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COL10A1™ fibroblasts promote colorectal @
cancer metastasis and M2 macrophage
polarization with pan-cancer relevance
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Abstract

Background Colorectal cancer (CRC) is a common gastrointestinal cancer with poor response to therapy and high
metastatic risk. Cancer-associated fibroblasts (CAFs) support tumor progression, but their functional heterogeneity
remains poorly understood.

Methods We integrated multi-omics data from 10,164 samples, including single-cell, bulk, spatial transcriptomics,
and proteomics, to identify and characterize CAF subpopulations. Functional validation was performed using
molecular assays, in vivo models, and drug screening.

Results We identified a COL10A1-positive fibroblast subpopulation (COL10A1*Fib) associated with CRC progression
and poor patient prognosis. COL10A1*Fib promotes tumor cell proliferation, immune suppression, and metastasis.
Mechanistically, COL10A1*Fib facilitates epithelial-mesenchymal transition (EMT) in CRC cells via COL10A1 secretion
and induces M2 macrophage polarization through the COL10A1/CD18/JAK1/STAT3 signaling axis. In turn, M2
macrophages enhance COL10AT expression in fibroblasts via the TGF-B/RUNX2 pathway, forming a pro-tumorigenic
feedback loop. The DNA-PKcs inhibitor NU7441 reduces COLT0A1 expression, suppresses CAF activity, and reverses
EMT and M2 polarization. Pan-cancer analysis suggests that COL10A1*Fib may have similar functional roles across
multiple major solid tumors.

Conclusion Our study identifies a CAF subpopulation, COLT0A1*Fib, associated with CRC progression and immune
suppression, suggesting it as a potential therapeutic target in CRC and possibly other malignancies.
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Introduction

Colorectal cancer (CRC) is among the most prevalent
malignancies worldwide and remains a leading cause of
cancer-related morbidity and mortality [1]. Despite con-
tinuous advances in diagnosis and treatment, the long-
term survival of CRC patients remains limited due to
late-stage metastasis and immune evasion [2, 3]. Given
the incomplete understanding of CRC progression mech-
anisms, identifying key drivers within the tumor micro-
environment (TME), especially those originating from
non-cancerous stromal components, has become a criti-
cal focus of translational CRC research.

Within the complex TME, cancer-associated fibro-
blasts (CAFs) represent the dominant stromal cell pop-
ulation of non-tumor origin and are deeply involved in
cancer initiation, progression, invasion, and immune
regulation [4, 5]. Through the secretion of cytokines,
extracellular matrix (ECM) proteins, and signaling mol-
ecules, CAFs contribute to microenvironment remod-
eling, immune evasion, and angiogenesis, thereby
promoting tumor growth and metastasis [6]. Advances in
single-cell and spatial transcriptomic technologies have
revealed that CAFs are not a uniform population but
instead comprise multiple functionally heterogeneous
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subtypes, including myCAEF, iCAF, and apCAF, with dis-
tinct spatial distributions and context-dependent roles
across cancer types and stages [7, 8]. While substantial
progress has been made in characterizing CAF subsets
in breast and pancreatic cancers, a systematic classifica-
tion and mechanistic understanding of CAF subtypes in
CRC remains lacking [9, 10]. Deciphering the functional
heterogeneity of CAFs in CRC is essential for identifying
their pathogenic contributions and potential therapeutic
vulnerabilities.

Collagen type X alpha-1 (COL10A1) is a short-chain
fibrillar collagen originally identified in hypertrophic
chondrocytes and classically associated with carti-
lage maturation and skeletal development [11]. Recent
multi-omics studies have shown aberrant upregulation
of COL10A1 in the tumor stroma of breast, pancreatic,
and gastric cancers, where it correlates with lymph node
metastasis, hematogenous spread, and poor prognosis
[12, 13]. Functionally, COL10A1l contributes to ECM
remodeling and can interact with proteins such as prolyl
4-hydroxylase subunit beta (P4HB) and integrin subunit
beta 1 (ITGB1) to facilitate tumor cell proliferation and
metastasis [14, 15]. However, the precise origin, cellular
sources, and mechanistic role of COL10A1 within the
CRC TME remain unclear, as does its regulatory network
and druggability.

In this study, we integrated multi-omics data (bulk
RNA-seq, single-cell, spatial transcriptomics, and pro-
teomics) with in vitro and in vivo experiments to identify
and characterize the COL10A1" fibroblast subpopulation
(COL10A1"Fib) in CRC. We observed that COL10A1*Fib
is associated with tumor metastasis and the promotion
of an immunosuppressive microenvironment. Addition-
ally, we identified NU7441 as a small-molecule inhibitor
that attenuates COL10A1°Fib activity and its tumor-
promoting effects. Pan-cancer analyses suggest that
COL10A1"Fib is enriched in several solid tumors, high-
lighting its potential as a therapeutic target. Our findings
contribute to understanding CAF heterogeneity and pro-
vide potential avenues for the development of anti-stro-
mal strategies in cancer therapy.

Materials and methods

CRC specimens and data collection

A total of 35 paired tumor and adjacent non-tumor tis-
sue samples were collected from CRC patients at the
First Affiliated Hospital of Nanjing Medical University
(clinical details provided in Supplementary Table 1). All
human tissue sample collection and usage procedures
were approved by the Ethics Committee of the First Affil-
iated Hospital of Nanjing Medical University. Informed
consent was obtained from all participants, and the study
adhered to the principles of the Declaration of Helsinki
and relevant ethical guidelines. This study systematically
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integrated multi-omics data from public databases,
including published literature, The Cancer Genome Atlas
(TCGA), the Genotype-Tissue Expression (GTEx) proj-
ect, Gene Expression Omnibus (GEO), ArrayExpress,
and the Spatial Transcript Omics DataBase (STOmics
DB). In total, 3,395 CRC-related samples were included,
comprising 3,122 bulk RNA-seq samples, 234 single-cell
RNA-seq samples, and 4 spatial transcriptomic sam-
ples. Additionally, multi-omics data were collected for
nine other high-mortality solid tumor types: lung, liver,
stomach, breast, esophagus, pancreas, prostate, cervix,
and ovary. These datasets encompassed 6,769 samples
in total, including 6,636 bulk RNA-seq samples, 125 sin-
gle-cell RNA-seq samples, and 8 spatial transcriptomic
samples. Detailed information regarding the pan-cancer
datasets is provided in Supplementary Tables 2 and 3.

Bulk RNA-seq data processing and integration

To minimize batch effects among CRC datasets gener-
ated using the same sequencing platform, batch cor-
rection and data normalization were performed using
the “sva” R package. CRC molecular subtyping was con-
ducted using the “Lothelab/CMScaller” R package, classi-
fying TCGA-CRC samples into four consensus molecular
subtypes (CMS1-CMS4) as previously described [16].

