CI, 57%–98%, for Assessor 1; 100%; 95% CI, 75%–
100%, for Assessor 2 and 85%; 95% CI, 55%–98%, for the CNN) when
classifying patients with having immature stroma based on the
original pathologist scores. Moreover, the Fleiss’ Kappa score
demonstrated good concordance between all three manual asses-
sors and the CNN(j = 0.785, p < 0.0001). A review of misclassifica-
tion by the balanced embossed image set trained CNN found
misclassification occurred most often when a small number of tiles
were available for stromal classification in that patient (Fig. 10a).
Misclassification by this model was found at a tile level whenever
the image augmentation enhanced the presence of whitespace in
immature stroma tiles resulting in misclassification of mature
stroma in the embossed image (Fig. 10b). In one patient, no tiles
were able to be extracted from 3 of the 5 ROIs, resulting in an
inversion of stromal maturity prediction that was subsequently
incorrect.
Table 2
Breakdown of model evaluation for each image set. Highlighted in bold are the best resul

Image Set Level True
Mature
(TN)

False
Immature
(FP)

True
Immature
(TP)

False
Matu
(FN)

Unbalanced Tile 961 78 746 1182
ROI 41 4 12 28
Patient 14 1 3 10

Unbalanced
Embossed

Tile 733 306 1281 647
ROI 29 16 34 6
Patient 10 5 10 3

Unbalanced
Normalised

Tile 817 222 1314 614
ROI 34 11 35 5
Patient 11 4 11 2

Unbalanced
Normalised
Embossed

Tile 772 267 1316 612
ROI 33 12 37 3
Patient 12 3 11 2

Balanced Tile 847 192 1216 712
ROI 37 8 30 10
Patient 14 1 9 4

Balanced Embossed Tile 764 275 1532 396
ROI 33 12 38 2
Patient 13 2 11 2

Balanced Normalised Tile 742 297 1422 506
ROI 32 13 36 4
Patient 11 4 11 2

Balanced Normalised
Embossed

Tile 623 416 1590 338
ROI 27 18 39 1
Patient 9 6 13 0
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4. Discussion

As technology advances, so too does the demand for computa-
tional, high-throughput, cost-effective diagnostic tools for use in
clinical medicine. This is particularly true in the field of clinical
pathology that traditionally has utilised fewer technological aids
in spite of a depleting workforce [48,49]. Digital pathology,
involves the acquisition and review of ultra-high-resolution whole
slide images using a computer monitor in place of a microscope
[50]. Digitisation of histological slides benefits from remote access
for diagnostic reporting, providing a quick and easy means of
recourse for diagnoses of complex pathology though ease of shar-
ing virtual slides to consultant histopathologists with sub-
specialist interest [48]. In addition, slide digitisation permits the
use of digital image analysis tools to quantify histological features
objectively using AI, as seen in radiomics [52]. At present, use of
digital image analysis algorithms by consultant histopathologists
is limited due to lack of modernisation in clinical pathology within
the National Health Service, UK [51]. However, many consultant
histopathologists recognise the benefit digital image analysis
methodology could provide in streamlining the decision making
process [53].

In contrast to other medical and non-medical disciplines that
have implemented AI-assisted DIA, there is a scarcity of appropri-
ate pathological images for developing deep learning models in
clinical pathology [54]. This is in part due to the relatively recent
move towards digitisation of pathology services, but more often
due to lack of pathological material regarding the question of inter-
est. Histological images are data rich and demonstrate significant
heterogeneity across and within disease pathologies [55]. There-
fore, the number of images required for effective deep learning is
that of many orders of magnitude greater than that those required
when developing models using more classical machine learning
methods. Depending on the model being developed, this may
require image datasets to be sourced at a global scale. Conse-
quently, this introduces image variability and potential bias into
CNN learning through differences in laboratory practice, scanning
procedures or age of the sample being scanned [56]. This can have
ts for each category.

re
Precision Recall F1

Score
Total
Correct

Total
Incorrect

ROC
AUC

Overall
Accuracy

0.905 0.387 0.542 1707 1260 0.791 0.575
0.75 0.3 0.429 53 32 0.636 0.624
0.75 0.231 0.353 17 11 NA 0.607
0.807 0.664 0.729 2014 953 0.757 0.679
0.68 0.85 0.756 63 22 0.882 0.741
0.667 0.769 0.714 20 8 NA 0.714
0.855 0.682 0.759 2131 836 0.811 0.718
0.761 0.875 0.814 69 16 0.884 0.812
0.786 0.769 0.777 20 8 NA 0.714
0.831 0.683 0.75 2088 879 0.782 0.704
0.755 0.925 0.831 70 15 0.886 0.824
0.786 0.846 0.815 23 5 NA 0.821
0.864 0.631 0.729 2063 904 0.811 0.695
0.789 0.75 0.769 67 18 0.86 0.788
0.9 0.692 0.783 24 5 NA 0.828
0.848 0.795 0.82 2296 671 0.839 0.774
0.76 0.95 0.844 71 14 0.963 0.835
0.846 0.846 0.846 24 4 NA 0.857
0.827 0.738 0.78 2164 803 0.798 0.729
0.735 0.9 0.809 68 17 0.897 0.8
0.733 0.846 0.786 22 6 NA 0.786
0.793 0.825 0.808 2213 754 0.788 0.746
0.684 0.975 0.804 66 19 0.932 0.776
0.684 1 0.813 22 6 NA 0.786



Fig. 9. ROC Curve comparison of the different image datasets evaluated for CNN model accuracy within the image tiles (a) and ROIs (b). A combination of embossing and
balancing the image sets provided the best overall area under curve (AUC) at a tile and ROI level.