Single-cell RNA-Seq data processing

The ScRNA data (human and mouse data) were processed
using the “Seurat” R package. The analysis methods and
parameters for both human and mouse single-cell data
were consistent. Low-quality cells were filtered based on
the following criteria: fewer than 200 or more than 5,000
detected features, or >20% mitochondrial gene expres-
sion. Principal component analysis (PCA) was performed
using the “RunPCA” function, followed by dimension-
ality reduction and clustering using “RunUMAP” and
“RunTSNE” functions. Cell-type-specific marker genes
were identified for each cluster using the “FindAllMark-
ers” function with parameters set to min.pct=0.25 and
logfc.threshold >0.25. Data integration and batch effect
correction across samples were performed using the
“harmony” R package [17]. Cell type annotation was
based on the “SingleR” R package and the CellMarker 2.0
database [18, 19]. To distinguish malignant from non-
malignant epithelial cells, copy number variation (CNV)
inference was conducted using the “intercnv” R package,
with normal epithelial cells used as the reference baseline
(parameters: cutoff=0.1, HMM = FALSE) [20].

Spatial transcriptomic data processing and spatial
mapping

Spatial transcriptomic (ST) data were preprocessed using
standard workflows in the “Seurat” R package, including
dimensionality reduction with RunPCA and clustering
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Fig. 1 Fibroblasts Exhibit Pro-Metastatic and Immunosuppressive Features in Advanced CRC Based on Merge.ScRNA Data. A. scRNA-seq data from GEO
and ArrayExpress were integrated into two cohorts: the multi-center cohort (Merge.SCRNA) and single-center cohort (SCRNA.GSE178341). B. UMAP distri-
bution of single cells from the eight datasets within Merge.SCRNA. C. UMAP plot of Merge.ScCRNA data stratified by tissue type and TNM stage. D. Heatmap
showing expression of canonical surface markers across cell types in different TNM stages. E. UMAP clustering of seven major cell types. F. Circular plot
showing intercellular communication strength and weights across cell types. G. Heatmap of GSVA pathway enrichment in fibroblasts across TNM stages

using “FindNeighbors” and “FindClusters” Spatial map-
ping between ST and single-cell datasets was performed
using the “CellTrek” R package [21] to determine the
spatial localization of specific cell types within tissue
sections. Malignant tumor cell identification and spa-
tial gene scoring were performed using the “SpaCET” R
package to support spatial annotation and heterogeneity
analysis [22]. Ligand-receptor spatial colocalization anal-
ysis was conducted using the “SpaGene” R package [23].

Single-sample gene set enrichment analysis (ssGSEA)
Signature scores were generated with the GSVA R pack-
age (method = “ssgsea”). Differentially expressed genes
identified from our scRNA-seq dataset (avg log,FC>1,
p_val_adj<0.05) were compiled into cell-subtype—spe-
cific gene sets. Bulk RNA-seq datasets (TCGA, GEO)
were converted to log,-transformed TPM values, and
scRNA/spatial transcriptomics data were normalized
with SCTransform. Scores were computed by calling
gsva(expr, geneSet, method = “ssgsea’, kedf = “Gaussian’,
abs.ranking = TRUE) and rescaled to a 0—1 range for each
sample or spatial spot. All marker genes used are pro-
vided in Supplementary Table 4.

Statistical analysis
All statistical analyses were performed using GraphPad
Prism 9.0 (GraphPad Software, San Diego, CA, USA) and
R software (version 4.3.0). Correlations between con-
tinuous variables were assessed using Spearman’s rank
correlation test. For comparisons between two groups,
two-tailed Student’s t-test was used for normally dis-
tributed data; otherwise, the non-parametric Wilcoxon
rank-sum test (Mann—Whitney U test) was applied. For
multiple group comparisons, appropriate non-parametric
tests were selected based on data distribution. All in vitro
functional assays were independently repeated at least
three times under identical conditions, and data are pre-
sented as mean + standard deviation (SD). A Pvalue <0.05
was considered statistically significant. Significance levels
are indicated in figures and results as follows: *P<0.05;
**P<0.01; **P<0.001; ****P<0.0001.

Other materials and methods are provided in the Sup-
plementary Methods file.

Result

Fibroblasts display Gene-Expression signatures linked to
metastasis and immune suppression in advanced CRC

To investigate the role of fibroblasts in CRC progression,
we curated publicly available scRNA datasets from the
GEO and ArrayExpress databases, constructing two inde-
pendent cohorts: a multi-center cohort (Merge.ScRNA,
n=119) composed of eight datasets, and a single-center
cohort (SCRNA.GSE178341, n=98) derived from a single
dataset (Fig. 1A). After stringent quality control, 224,207
high-quality cells were retained in the Merge.SCRNA
cohort. Cellular distribution maps were constructed
based on dataset origin, tissue type, and TNM staging
(Fig. 1B—C). Seven major cell types were annotated using
canonical surface markers, including T/NK cells (CD3D),
epithelial cells (KRT19), plasma cells (IGHA2), B cells
(MS4A1), myeloid cells (LYZ), fibroblasts (COL1A1), and
endothelial cells (PLVAP) (Fig. 1D-E). Cell-cell commu-
nication analysis revealed that fibroblasts exhibited the
second-highest interaction strength after epithelial tumor
cells across all TNM stages, suggesting their potential
role in CRC progression (Fig. 1F). Gene Set Variation
Analysis (GSVA) revealed that fibroblasts in TNM stage
IV samples were markedly enriched in pathways associ-
ated with metastasis and immune suppression, such as
epithelial-mesenchymal transition (EMT), TGE-f signal-
ing, and hypoxia. (Fig. 1G). These findings were validated
in the independent ScCRNA.GSE178341 cohort, reinforc-
ing the biological significance of fibroblasts in advanced
CRC and providing a foundation for downstream fibro-
blast subpopulation analysis (Supplementary Fig. 1A-E).

Identification of COL10A1*Fib as associated with CRC
progression

To further dissect fibroblast heterogeneity during
CRC progression, fibroblasts from the Merge.SCRNA
cohort were re-clustered, yielding 11 distinct subpopu-
lations (Fib_1-Fib_11) (Fig. 2A). A tSNE map was gen-
erated to visualize their distribution across different
tissue sources and TNM stages (Fig. 2B). All subclus-
ters expressed canonical fibroblast markers (COL1A1l,
COL1A2, COL3A1), confirming the clustering accuracy
(Supplementary Fig. 2A) The top three marker genes
of each subcluster were identified (Fig. 2C, Supple-
mentary Fig. 2B), and functional enrichment analysis
revealed distinct pathway activation profiles among sub-
clusters (Fig. 2D). Cellular proportion analysis showed
that Fib_1 was highly enriched in tumor tissues and
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Fig. 2 Identification of COL10A1*Fib as associated with CRC progression. A. tSNE plot of 11 fibroblast subclusters (Fib_1-Fib_11). B. tSNE plots showing
subcluster distribution across tissue types and TNM stages. C. Volcano plots of the top three marker genes for each subcluster. D. Heatmap of functional
pathway enrichment among the 11 fibroblast subclusters. E-F. Comparison of subcluster proportions between normal and tumor tissues. G-H. Propor-
tional distribution of subclusters across TNM stages. I. Pseudotime trajectory analysis indicating Fib_1 as a terminally differentiated subcluster. J. Enrich-
ment of pseudotime modules (Cluster1-4) in key biological processes. K. Venn diagram identifying COL10A1 as the intersection of highly expressed
genes in Fib_1 and top hub genes in the M12 module. L-M. Expression distribution of COL10AT across fibroblast subclusters (violin plot and tSNE). N.
Pseudotime expression dynamics of COL10AT. O. COL10A1 expression stratified by TNM stage. P. Definition of COL10A1*Fib by excluding COLT10A1~
cells from Fib_1. Q. Proportional changes in COL10A1*Fib across different TNM stages in the Merge.ScRNA. R. COL10AT expression levels in CRC tissues
versus normal tissues based on bulk datasets (TCGA + GTEx and GSE44076). S. Comparative expression of COL10A1*Fib between CAFs and NFs (datasets:

GSE93255 and GSE46824). T. Infiltration levels of COL10AT*Fib across different clinicopathological subgroups in the TCGA CRC cohort

progressively increased in frequency with advancing
TNM stage (Fig. 2E-H), suggesting a potential role in
CRC progression. Pseudotime trajectory analysis indi-
cated that Fib_1 resided at the terminal branch of dif-
ferentiation (Fig. 2I), and the associated gene module
(Cluster2) was enriched in genes related to extracellular
matrix remodeling, adhesion, and immunosuppression
(Fig. 2J), suggesting a potential tumor-promoting role.
Consequently, Fib_1 was selected for further analysis.
Using high-dimensional weighted gene co-expression
network analysis (hdWGCNA), we constructed a scale-
free network for fibroblasts and identified 16 co-expres-
sion modules (Supplementary Fig. 2C-E). The MI12
module was highly enriched in Fib_1 (Supplementary
Fig. 2F-G), and co-expression analysis revealed strong
interactions among the top 25 hub genes (Supplemen-
tary Fig. 2H). By intersecting genes that were both highly
expressed in Fib_1 (logFC>2, p<0.05) and ranked in the
top 10 of the M12 module, COL10A1 was identified as a
specific marker (Fig. 2K). COL10A1 expression was sig-
nificantly higher in Fib_1 compared to other subclusters
(Fig. 2L—M) and was markedly upregulated in advanced
CRC samples (Fig. 2N-0). Subsequently, non-express-
ing COL10A1 cells were excluded from Fib_1, and the
remaining cells were defined as COL10A1*Fib (Fig. 2P).
COL10A1*Fib were significantly enriched in tumor tis-
sues and their proportion increased progressively with
TNM stage (Fig. 2Q). The enrichment of COL10A1*Fib
in late-stage CRC was independently confirmed in the
ScRNA.GSE178341 cohort (Supplementary Fig. 3A-Q),
supporting its robustness. Bulk transcriptomic data from
TCGA + GTEx and GSE44076 confirmed that COL10A1
expression was significantly upregulated in tumor tis-
sues (Fig. 2R), with higher expression in CAFs compared
to normal fibroblasts (Fig. 2S). Further stratified analysis
revealed elevated COL10A1"Fib infiltration in advanced
clinical stages, nodal metastasis, and distant metastasis
subgroups (Fig. 27T).

Clinical validation of COL10A1*Fib in CRC progression and
prognosis

At the protein level, examination of 35 paired colorectal
cancer clinical specimens showed that COL10A1 was
over-expressed in the tumour group in both paired and

unpaired analyses, and its expression increased with
advancing stage (Fig. 3A). Western blotting in primary
cells showed higher COL10A1 levels in CAFs compared
to adjacent normal fibroblasts (Fig. 3B), and immuno-
fluorescence staining demonstrated co-expression of
COL10A1 and a-SMA in CAFs (Primary Tumor: n=>5)
(Fig. 3C), with widespread expression in advanced-stage
CRC tissues (Paracancerous Normal: n =35, Stagel: n=5,
Stagell: n=10, Stagelll: n=13, StagelV: n=7) (Fig. 3D).
Comparative analysis of 10 human CRC cell lines and
CAFs confirmed that COL10A1 was primarily derived
from CAFs (Fig. 3E). Moreover, a Col10al*Fib subpopu-
lation was identified in seven murine single-cell RNA-
seq datasets, suggesting conservation across species
(Supplementary Fig. 4A-D). In the TCGA cohort, high
infiltration of COL10A1*Fib was significantly associ-
ated with poorer overall survival (OS) and recurrence-
free survival (RFS) (Fig. 3F). We also integrated ten GEO
datasets with survival information from the GPL570 plat-
form (Bulk.GEO.Merge, n=1854) (Fig. 3G), where high
COL10A1*Fib infiltration was similarly associated with
reduced OS and REFS (Fig. 3H).

Functional characterization of COL10A1*Fib in promoting
metastasis and immunosuppression

Functionally, GSVA showed that COL10A1'Fib were
enriched in EMT, TGF-f, and other pro-metastatic and
immunosuppressive pathways (Supplementary Fig. 5A).
GSEA of overlapping differentially expressed genes fur-
ther supported their involvement in metastasis and
immune modulation (Supplementary Fig. 5B—C). In
both the TCGA and Bulk.GEO.Merge datasets, high
COL10A1*Fib infiltration was associated with enrich-
ment of immunosuppressive and metastatic pathways
(Supplementary Fig. 5D—E). In ten CRC liver metastasis
single-cell datasets, COL10A1"Fib were enriched in met-
astatic lesions and exhibited consistent functional pro-
files (Supplementary Fig. 5F—H). Notably, COL10A1"Fib
infiltration was highest in the CMS4 molecular subtype,
which is known for strong metastatic potential and
immune evasion [24] (Supplementary Fig. 5I). Together,
these results suggest that COL10A1*Fib may contribute
to pro-metastatic and immunosuppressive processes in
the TME.
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Identification of cell subpopulations in spatial proximity to
COL10A1*Fib

To further elucidate the interactions of COL10A1*Fib
within the TME, we performed re-clustering of the six
major non-fibroblast cell types in the Merge.ScCRNA
dataset. This analysis identified 10 epithelial subclusters,
7 myeloid subclusters, 9 T/NK cell subclusters, 6 endo-
thelial subclusters, 7 plasma cell subclusters, and 6 B
cell subclusters (Supplementary Figure. 6 A). Together
with the previously defined 11 fibroblast subclusters, this
yielded a total of 56 annotated cellular subpopulations.
Next, we integrated spatial transcriptomic (ST) data from
four CRC patients to map the spatial distribution of each
cell subcluster (Supplementary Figure. 6B) and calculated
their spatial distances to COL10A1*Fib. We focused par-
ticularly on immune and epithelial lineages. Among epi-
thelial cells, Epi_1 was found to be the closest in spatial
proximity to COL10A1*Fib. For myeloid populations, the
nearest subclusters were APOE*Macr, SPP1*Macr, and
C1QA"Macr (Supplementary Figure. 6 C).

COL10A1 signaling network analysis

Cell-cell communication analysis, centered on the
COL10A1l signaling axis, revealed that Epi 1 and
the three aforementioned macrophage subclusters
(APOE*Macr, SPP1*Macr, and C1QA*Macr) were the
primary recipients of COL10A1 signaling (Supple-
mentary Figure. 7 A-C). These findings suggest that
COL10A1'Fib may influence the invasive potential of
tumor epithelial cells and modulate the immunological
behavior of macrophages through COL10A1-mediated
signaling, potentially contributing to metastasis and
immunosuppressive microenvironment formation.