Fig. 10. Representative examples of misclassified DS6 CNN stromal maturity prediction. Some patients in the cohort had limited stroma present, meaning very few tiles
representative of overall patient’s stromal maturity could be extracted resulting in misclassification at a stromal independent patient level (a). Whilst at the tile level, image
augmentation using the emboss technique was found to enhance linear structures surrounding oedema resulting in the embossed image possessing features associated with
mature stroma resulting in misclassification of the tile (b).
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a pronounced effect on model learning and validation, particularly
in small cohort studies, as each histological image possess unique
image colour, contrasts and brightness profiles. The inter-
laboratory variation limits the efficacy of developed models from
small cohort students to be used in practice. CNNs have already
shown promise in several cancer types and in several different
use cases. One study by Khosravi et al. evaluated both in-house
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and the current top pretrained models’ efficacy across numerous
cancer types and in several different tasks [57]. Many of these
models achieved > 90% accuracy in the categories of tumour detec-
tion, biomarker detection and tumour subtyping in bladder, breast
and lung cancers. Another study demonstrated the use of several
pretrained neural networks to identify different growth patterns
in lung adenocarcinoma, achieving accuracies up to 85% [6].
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In this study, we demonstrate the power of image pre-
processing and augmentation and present a novel open-source
GUI called HistoClean. Using a relatively simple CNN architecture,
we clearly establish how use of image pre-processing techniques
improves upon model generalisability for prediction of stromal
maturity in an independent validation dataset. Further, we show
that the best developed model, the balanced embossed model,
had similar concordance, sensitivity and specificity to two further
independent assessors of stromal maturity by manual review.
However, we also show that poor choice of image pre-processing
and augmentation techniques can introduce bias and noise. The
use of image augmentation for dataset balancing helped to
increase the small number of immature samples present for model
development whilst image pre-processing through embossing
helped to accentuate the features of interest we wanted the model
to train with. Therefore, to ensure successful model development,
consideration of which techniques to implement should reflect
the specific research question being asked. HistoClean offers a sim-
ple point-and-click GUI that allows users without a coding back-
ground to rapidly augment and pre-process images, utilising live
feedback to evaluate these changes. This also aids computer scien-
tists by removing the process of writing, running and re-running
scripts. The minimalistic user interface, combined with the pro-
vided procedural instruction, creates an implicit user-friendly
experience [22,23,25].

When trying to improve the accuracy of a CNN, often develop-
mental time is spent refining the neural network and the network’s
hyperparameters, or using deeper networks. However, it is argu-
ably just as, if not more important to focus on the quality of the
images used in training the network; a sentiment captured by
the expression ‘‘rubbish in = rubbish out”. This study illustrates
how crucial it is to balance the number of input images across
the classes to prevent model overfitting. This initial step signifi-
cantly improved both overall accuracy and AUC at the tile, patch
and ROI level. The strength of this action is also clearly demon-
strated by the change in false mature and false immature rates
when comparing the balanced dataset to the unbalanced dataset.
This is evidenced in the increases in f1-value at tile ROI and patient
level (0.187, 0.340 and 0.443 respectively, Table 2). In parallel to
this, embossing alone also demonstrated increases in accuracy
and AUC across all levels, as well as lessening the effect of a mature
dominant training set (Table 2). A synergistic improvement
occurred when the dataset was both balanced and embossed,
achieving an accuracy of 0.774 at a tile level. These improvements
are in line with several other studies that use different augmenta-
tion techniques [58-60]. Importantly, HistoClean allowed the bio-
image analyst to review the output of the image processing steps
being applied within the software before proceeding to model
development, providing opportunity for discussion of how particu-
lar image augmentations may enhance qualitative features the
pathologist used to define stromal maturity in the image.

The CNN used in this study is relatively simple. This case-study
demonstrates that high quality input data for training through the
use of both pre-processing and augmentation techniques can
improve classification accuracy with simple model architecture.
Future studies utilising these same image augmentation and pre-
processing techniques for more advanced deep learning models
such as VGG [61], AlexNet [62]and ResNet [63] architectures would
be of interest. The positive impact of these techniques may be less
pronounced in these models due to the higher complexity of the
models. However, this would be at a much greater computational
cost and training times, as well as requiring more high-powered
computer hardware that creates a barrier to entry for deep
learning.