COL10A1*Fib promotes malignant progression of CRC cells
To investigate the role of COL10A1*Fib in promoting
the malignant progression of CRC, we comprehensively
assessed their effects on tumor cell phenotypes. Spatial
transcriptomic data revealed that COL10A17Fib is spa-
tially adjacent to the epithelial subcluster Epi_1, which
was also identified as a primary recipient of COL10A1
signaling. Epi_1 was significantly enriched in tumor tis-
sues, with the highest proportion observed in late-stage
TNM classifications (Supplementary Figure. 8 A). Func-
tional enrichment analysis showed that Epi 1 strongly
activated malignant signaling pathways, including EMT,
TGEF-B, and stemness (Supplementary Figure. 8B), and
was associated with poor patient prognosis (Supplemen-
tary Figure. 8 C). CNV analysis further indicated that
Epi_1 exhibited marked genomic instability (Supplemen-
tary Figure. 8D-E), supporting its malignant phenotype.
The marker genes of Epi_1, ERO1A and ALDOA, were
found to be spatially colocalized with COL10A1"Fib (Pri-
mary Tumor: n=35) (Supplementary Figure. 8 F, Figure.
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4 A), suggesting local interactions may enhance epithelial
malignancy. In vitro, we generated stable COL10A1"Fib
and COL10A17Fib lines (Supplementary Figure. 9 A-B).
Co-culture experiments (Figure. 4B)demonstrated that
COL10A1*Fib significantly promoted HCT116 cell pro-
liferation (Figure. 4 C) and colony formation (Figure.
4D), with similar results observed in the SW620 cell
line (Supplementary Figure. 9 C-D). In vivo, subcutane-
ous xenograft models showed that COL10A1*Fib mark-
edly accelerated tumor growth and Ki67 expression (per
group: n=6) (Figure. 4E-H). We additionally included a
“normal CAF+HCT116” group: these CAFs enhanced
tumor growth relative to the Ctrl and COL10A1°Fib
groups, yet remained significantly less potent than
COL10A1*Fib (per group: n=6) (Supplementary Fig. 9E-
G). Transwell assays confirmed that COL10A1'Fib
enhanced CRC cell migration and invasion (Figure. 41-],
Supplementary Figure. 9 H). In the splenic injection liver
metastasis model, mice co-injected with COL10A1"Fib
developed significantly more liver metastases (per group:
n=4) (Figure. 4 K), suggesting a strong pro-metastatic
effect in vivo.

COL10A1*Fib promote epithelial-mesenchymal transition
(EMT) in CRC cells

Mechanistically, analysis across multiple CRC bulk tran-
scriptomic datasets revealed that COL10A1*Fib infil-
tration was highly correlated with EMT scores (R>0.9,
P<0.05) (Figure. 5 A, Supplementary Fig. 5C). Western
blot analysis showed that co-culture with COL10A1"Fib
reduced E-cadherin and increased N-cadherin and
vimentin in HCT116 and SW620 cells (Figure. 5B), indi-
cating EMT activation. Treatment with recombinant
human COL10A1 protein (rCOL10A1l) induced EMT
markers in a dose-dependent manner (Figure. 5C) with
consistent results validated by immunofluorescence
(Supplementary Figure. 9I). Immunohistochemistry
(IHC) of both subcutaneous and metastatic liver tissues
confirmed that COL10A1*Fib significantly upregulated
EMT markers in vivo (per group: n=6) (Figure. 5D).
In summary, COL10A1*Fib promotes EMT in CRC
cells through COL10A1l secretion, and synergistically
enhances proliferation, migration, and metastasis, sup-
porting a contributory role in the tumor microenviron-
ment of CRC.

COL10A1*Fib promotes M2-like macrophage polarization

Previous analyses revealed that M2-like macrophage
subtypes (APOE*Macr, SPP1*Macr, and C1QA*Macr)
are the primary recipients of COL10A1 signaling, exhib-
iting consistently high M2 scores (Fig. 6A). Across the
seven principal cell lineages, APOE, SPP1, and C1QA
are expressed almost exclusively within the myeloid com-
partment, and, within the myeloid subclusters, each gene
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is largely restricted to its cognate macrophage subset—
APOE to APOE*Macr, SPP1 to SPP1*Macr and C1QA
to C1QA*Macr (Supplementary Fig. 10A). In the TCGA
cohort, COL10A1*Fib showed strong positive correla-
tions with the infiltration of these M2 subpopulations
(R>0.3, P<0.001) (Fig. 6B). Immune infiltration analysis
using CIBERSORTXx identified the strongest association
between COL10A1*Fib and M2 macrophages (Fig. 6C),

alongside elevated TIDE dysfunction and exclusion
scores (Fig. 6D). Moreover, in the CMS4 molecular sub-
type, expression levels of COL10A1, COL10A1*Fib, T
cell exhaustion markers, M2 markers, and M2 macro-
phage scores were all significantly increased (Fig. 6E),
suggesting a close link between COL10A1*Fib and the
immunosuppressive TME. Spatial transcriptomics fur-
ther confirmed the colocalization of COL10A1"Fib with
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Fig. 7 COLT0A1"Fib promotes M2-like polarization through the CD18/JAK1/STAT3 signaling axis. A. Cell-cell communication analysis in the Merge.
ScRNA dataset showing COL10A1*Fib interacting with APOE*Macr, SPP1*Macr, and C1QA™Macr via COL10A1 signaling. B. CD18 expression levels across
myeloid subpopulations in single-cell data, highest in M2 macrophages. C. CD18 gene expression in M0, M1, and M2 macrophages in the GSE159112
dataset. D. Western blot showing CD18 protein levels under MO, M1, and M2 induction conditions. E. Western blot comparison of CD18 protein expression
in MO macrophages treated with COL10A1-Fib versus COL10A1*Fib. F. Spearman correlation analysis between CD18 infiltration and M1/M2 macrophage
infiltration in TCGA and Bulk. GEO.Merge datasets. G. Multiplex immunofluorescence staining (DAPI, CD163*, CD206%, CD18") showing CD18 co-localized
with M2 markers (Primary Tumor: n=35). Scale bars, 50 um. H. Spearman correlation analysis of COL10A1 and CD18 expression in TCGA and Bulk.GEO.
Merge cohorts. I. Co-immunoprecipitation (Co-IP) assay confirming direct interaction between COL10A1 and CD18 proteins. J. Spatial transcriptomic
evidence of COL10AT and CD18 colocalization in CRC tissue. K. GSEA enrichment based on TCGA and Bulk. GEO.Merge datasets showing activation of JAK/
STAT3 signaling downstream of the COL10A1/CD18 axis. L. Western blot analysis of p-JAK1, p-STAT3, CD163, and CD206 in subcutaneous tumors of nude
mice. M. RT-gPCR analysis of M2-associated genes (CD163, PDGFB, MRC1, CSF1R, ARG1, TGFB) under the indicated treatments: Control_CM, COL10A1*Fib-
CM, COL10A 1 Fib-CM, recombinant COLT0AT (rCOL10AT, 5 nM), siCD18, Ruxolitinib (3.3 nM), and their combinations. N. Western blot analysis of p-JAKT,
p-STAT3, CD163, and CD206 in MO macrophages subjected to the indicated treatments: Control_CM, COL10A1*Fib-CM, COLT0A1 Fib-CM, recombinant

COL10AT (rCOL10AT, 5 nM), siCD18, Ruxolitinib (3.3 nM), and their combinations. **P<0.01; ***P <0.001; ****P < 0.0001

M2-like macrophages (Fig. 6F; Supplementary Fig. 10B).
Functionally, COL10A1*Fib significantly promoted the
migration of MO macrophages (Fig. 6G) and localized
near CD163" and CD206" M2 macrophages (Primary
Tumor: n=35) (Fig. 6H). qPCR, flow cytometry, and
Western blot analysis demonstrated that COL10A1*Fib
upregulated multiple M2 markers (CD163, CD206)
without affecting M1 markers (Fig. 6I-L). In subcutane-
ous tumors in nude mice, the COL10A1*Fib group also
exhibited pronounced M2 polarization characteristics
(Fig. 6M). Recombinant COL10A1 protein (rCOL10A1)
induced M2 marker expression in a dose-dependent
manner (Fig. 6N), indicating that COL10A1 plays an
important role in M2 polarization.

COL10A1*Fib promotes M2-like polarization through the
CD18/JAK1/STAT3 signaling axis

Mechanistically, cell-cell ~communication analy-
sis implicated COL10A1-CD18 as a major candidate
ligand-receptor pair mediating interactions between
COL10A1Fib and M2-like macrophages (Fig. 7A). CD18
expression was highest in M2 macrophages (Fig. 7B-D;
Supplementary Fig. 11A) and further upregulated upon
stimulation with COL10A1*Fib (Fig. 7E; Supplementary
Fig. 11B). In both TCGA and Bulk.GEO.Merge datasets,
CD18 infiltration levels correlated moderately with M1
macrophages (R=0.3-0.4) and strongly with M2 macro-
phages (R=0.7-0.9) (Fig. 7F), supporting its association
with M2 polarization. Multiplex immunofluorescence
revealed CD18 localization predominantly in CD163" or
CD206" macrophages (Primary Tumor: n=35) (Fig. 7G),
with strong positive correlation between COL10A1
and CD18 expression (R>0.5, P<0.001) (Fig. 7H). Pro-
tein—protein docking (Supplementary Fig. 11C-D)
and co-immunoprecipitation assays (Fig. 7I) confirmed
direct binding between COL10Al and CD18, sup-
ported by spatial co-localization (Fig. 7J). GSEA indi-
cated that the COL10A1/CD18 axis may promote M2
polarization through JAK1/STAT3 activation (Fig. 7K).
In vivo experiments demonstrated that stimulation with
COL10A1"Fib elevated p-JAK1/p-STAT3 levels and M2

marker expression (Fig. 7L). Intervention experiments
showed that either CD18 knockdown (siRNA_2), JAK1/
STAT3 inhibition with Ruxolitinib, or their combination
effectively blocked COL10A1- or COL10A1*Fib-induced
M2 polarization (Fig. 7M-N; Supplementary Fig. 11E).
In summary, COL10A1*Fib appears to promote M2-like
macrophage polarization via COL10A1-CD18-JAK1/
STATS3 signaling, potentially contributing to an immuno-
suppressive microenvironment in CRC.

M2-like macrophages enhance COL10A1 expression in
COL10A1*Fib via the TGF-B/RUNX2 signaling axis

To elucidate upstream regulators of COL10A1 expression
in COL10A1*Fib, we employed the SCENIC algorithm
on the GEO.Merge.ScCRNA dataset to identify poten-
tial transcription factors. The analysis revealed a set of
transcription factor modules enriched in COL10A1*Fib,
including VDR, DLX5, LEF1, RUNX2, SOX4, STAT2,
CREB3L1, and CREB3 (Fig. 8A). Correlation analysis
across multiple bulk RNA-seq datasets identified RUNX2
as the factor most strongly associated with COL10A1
expression (Spearman’s R>0.6) (Figs. 8B—C), suggest-
ing it may be a key transcriptional regulator. Single-cell
data indicated that RUNX2 activity was concentrated
in COL10A1*Fib and increased with CRC progression
(Figs. 8D-F). RUNX2 was also significantly upregulated
in CAFs compared to normal fibroblasts (Figs. 8G—H).
Knockdown of RUNX2 resulted in marked reduction of
COL10A1 expression (Fig. 8I), supporting a regulatory
role. ChIP-qPCR confirmed that RUNX2 directly binds
to Sitel and Site2 of the COL10A1 promoter (Fig. 8J),
and multiplex immunofluorescence further showed
co-localization of RUNX2 and COL10A1 in fibroblasts
(Primary Tumor: n=35) (Fig. 8K), indicating direct tran-
scriptional activation. We next investigated how RUNX2
is regulated. M2-like macrophages emerged as the pri-
mary source of TGF-p signaling and robustly activated
this pathway in COL10A1Fib (Figs. 8L—M, Supplemen-
tary Fig. 12A—C). In vitro, the upregulation of RUNX2
and COL10A1 in CAFs treated with COL10A1*Fib-CM
was observed; however, it was significantly lower than
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Fig. 8 M2-like macrophages promote COL10A1 expression in COL10A1*Fib via the TGF-B/RUNX2 axis. A. Heatmap showing transcription factors ac-
tivated in COL10A1*Fib based on SCENIC analysis. B. Radar plot of correlation coefficients between COLT10A1 and candidate TFs (VDR, DLX5, LEF1,
RUNX2, SOX4, STAT2, CREB3L1, CREB3) across bulk datasets (TCGA, GSE17538, GSE39582, GSE72970, GSE29621, Bulk. GEO.Merge). C. Scatterplots showing
Spearman correlations between COL10AT and RUNX2 in bulk datasets. D. t-SNE plot showing RUNX2 activity across cell types in single-cell RNA-seq. E.
Violin plot of RUNX2 activity across fibroblast subpopulations. F. RUNX2 activity across TNM stages. G. RUNX2 expression in CAFs vs. NFs in GSE46824
and GSE93255 datasets. H. Western blot and quantification of RUNX2 protein in CAFs and NFs. I. Western blot showing downregulation of COL10A1 and
RUNX2 after RUNX2 siRNA transfection. J. ChIP-gPCR results for RUNX2 binding at five predicted COL10A1 promoter sites. K. Multiplex immunofluores-
cence showing co-localization of RUNX2 and COL10AT1 in fibroblasts (Primary Tumor: n=35); Scale bars, 50 um. L. Western blot and quantification of
TGFB1 in MO, M1, and M2 macrophages. M. TGFB1 protein expression after MO macrophages were induced by COL10A1*Fib. N. Western blot analysis of
COL10A1 and RUNX2 expression in CAFs exposed to M2 macrophage-conditioned medium (M2_CM-1, M2_CM-2) or COL10A1*Fib conditioned medium
(COL10AT*Fib_CM) or recombinant TGF-B1 (rTGF-B1) at 0, 1, 2, 5, and 10 nM. O. Western blot analysis of COL10AT and RUNX2 protein levels under the
indicated treatments: recombinant TGF-B1 (5 nM), SB-431,542 (10 uM), siRUNX2, siCOL10A1, and their combinations. *P < 0.05; ***P < 0.001
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Fig. 9 NU7441 suppresses COLT10A1*Fib function and reverses its tumor-promoting effects on CRC cells in vitro and in vivo. A. IC50 curves of 10 small-
molecule compounds against COLT0A1*Fib cells. B. Western blot and densitometric quantification of COL10A1 expression in CAFs after treatment with
the following compounds: NU7441 (0.572 M), JQ-1 (2.706 uM), BMS-754,807 (1.487 uM), U-55,933 (0.902 M), AZD1332 (0.704 M), AZD8186 (1.049 uM),
Entospletinib (1.715 puM), ZM-447,439 (2.522 uM), XAV939 (0.781 uM) and SB-216,763 (6.591 puM). C. ELISA quantification of COL10A1 secretion following
treatment. D. Western blot demonstrating Smad2/3 pathway inhibition in CAFs treated with NU7441 (0.572 uM), recombinant TGF-31 (rTGF-31, 5 nM). E.
Western blot analysis of FAP and a-SMA (ACTA2) expression in CAFs after treatment with NU7441 (0.572 uM). F. Schematic overview of the experimental
design: conditioned media (CM) collected from CAFs subjected to recombinant COL10AT (rCOL10A1, 5 nM), NU7441 (0.572 uM), or their combination
were applied separately to HCT116 cells and MO macrophages for downstream assays. G. Colony formation assay assessing proliferation of HCT116 under
various treatments. H. Western blot and quantification of CD163 and CD206 expression in MO macrophages across groups. . Western blot and quantifica-
tion of EMT markers (E-cadherin, N-cadherin, Vimentin) in HCT116. J. Representative images of xenograft tumors from each treatment group; rCOL10A1
(0.5 ug in 50 L PBS), NU7441 (10 ug kg™). K. Final tumor weight comparisons across groups. L. Final tumor volume comparisons across groups. M. The
line chart shows the tumor growth curves for seven experimental groups (per group: n=6), including: Group 1 (Control), Group 2 (NU7441), Group 3 (CO-
L10A1 +Fib), Group 4 (rCOL10A1), Group 5 (COLT0AT + Fib_NU7441), Group 6 (rCOL10A1_NU7441), and Group 7 (COL10AT +Fib_NU7441_rCOL10A1). N.