While HistoClean has proven to be a useful tool in this study,
there are improvements which can be made. At this current time,
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HistoClean uses the CPU only to process images, which may some-
what limit the operation speed of the application. The tasks carried
out here could well benefit from GPU integration in future releases.
It is also important to note that HistoClean has to date only been
tested utilising H&E-stained images and further development is
required for immunohistochemistry-based applications. In addi-
tion, an application like this may benefit from direct integration
into Python and PyTorch, so the addition of a function to export
the augmentations as a Python script may be valuable and improve
reproducibility. However, in its current state HistoClean can still
help inform the augmentation techniques used at runtime. Future
versions of HistoClean could be developed to create runtime-based
image augmentation scripts in conjunction with data loaders,
avoiding the requirement of saving the newly created images
directly to disc. Finally, at present, the user is required to have
already produced the tiles from the whole slide images before
using HistoClean. The application would benefit from the introduc-
tion of a slide viewer and annotation tool for ROI-specific tile
extraction to truly be an all-in-one toolbox. The version of the
Image Patching module in this study only accepts .png and .jpg
files, and would avail from compatibility with proprietary whole
slide image formats such as .svs and .ndpi files, which could be
introduced in future versions through the OpenSlide library [2].
Furthermore, the ability to explicitly select the output magnifica-
tion of the tiles from these images directly from HistoClean would
be desirable. The open-source nature of this software provides the
possibility for community driven growth and development. This, in
combination with continued support of the creators, will allow
HistoClean to continue to grow and add more complex techniques
in the future.

In this study, we also demonstrate that inappropriate augmen-
tations can harm deep learning model development. This is evi-
denced by the reduction in accuracy between the Balanced
Embossed and Balanced Normalised Embossed image sets, with a
particular shift towards immature prediction as reflected in the
increase in recall and decrease in precision at all levels. Upon
examination of the patients in which this phenomenon had the
greatest effect, it was clear that image normalisation, while cor-
recting any colour imbalance, often created artefactual whitespace
(Fig. 11c). This was further highlighted by the embossing, (Fig. 11d)
causing the mature tiles to lose the dense parallel stromal fibres
and adopt a more immature phenotype. This also raises the ques-
tion of whether the improvements between the unbalanced and
unbalanced normalised image sets are genuine or an artificial cor-
rection in the majority mature training data. It could be hypothe-
sised that an immature skewed training set could suffer from
further negative bias using this technique. Situations like this rein-
force HistoClean as a useful tool for image pre-processing. A
trained pathologist would be able to preview these changes and
identify flaws in the pre-processing steps to avoid them. Further-
more, the traceability and data integrity provided by the applica-
tion allows for easy comparison of the images.

While the findings of this work give reason to be optimistic,
there are still barriers to overcome before these tools are utilised
in a clinical setting. With the common complaints of job losses
and disconnect from the patient [64] aside, there can also be a lack
of explainability and interpretability of the outcomes of neural net-
works; known as ‘‘Black Box” Deep learning [65]. This has led to a
debate on how important it is to explain diagnostic outcome even
if the accuracy is high [66]. However, this is comparable to the
many commonly used drugs where we still lack a complete under-
standing of their mechanism of action [67]. There have been great
efforts made to help uncover the logic behind image classification
in deep learning models. These include the generation of saliency
maps based on the generated gradients and loss [68], gradient-
weighted class activation mapping [69], and minimal explainabil-



Fig. 11. Example ground truth mature ROI. The original image (a) was embossed (b) and in the balanced embossed image set was predicted mature. Normalisation of the
image created artefactual whitespace (c) which was then exacerbated by the embossing (d), flipping the prediction to an immature phenotype.
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ity maps ([70]). These techniques highlight areas of interest on the
original images, providing some insight into which features are
contributing to the classification. As techniques like this continue
to improve, the concerns around the blind nature of deep learning
should be alleviated.
5. Conclusions

This study confirms that use of image pre-processing and aug-
mentation techniques available in HistoClean can advance the field
of deep learning by facilitating arguably the most important step
CNN-centric experiments; image set preparation. However, there
is a lack of easy to use open-source GUI software to facilitate this
process, and therefore this often requires knowledge of computer
programming. This study demonstrates the usefulness of Histo-
Clean as an open-source software to implement image pre-
processing techniques in image research, saving time and improv-
ing transparency and data integrity. HistoClean provides a rapid,
robust and reproducible means of implementing these techniques
in a way that can be used by experts, such as pathologists, to help
identify which techniques could potentially be of use in their
study, without the need for an inherent knowledge of coding. His-
toClean also saves the user the effort of running and re-running
scripts to assess how the pre-processing techniques may be affect-
ing the underlying biology in the image. This in turn empowers the
researchers by allowing them to better make judgements on the
optimal techniques to apply for their work. The application has
been designed around the concept of minimalism and procedural
instruction to create an inherently user-friendly experience. The
open-source nature of HistoClean allows for the continuous devel-
opment of the application as more advanced augmentation and
pre-processing techniques are identified and requested.
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