H&E and Ki67 immunohistochemistry staining of xenograft tumors (per group: n=6). Scale bars, 200 um. *P<0.05; **P < 0.01; ***P <0.001

the upregulation of RUNX2 and COL10Al in CAFs
induced by M2 macrophage conditioned medium, either
from IL-4 and IL-13 (M2_CM-1) or from COL10A1*Fib
(M2_CM-2), and exogenous rTGF-B1 stimulation exhib-
ited similar dose-dependent effects (Fig. 8N). Impor-
tantly, inhibition of TGF-p signaling with SB-431,542
or RUNX2 knockdown significantly reduced COL10A1
expression, which could be partially restored by rTGF-$1
addition (Fig. 80). Collectively, these findings support
the model that TGF-f secreted by M2-like macrophages
induces RUNX2 activation, which in turn directly drives
COL10A1l transcription, forming a TGF-B/RUNX2/
COL10AL1 positive feedback loop. This mechanism illus-
trates how immune cells promote the activation and
maintenance of COL10A1*Fib, contributing to an immu-
nosuppressive TME and disease progression.

The small-molecule inhibitor NU7441 suppresses COL10A1
expression and secretion in COL10A1*Fib

To identify potential compounds capable of inhibiting
the function of COL10A1"Fib, we utilized the oncoPre-
dict algorithm to estimate the IC50 values of 198 drugs
across the TCGA-CRC and Bulk.GEO.Merge cohorts.
Ten candidate compounds were found to be significantly
negatively correlated with COL10A1'Fib infiltration in
both datasets (Supplementary Figs. 13 A-C), and their
binding to COL10A1 protein was evaluated via molecu-
lar docking (Supplementary Fig. 13D). In vitro, NU7441
significantly reduced both the expression and secretion
of COL10A1 in COL10A1*Fib (Figs. 9A-C). NU7441,
as a DNA-PKcs inhibitor, has been extensively studied
for its ability to enhance tumor sensitivity to radiation
and chemotherapy. We observed that NU7441 signifi-
cantly inhibited the phosphorylation of Smad2/3, but
no significant changes were observed in TGFB1 levels
(Fig. 9D, Supplementary Fig. 14A). NU7441 also down-
regulated the expression of COL10A1l and RUNX2
in COL10A1'Fib (Fig. 9D, Supplementary Fig. 14B),
while reducing the expression of CAF markers FAP
and a-SMA (Fig. 9E), indicating effective inhibition of
COL10A1Fib functional state. Co-culture experiments

(Fig. 9F) further demonstrated that NU7441 significantly
impaired the pro-tumorigenic effects of COL10A1Fib-
conditioned medium (CM) and recombinant COL10A1
protein (rCOL10A1), reducing CRC cell proliferation
(Fig. 9G), M2 macrophage polarization (Fig. 9H), CD18/
JAK1/STAT3 signaling pathway activation (Supplemen-
tary Fig. 14C), and EMT marker expression (Fig. 9I).
Molecular dynamics simulations showed that NU7441
forms a stable complex with COL10A1, supported by
favorable RMSD, hydrogen bond count, RMSEF, radius
of gyration (Rg), and SASA indices (Supplementary
Figs. 14D—-H), suggesting strong binding stability and
functional inhibition. In vivo, NU7441 significantly sup-
pressed tumor growth in HCT116 xenograft models.
While COL10A1*Fib and rCOL10A1 individually pro-
moted tumor growth, NU7441 treatment reversed their
pro-tumorigenic effects. When both COL10A1*Fib and
rCOL10A1 were administered together, NU7441 partially
mitigated the combined effect (per group: n =6) (Figs. 9]—
N). Collectively, NU7441 reduces RUNX2 and COL10A1
by blocking Smad2/3 phosphorylation and simultane-
ously disrupts CD18/JAK1/STAT3 signalling, further
underscoring its candidacy as a therapeutic agent target-
ing COL10A1"Fib.

Widespread presence and conserved functional pattern of
COL10A1*Fib subpopulation pan-cancers

To systematically evaluate the distribution and func-
tional characteristics of COL10A1*Fib across cancers,
we integrated multi-omics data from ten high-mortality
solid tumors (including CRC). This included bulk tran-
scriptomic profiles (normal tissues 7 =2,149; tumor tis-
sues n=4,487), single-cell transcriptomes (n=417,184
cells), and spatial transcriptomics (#=8 tumor samples;
esophageal cancer data unavailable) (Fig. 10A). At the
bulk level, COL10A1 was significantly upregulated in
tumor tissues across all nine cancer types examined
(Supplementary Fig. 15A) and its high expression was
consistently associated with poorer OS, particularly in
liver, gastric, breast, prostate, and cervical cancers (Sup-
plementary Fig. 15B). GSVA and pathway correlation
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Fig. 10 Distribution and Functional Characterization of COL10A1*Fib Subpopulations Pan-Cancers. A. Integrated analysis of bulk RNA-seq, SCRNA, and
spatial transcriptomics (ST) data across nine solid tumors (lung, liver, gastric, breast, esophageal, pancreatic, prostate, cervical, and ovarian cancers)
to systematically assess COLT10A1*Fib characteristics. B. GSVA heatmap showing enrichment of tumor-promoting pathways in COL10A1-high expres-
sion groups across nine cancer types. C. Bubble plot of Spearman correlations between COL10A1 expression and hallmark pathways. D. Correlation
bubble plot between COL10A1 expression and immune cell infiltration levels, assessed using four algorithms: MCPcounter, EPIC, CIBERSORTX, and xCell.
E. t-SNE plot of 417,184 single cells from pan-cancer scRNA-seq data, colored by cancer type. F. t-SNE plot showing distribution of major cell types across
all cancers. G. t-SNE plot of fibroblast subclusters, colored by cancer type. H. Density plot showing COL10AT expression distribution within fibroblast
populations. I. t-SNE plot showing spatial distribution of COL10A1*Fib versus COL10A1-Fib within fibroblasts. J. t-SNE comparison of fibroblast distribu-
tions in normal versus tumor tissues. K. Violin plots showing differences in COL10A1 gene expression between tumor and normal tissues across cancer
types. L. (Top) Bar chart comparing the proportion of COL10A1*Fib in tumor versus normal tissues for each cancer type. (Bottom) Boxplot summariz-
ing COL10A1"Fib abundance across cancers. M. Cell-cell communication network derived from scRNA-seq data showing active interactions between

COL10A1*Fib and epithelial or myeloid cells via the COL10A1 signaling axis. *P<0.05; **P<0.01; ***P<0.001

analyses revealed that COL10A1-high tumors exhibited
enrichment in multiple pro-tumorigenic signaling path-
ways, including TNFA/NF-xB, TGF-B, WNT, IL6/JAK/
STAT3, and EMT (Figs. 10B—C). Immune infiltration
analysis using MCPcounter, EPIC, CIBERSORTX, and
xCell demonstrated a strong positive correlation between
COL10A1 expression and CAF or M2 macrophage abun-
dance across all cancer types, while negative correla-
tions were observed with CD8" T cells and activated NK
cells, although with variable significance across cancers
(Fig. 10D). In single-cell RNA-seq datasets, eight major
cell types were annotated (Figs. 10E-F, Supplementary
Figs. 15 C-D). Fibroblasts were further subdivided into
COL10A1*Fib and COL10A1°Fib based on COL10A1
expression (Figs. 10G-I). COL10A1*Fib was predomi-
nantly localized to tumor tissues, with its abundance and
expression level significantly higher in tumors than in
normal tissues across all cancers except prostate cancer
(Figs. 10J-L, Supplementary Fig. 15E). Cell-cell commu-
nication analyses identified that COL10A1*Fib exhibited
the most active interactions with epithelial and myeloid
cells via the COL10A1 signaling axis (Fig. 10M). Spa-
tial transcriptomic analysis revealed that COL10A1*Fib
co-localized with regions enriched in EMT signatures,
M2 macrophages, and high tumor cell density across all
eight analyzed cancers (excluding esophageal cancer, for
which ST data was not available) (Supplementary Fig. 16)
These findings suggest a potential role for COL10A1*Fib
in metastasis-related and immune-evasive processes. In
summary, our multi-omics pan-cancer analysis reveals
the widespread presence of COL10A1'Fib across solid
tumors. This fibroblast subset shows similar transcrip-
tomic features linked to immunosuppression and metas-
tasis across multiple tumors, supporting its promise as a
therapeutic target that warrants further validation.

Discussion

CRC is a common and highly prevalent malignancy
worldwide. Patients with advanced-stage disease fre-
quently develop distant metastases and generally show
limited responses to immunotherapy [25-27]. CAFs play
a crucial role in CRC progression and immune evasion;

however, the pathogenic subpopulations and underlying
mechanisms remain poorly understood [28]. Through
integrative multi-omics analysis, this study systematically
identified a COL10A1*Fib that is enriched in late-stage
CRC. This subpopulation was shown to significantly
promote tumor metastasis and immunosuppression and
is closely associated with poor prognosis. Pan-cancer
analysis suggested that COL10A1'Fib is prevalent in
multiple solid tumors and displays similar transcriptomic
features. These findings highlight the pathogenic features
of COL10A1*Fib and provide novel insights into TME-
targeted therapies and cross-cancer treatment strategies.

Most current studies on COL10A1l have primarily
focused on its expression and function in tumor cells
[13], while investigations into its role within CAF sub-
populations—particularly COL10A1*Fib—remain lim-
ited. Existing reports indicate that COL10A1 is highly
expressed in the tumor stroma of breast, pancreatic,
and gastrointestinal cancers, where its upregulation
is typically associated with increased tumor invasive-
ness and poorer patient survival [29]. Notably, matrix-
producing CAFs (matCAFs) characteristically express
high levels of COL10A1, and knockdown of COL10A1
in breast and gastric cancer mouse models significantly
suppresses tumor proliferation and metastasis [30]. In
CRC, COL10A1 overexpression is linked to perineural
invasion, lymph node metastasis, and higher histological
grade [31]. SCRNA in basal cell carcinoma further identi-
fied COL10A1 as a CAF-specific gene, rarely expressed in
other cell types, and enriched in highly invasive tumors
[32]. In breast cancer, elevated COL10A1l expression
correlates with reduced tumor-infiltrating lymphocytes
(TILs) and diminished immune cell infiltration, suggest-
ing a potential role in shaping an immunosuppressive
microenvironment [29, 33]. Moreover, studies in CRC
confirm that COL10A1 is more abundantly expressed in
CAFs than in cancer cells [31]. However, prior research
has largely described the phenotypic expression of
COL10A1 in CAFs without systematically elucidating its
cellular origin or functional mechanisms. In this study,
we comprehensively identified a CRC-associated CAF
subpopulation—COL10A1*Fib—and confirmed that
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CAFs are the principal source of COL10A1 in CRC. We
further demonstrated that COL10A1*Fib exhibits both
immunosuppressive and pro-metastatic functions, and
for the first time, systematically dissected the underlying
regulatory mechanisms using COL10A1"Fib as a defined
cellular model.

Single-cell sequencing studies have confirmed the high
heterogeneity of CAFs across a range of solid tumors,
with distinct subpopulations driving tumor progres-
sion and immune regulation through secretion of fac-
tors or matrix remodeling [34, 35]. For instance, CD36"*
CAFs in hepatocellular carcinoma can uptake oxidized
low-density lipoprotein and activate the p38-CEBP-MIF
axis to recruit MDSCs, promoting an immunosuppres-
sive environment [36]. In CRC, IL1IR1" CAFs facilitate
immune evasion through IL-1 signaling and are associ-
ated with T cell suppression, where targeting this path-
way improves immunotherapeutic response [37]. FAP*
CAFs have also been shown to form an immune bar-
rier with SPP1* macrophages, limiting T cell infiltration
[38]. Building on these findings, our study is the first to
reveal the role of COL10A1*Fib as a central communica-
tion hub connecting tumor cells, immune cells, and the
extracellular matrix. We demonstrate that COL10A1*Fib
promotes epithelial-to-mesenchymal transition (EMT)
in tumor epithelial cells via COL10A1 collagen secretion,
significantly enhancing their migration and invasion.
COL10A1*Fib promotes M2 macrophage polarization
via the COL10A1/CD18/JAK1/STAT3 signaling axis,
contributing to an immunosuppressive microenviron-
ment. COL10A1 binds integrin CD18 on macrophage
surfaces, activating JAK1/STAT3 signaling and upregu-
lating M2 markers such as CD163 and CD206. CD18
(ITGB2), a B-chain integrin, is a known receptor for
collagen proteins [39, 40], and the JAK1/STAT3 path-
way is a well-established driver of M2 polarization [41].
Our findings suggest for the first time that CAF-derived
collagen may directly influence immune cell function
through exogenous signaling. Furthermore, we show that
M2 macrophages reciprocally activate COL10A1*Fib
through a TGF-B/RUNX2 axis, forming a positive feed-
back loop. TGF-f secreted by M2 macrophages signifi-
cantly upregulates RUNX2 in neighboring fibroblasts,
thereby enhancing COL10A1 transcription. RUNX2, a
master regulator of osteogenic differentiation, has also
been implicated in fibrosis and pathological fibroblast
activation, as its deletion blocks the transition from
normal to pathological fibroblasts [42, 43]. Our data
suggest that RUNX2 not only regulates fibrotic genes
but also serves an important mediator linking immune
responses and tumor progression. Collectively, this study
establishes a bidirectional signaling loop between CAFs,
tumor cells, and immune cells, positioning COL10A1*Fib
as a potential pivotal cell type in metastasis-related
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immune suppression—providing new insight into CAF

heterogeneity.

Notably, our analysis shows that the increases
in COL10Al1 expression, COL10Al* fibroblast
(COL10A1*Fib) infiltration, T-cell-exhaustion mark-

ers, M2 signatures, and M2-macrophage scores are most
pronounced in the CMS4 molecular subtype of CRC.
CMS4 is characterised by robust TGF-f signalling, a des-
moplastic stroma, and poor responsiveness to immuno-
therapy—hallmarks of an immunosuppressive TME [24].
Mechanistically, these converging signals are consistent
with our data: TGF-B directly up-regulates COL10A1
transcription in fibroblasts via RUNX2, driving the
expansion of the COL10A1*Fib pool; reciprocally, the
COL10A1*Fib secretome reinforces immunosuppression
by polarising MO macrophages toward an M2 phenotype
through the COL10A1-CD18/JAK1-STAT3 axis and
by promoting T-cell dysfunction/exclusion. The result-
ing M2 macrophages secrete additional TGF-p, estab-
lishing a positive-feedback loop that sustains both the
COL10A1*Fib population and the immunosuppressive
milieu. Thus, the co-enrichment of COL10A1'Fib and
immunosuppressive programmes in CMS4 is not merely
correlative but reflects an inter-dependent network
driven by TGE- signalling. This framework explains the
particularly aggressive clinical behaviour and immune-
checkpoint-blockade resistance of CMS4 tumours, and
highlights COL10A1'Fib as a tractable stromal target
for overcoming the immune-refractory nature of this
subtype.

COL10A1*Fib emerges as a promising therapeutic tar-
get. Through drug sensitivity prediction and experimen-
tal validation, we identified NU7441 as a small-molecule
inhibitor reduced COL10A1l expression/secretion and
attenuated CAF-mediated pro-tumor effects in preclini-
cal models. NU7441 is a selective DNA-PKcs inhibitor
that has been widely used to sensitize tumors to radia-
tion and chemotherapy [44, 45]. Recent studies also sug-
gest that NU7441 exerts immunomodulatory effects by
reducing the suppressive function of myeloid-derived
suppressor cells (MDSCs) and enhancing T cell responses
in immunotherapy-resistant tumors [46, 47]. Our study
shows that NU7441 suppresses COL10A1 expression
in CAFs primarily through inhibition of the TGEF-B/
Smad signaling pathway, consistent with prior findings
in renal fibrosis models [48]. Notably, molecular dynam-
ics simulations revealed stable binding between NU7441
and COL10A1l protein, providing theoretical sup-
port for direct molecular targeting. In vitro and in vivo
experiments confirmed that NU7441 effectively blocks
COL10A1*Fib-induced tumor proliferation, migration,
EMT, and immune suppression. These findings suggest
that NU7441 not only holds anti-tumor potential but also
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presents a drug repurposing opportunity for targeting
pathological CAF subpopulations.

Through multi-omics integration, this study demon-
strated that COL10A1"Fib are broadly enriched across
nine prevalent solid tumor types, including lung, liver,
gastric, and breast cancers. Remarkably, these cells show
similar transcriptomic signatures linked to metastasis
and immunosuppression across several tumor types.
These findings align with the pan-cancer single-cell atlas
presented by Luo et al., which identified a conserved CAF
subpopulation characterized by endothelial-mesenchy-
mal transition and spatial proximity to SPP1* macro-
phages [49]. Notably, the molecular and spatial properties
of COL10A1'Fib strongly resemble this “pan-cancer”
CAF state, suggesting that COL10A1*Fib supporting
the possibility that COL10A1*Fib constitutes a recur-
rent CAF subset in diverse tumor contexts. This expands
our understanding of CAF heterogeneity and provides
a unified framework to explain metastatic potential and
immune evasion across multiple malignancies.

Despite the breadth of our multi-omics analyses, sev-
eral caveats remain. First, all spatial transcriptomic
data were cross-sectional, preventing us from chart-
ing the temporal emergence and functional plasticity of
COL10A1*Fib during therapy or metastasis. Second,
although we showed that COL10A1 engages CD18 to
activate JAK1/STAT3 and induce M2 polarization,
CD18 is a hub integrin that feeds into multiple path-
ways; the full downstream network, the structural basis
of COL10A1-CD18 binding, and context-specific effects
across immune subsets are still undefined and warrant
high-resolution interactome and conditional-knockout
studies. Finally, NU7441 reduced COL10A1l expression
and curbed COL10A1*Fib activity, yet, as a DNA-PKcs
inhibitor with pleiotropic targets, it lacks COL10A1 spec-
ificity, and its anti-CAF actions may extend beyond the
observed TGF-B/Smad inhibition; future work must clar-
ify these mechanisms, develop more selective COL10A1
inhibitors, and establish pharmacodynamic windows and
safety profiles before clinical translation.

Conclusion

Our study reveals a CAF subpopulation, COL10A1*Fib,
associated with CRC progression and immune suppres-
sion, and suggests that this subpopulation may play a
similar role in multiple major solid tumors. This finding
warrants further exploration as a therapeutic target for
CRC and other malignant tumors.
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Co-IP Co-immunoprecipitation

CMS Consensus molecular subtype

CNV Copy number variation

CRC Colorectal cancer
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